ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.100 by root, Thu Oct 23 02:44:50 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.3; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>.
53 41
54The L<AnyEvent::Intro> tutorial contains some well-documented 42The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 43AnyEvent::Handle examples.
56 44
57In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
60 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
61All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
62argument. 53argument.
63 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
64=head1 METHODS 67=head1 METHODS
65 68
66=over 4 69=over 4
67 70
68=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 72
70The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
71 74
72=over 4 75=over 4
73 76
74=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 78
76The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 80NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 82that mode.
81 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
82=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
83 102
84Set the callback to be called when an end-of-file condition is detected, 103This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
86connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
87 108
88For sockets, this just means that the other side has stopped sending data, 109The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 111timeout is to be used).
91down.
92 112
93While not mandatory, it is I<highly> recommended to set an eof callback, 113=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 114
97If an EOF condition has been detected but no C<on_eof> callback has been 115This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
100=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
101 140
102This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 143connect or a read error.
105 144
106Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 146fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 147destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 148examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
111 157
112Non-fatal errors can be retried by simply returning, but it is recommended 158Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 159to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 160when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 162
117On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
119 166
120While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
122C<croak>. 169C<croak>.
123 170
127and no read request is in the queue (unlike read queue callbacks, this 174and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 175callback will only be called when at least one octet of data is in the
129read buffer). 176read buffer).
130 177
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
133 182
134When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
138 208
139=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
140 210
141This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 219memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 220the file when the write queue becomes empty.
151 221
152=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
153 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
154If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, a non-fatal C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 239
159Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
235 316
236This will not work for partial TLS data that could not be encoded 317This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 318yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 319help.
239 320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
330
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 332
242When this parameter is given, it enables TLS (SSL) mode, that means 333When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 334AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
245 339
246TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 341automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 342have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 343to add the dependency yourself.
253mode. 347mode.
254 348
255You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
259 363
260See the C<< ->starttls >> method for when need to start TLS negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 365
262=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
263 367
264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
265(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
267 407
268=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
269 409
270This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
271 411
280 420
281=cut 421=cut
282 422
283sub new { 423sub new {
284 my $class = shift; 424 my $class = shift;
285
286 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
287 426
288 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
289 490
290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
492
493 $self->{_activity} =
494 $self->{_ractivity} =
495 $self->{_wactivity} = AE::now;
496
497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 502
292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293 if $self->{tls}; 504 if $self->{tls};
294 505
295 $self->{_activity} = AnyEvent->now;
296 $self->_timeout;
297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 507
301 $self->start_read 508 $self->start_read
302 if $self->{on_read}; 509 if $self->{on_read} || @{ $self->{_queue} };
303 510
304 $self 511 $self->_drain_wbuf;
305} 512}
306 513
307sub _shutdown { 514#sub _shutdown {
308 my ($self) = @_; 515# my ($self) = @_;
309 516#
310 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
311 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
312 delete $self->{_ww}; 519#
313 delete $self->{fh};
314
315 &_freetls; 520# &_freetls;
316 521#}
317 delete $self->{on_read};
318 delete $self->{_queue};
319}
320 522
321sub _error { 523sub _error {
322 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
323
324 $self->_shutdown
325 if $fatal;
326 525
327 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
328 528
329 if ($self->{on_error}) { 529 if ($self->{on_error}) {
330 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
531 $self->destroy if $fatal;
331 } elsif ($self->{fh}) { 532 } elsif ($self->{fh}) {
533 $self->destroy;
332 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
333 } 535 }
334} 536}
335 537
336=item $fh = $handle->fh 538=item $fh = $handle->fh
337 539
361 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
362} 564}
363 565
364=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
365 567
366Replace the current C<on_timeout> callback, or disables the callback (but 568=item $handle->on_rtimeout ($cb)
367not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
368argument and method.
369 569
370=cut 570=item $handle->on_wtimeout ($cb)
371 571
372sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
373 $_[0]{on_timeout} = $_[1]; 573callback, or disables the callback (but not the timeout) if C<$cb> =
374} 574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
375 579
376=item $handle->autocork ($boolean) 580=item $handle->autocork ($boolean)
377 581
378Enables or disables the current autocork behaviour (see C<autocork> 582Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument). 583constructor argument). Changes will only take effect on the next write.
380 584
381=cut 585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
382 590
383=item $handle->no_delay ($boolean) 591=item $handle->no_delay ($boolean)
384 592
385Enables or disables the C<no_delay> setting (see constructor argument of 593Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details). 594the same name for details).
390sub no_delay { 598sub no_delay {
391 $_[0]{no_delay} = $_[1]; 599 $_[0]{no_delay} = $_[1];
392 600
393 eval { 601 eval {
394 local $SIG{__DIE__}; 602 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
396 }; 605 };
397} 606}
398 607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
636}
637
399############################################################################# 638#############################################################################
400 639
401=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
402 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
403Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
404 647
405=cut 648=item $handle->timeout_reset
406 649
407sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
408 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
409 673
410 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
411 $self->_timeout; 675 delete $self->{$tw}; &$cb;
412} 676 };
413 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
414# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
415# also check for time-outs 684 # also check for time-outs
416sub _timeout { 685 $cb = sub {
417 my ($self) = @_; 686 my ($self) = @_;
418 687
419 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
420 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
421 690
422 # when would the timeout trigger? 691 # when would the timeout trigger?
423 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
424 693
425 # now or in the past already? 694 # now or in the past already?
426 if ($after <= 0) { 695 if ($after <= 0) {
427 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
428 697
429 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
430 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
431 } else { 700 } else {
432 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
433 } 709 }
434 710
435 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
436 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
437 713
438 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
439 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
440 } 720 }
441
442 Scalar::Util::weaken $self;
443 return unless $self; # ->error could have destroyed $self
444
445 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
446 delete $self->{_tw};
447 $self->_timeout;
448 });
449 } else {
450 delete $self->{_tw};
451 } 721 }
452} 722}
453 723
454############################################################################# 724#############################################################################
455 725
500 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
501 771
502 my $cb = sub { 772 my $cb = sub {
503 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
504 774
505 if ($len >= 0) { 775 if (defined $len) {
506 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
507 777
508 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
509 779
510 $self->{on_drain}($self) 780 $self->{on_drain}($self)
511 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
512 && $self->{on_drain}; 782 && $self->{on_drain};
513 783
519 789
520 # try to write data immediately 790 # try to write data immediately
521 $cb->() unless $self->{autocork}; 791 $cb->() unless $self->{autocork};
522 792
523 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
524 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
525 if length $self->{wbuf}; 795 if length $self->{wbuf};
526 }; 796 };
527} 797}
528 798
529our %WH; 799our %WH;
542 ->($self, @_); 812 ->($self, @_);
543 } 813 }
544 814
545 if ($self->{tls}) { 815 if ($self->{tls}) {
546 $self->{_tls_wbuf} .= $_[0]; 816 $self->{_tls_wbuf} .= $_[0];
547 817 &_dotls ($self) if $self->{fh};
548 &_dotls ($self);
549 } else { 818 } else {
550 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
551 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
552 } 821 }
553} 822}
554 823
555=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
556 825
645 914
646 pack "w/a*", Storable::nfreeze ($ref) 915 pack "w/a*", Storable::nfreeze ($ref)
647}; 916};
648 917
649=back 918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
650 944
651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
652 946
653This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
654Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
748=cut 1042=cut
749 1043
750sub _drain_rbuf { 1044sub _drain_rbuf {
751 my ($self) = @_; 1045 my ($self) = @_;
752 1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
753 local $self->{_in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
754
755 if (
756 defined $self->{rbuf_max}
757 && $self->{rbuf_max} < length $self->{rbuf}
758 ) {
759 $self->_error (&Errno::ENOSPC, 1), return;
760 }
761 1050
762 while () { 1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
763 my $len = length $self->{rbuf}; 1057 my $len = length $self->{rbuf};
764 1058
765 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
766 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
767 if ($self->{_eof}) { 1061 # no progress can be made
768 # no progress can be made (not enough data and no data forthcoming) 1062 # (not enough data and no data forthcoming)
769 $self->_error (&Errno::EPIPE, 1), return; 1063 $self->_error (Errno::EPIPE, 1), return
770 } 1064 if $self->{_eof};
771 1065
772 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
773 last; 1067 last;
774 } 1068 }
775 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
782 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
783 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
784 ) { 1078 ) {
785 # no further data will arrive 1079 # no further data will arrive
786 # so no progress can be made 1080 # so no progress can be made
787 $self->_error (&Errno::EPIPE, 1), return 1081 $self->_error (Errno::EPIPE, 1), return
788 if $self->{_eof}; 1082 if $self->{_eof};
789 1083
790 last; # more data might arrive 1084 last; # more data might arrive
791 } 1085 }
792 } else { 1086 } else {
795 last; 1089 last;
796 } 1090 }
797 } 1091 }
798 1092
799 if ($self->{_eof}) { 1093 if ($self->{_eof}) {
800 if ($self->{on_eof}) { 1094 $self->{on_eof}
801 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
802 } else { 1096 : $self->_error (0, 1, "Unexpected end-of-file");
803 $self->_error (0, 1); 1097
804 } 1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
805 } 1106 }
806 1107
807 # may need to restart read watcher 1108 # may need to restart read watcher
808 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
809 $self->start_read 1110 $self->start_read
821 1122
822sub on_read { 1123sub on_read {
823 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
824 1125
825 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1127 $self->_drain_rbuf if $cb;
827} 1128}
828 1129
829=item $handle->rbuf 1130=item $handle->rbuf
830 1131
831Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
832 1133
833You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
834you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
835 1139
836NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
837C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
838automatically manage the read buffer. 1142automatically manage the read buffer.
839 1143
880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1184 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
881 ->($self, $cb, @_); 1185 ->($self, $cb, @_);
882 } 1186 }
883 1187
884 push @{ $self->{_queue} }, $cb; 1188 push @{ $self->{_queue} }, $cb;
885 $self->_drain_rbuf unless $self->{_in_drain}; 1189 $self->_drain_rbuf;
886} 1190}
887 1191
888sub unshift_read { 1192sub unshift_read {
889 my $self = shift; 1193 my $self = shift;
890 my $cb = pop; 1194 my $cb = pop;
896 ->($self, $cb, @_); 1200 ->($self, $cb, @_);
897 } 1201 }
898 1202
899 1203
900 unshift @{ $self->{_queue} }, $cb; 1204 unshift @{ $self->{_queue} }, $cb;
901 $self->_drain_rbuf unless $self->{_in_drain}; 1205 $self->_drain_rbuf;
902} 1206}
903 1207
904=item $handle->push_read (type => @args, $cb) 1208=item $handle->push_read (type => @args, $cb)
905 1209
906=item $handle->unshift_read (type => @args, $cb) 1210=item $handle->unshift_read (type => @args, $cb)
1039 return 1; 1343 return 1;
1040 } 1344 }
1041 1345
1042 # reject 1346 # reject
1043 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
1044 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
1045 } 1349 }
1046 1350
1047 # skip 1351 # skip
1048 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
1049 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
1065 my ($self, $cb) = @_; 1369 my ($self, $cb) = @_;
1066 1370
1067 sub { 1371 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) { 1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG); 1374 $self->_error (Errno::EBADMSG);
1071 } 1375 }
1072 return; 1376 return;
1073 } 1377 }
1074 1378
1075 my $len = $1; 1379 my $len = $1;
1078 my $string = $_[1]; 1382 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub { 1383 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") { 1384 if ($_[1] eq ",") {
1081 $cb->($_[0], $string); 1385 $cb->($_[0], $string);
1082 } else { 1386 } else {
1083 $self->_error (&Errno::EBADMSG); 1387 $self->_error (Errno::EBADMSG);
1084 } 1388 }
1085 }); 1389 });
1086 }); 1390 });
1087 1391
1088 1 1392 1
1135 } 1439 }
1136}; 1440};
1137 1441
1138=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
1139 1443
1140Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1141 1446
1142If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
1143for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1144 1449
1145This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
1154=cut 1459=cut
1155 1460
1156register_read_type json => sub { 1461register_read_type json => sub {
1157 my ($self, $cb) = @_; 1462 my ($self, $cb) = @_;
1158 1463
1159 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
1160 1467
1161 my $data; 1468 my $data;
1162 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
1163 1470
1164 my $json = $self->{json} ||= JSON->new->utf8;
1165
1166 sub { 1471 sub {
1167 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1168 1473
1169 if ($ref) { 1474 if ($ref) {
1170 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1171 $json->incr_text = ""; 1476 $json->incr_text = "";
1172 $cb->($self, $ref); 1477 $cb->($self, $ref);
1173 1478
1174 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1175 } else { 1490 } else {
1176 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1177 () 1493 ()
1178 } 1494 }
1179 } 1495 }
1180}; 1496};
1181 1497
1213 # read remaining chunk 1529 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub { 1530 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref); 1532 $cb->($_[0], $ref);
1217 } else { 1533 } else {
1218 $self->_error (&Errno::EBADMSG); 1534 $self->_error (Errno::EBADMSG);
1219 } 1535 }
1220 }); 1536 });
1221 } 1537 }
1222 1538
1223 1 1539 1
1275 my ($self) = @_; 1591 my ($self) = @_;
1276 1592
1277 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1278 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1279 1595
1280 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1281 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1282 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1283 1599
1284 if ($len > 0) { 1600 if ($len > 0) {
1285 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1286 1602
1287 if ($self->{tls}) { 1603 if ($self->{tls}) {
1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1289 1605
1290 &_dotls ($self); 1606 &_dotls ($self);
1291 } else { 1607 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain}; 1608 $self->_drain_rbuf;
1293 } 1609 }
1294 1610
1295 } elsif (defined $len) { 1611 } elsif (defined $len) {
1296 delete $self->{_rw}; 1612 delete $self->{_rw};
1297 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1298 $self->_drain_rbuf unless $self->{_in_drain}; 1614 $self->_drain_rbuf;
1299 1615
1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1301 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1302 } 1618 }
1303 }); 1619 };
1620 }
1621}
1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1304 } 1643 }
1305} 1644}
1306 1645
1307# poll the write BIO and send the data if applicable 1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1308sub _dotls { 1651sub _dotls {
1309 my ($self) = @_; 1652 my ($self) = @_;
1310 1653
1311 my $tmp; 1654 my $tmp;
1312 1655
1313 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1315 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1316 } 1659 }
1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1317 } 1665 }
1318 1666
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) { 1668 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF 1669 $self->{_on_starttls}
1322 delete $self->{_rw}; 1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1323 $self->{_eof} = 1;
1324 &_freetls; 1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1325 } 1681 }
1326 1682
1327 $self->{rbuf} .= $tmp; 1683 $self->{_tls_rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain}; 1684 $self->_drain_rbuf;
1329 $self->{tls} or return; # tls session might have gone away in callback 1685 $self->{tls} or return; # tls session might have gone away in callback
1330 } 1686 }
1331 1687
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1); 1689 return $self->_tls_error ($tmp)
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1690 if $tmp != $ERROR_WANT_READ
1338 return $self->_error (&Errno::EIO, 1); 1691 && ($tmp != $ERROR_SYSCALL || $!);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343 1692
1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345 $self->{wbuf} .= $tmp; 1694 $self->{wbuf} .= $tmp;
1346 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1347 } 1696 }
1697
1698 $self->{_on_starttls}
1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1348} 1701}
1349 1702
1350=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1351 1704
1352Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1353object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1354C<starttls>. 1707C<starttls>.
1355 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1356The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1357C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1358 1715
1359The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1360used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1361 1720
1362The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1363call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1364might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1365 1725
1366If it an error to start a TLS handshake more than once per 1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1367AnyEvent::Handle object (this is due to bugs in OpenSSL). 1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1368 1729
1369=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1370 1733
1371sub starttls { 1734sub starttls {
1372 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1736
1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1739
1740 $self->{tls} = $tls;
1741 $self->{tls_ctx} = $ctx if @_ > 2;
1742
1743 return unless $self->{fh};
1373 1744
1374 require Net::SSLeay; 1745 require Net::SSLeay;
1375 1746
1376 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1377 if $self->{tls}; 1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1378 1765
1379 if ($ssl eq "accept") { 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1381 Net::SSLeay::set_accept_state ($ssl);
1382 } elsif ($ssl eq "connect") {
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1384 Net::SSLeay::set_connect_state ($ssl);
1385 }
1386
1387 $self->{tls} = $ssl;
1388 1768
1389 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1390 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1392 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1396 # 1776 #
1397 # note that we do not try to keep the length constant between writes as we are required to do. 1777 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area. 1780 # have identity issues in that area.
1401 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1404 1785
1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1407 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1792
1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1794 if $self->{on_starttls};
1409 1795
1410 &_dotls; # need to trigger the initial handshake 1796 &_dotls; # need to trigger the initial handshake
1411 $self->start_read; # make sure we actually do read 1797 $self->start_read; # make sure we actually do read
1412} 1798}
1413 1799
1414=item $handle->stoptls 1800=item $handle->stoptls
1415 1801
1416Shuts down the SSL connection - this makes a proper EOF handshake by 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1417sending a close notify to the other side, but since OpenSSL doesn't 1803sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream 1804support non-blocking shut downs, it is not guarenteed that you can re-use
1419afterwards. 1805the stream afterwards.
1420 1806
1421=cut 1807=cut
1422 1808
1423sub stoptls { 1809sub stoptls {
1424 my ($self) = @_; 1810 my ($self) = @_;
1426 if ($self->{tls}) { 1812 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls}); 1813 Net::SSLeay::shutdown ($self->{tls});
1428 1814
1429 &_dotls; 1815 &_dotls;
1430 1816
1431 # we don't give a shit. no, we do, but we can't. no... 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1432 # we, we... have to use openssl :/ 1818# # we, we... have to use openssl :/#d#
1433 &_freetls; 1819# &_freetls;#d#
1434 } 1820 }
1435} 1821}
1436 1822
1437sub _freetls { 1823sub _freetls {
1438 my ($self) = @_; 1824 my ($self) = @_;
1439 1825
1440 return unless $self->{tls}; 1826 return unless $self->{tls};
1441 1827
1442 Net::SSLeay::free (delete $self->{tls}); 1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1443 1830
1444 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1445} 1832}
1446 1833
1447sub DESTROY { 1834sub DESTROY {
1448 my $self = shift; 1835 my ($self) = @_;
1449 1836
1450 &_freetls; 1837 &_freetls;
1451 1838
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453 1840
1454 if ($linger && length $self->{wbuf}) { 1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1455 my $fh = delete $self->{fh}; 1842 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf}; 1843 my $wbuf = delete $self->{wbuf};
1457 1844
1458 my @linger; 1845 my @linger;
1459 1846
1460 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1847 push @linger, AE::io $fh, 1, sub {
1461 my $len = syswrite $fh, $wbuf, length $wbuf; 1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1462 1849
1463 if ($len > 0) { 1850 if ($len > 0) {
1464 substr $wbuf, 0, $len, ""; 1851 substr $wbuf, 0, $len, "";
1465 } else { 1852 } else {
1466 @linger = (); # end 1853 @linger = (); # end
1467 } 1854 }
1468 }); 1855 };
1469 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1856 push @linger, AE::timer $linger, 0, sub {
1470 @linger = (); 1857 @linger = ();
1471 }); 1858 };
1472 } 1859 }
1473} 1860}
1474 1861
1475=item $handle->destroy 1862=item $handle->destroy
1476 1863
1477Shut's down the handle object as much as possible - this call ensures that 1864Shuts down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much 1865no further callbacks will be invoked and as many resources as possible
1479as possible. You must not call any methods on the object afterwards. 1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1480 1881
1481The handle might still linger in the background and write out remaining 1882The handle might still linger in the background and write out remaining
1482data, as specified by the C<linger> option, however. 1883data, as specified by the C<linger> option, however.
1483 1884
1484=cut 1885=cut
1486sub destroy { 1887sub destroy {
1487 my ($self) = @_; 1888 my ($self) = @_;
1488 1889
1489 $self->DESTROY; 1890 $self->DESTROY;
1490 %$self = (); 1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1491} 1897}
1492 1898
1493=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1494 1900
1495This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1496default for TLS mode. 1902for TLS mode.
1497 1903
1498The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1499
1500 Net::SSLeay::load_error_strings;
1501 Net::SSLeay::SSLeay_add_ssl_algorithms;
1502 Net::SSLeay::randomize;
1503
1504 my $CTX = Net::SSLeay::CTX_new;
1505
1506 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1507 1905
1508=cut 1906=cut
1509 1907
1510our $TLS_CTX; 1908our $TLS_CTX;
1511 1909
1512sub TLS_CTX() { 1910sub TLS_CTX() {
1513 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1514 require Net::SSLeay; 1912 require AnyEvent::TLS;
1515 1913
1516 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1517 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1518 Net::SSLeay::randomize ();
1519
1520 $TLS_CTX = Net::SSLeay::CTX_new ();
1521
1522 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1523
1524 $TLS_CTX
1525 } 1915 }
1526} 1916}
1527 1917
1528=back 1918=back
1529 1919
1530 1920
1531=head1 NONFREQUENTLY ASKED QUESTIONS 1921=head1 NONFREQUENTLY ASKED QUESTIONS
1532 1922
1533=over 4 1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1534 1951
1535=item How do I read data until the other side closes the connection? 1952=item How do I read data until the other side closes the connection?
1536 1953
1537If you just want to read your data into a perl scalar, the easiest way 1954If you just want to read your data into a perl scalar, the easiest way
1538to achieve this is by setting an C<on_read> callback that does nothing, 1955to achieve this is by setting an C<on_read> callback that does nothing,
1541 1958
1542 $handle->on_read (sub { }); 1959 $handle->on_read (sub { });
1543 $handle->on_eof (undef); 1960 $handle->on_eof (undef);
1544 $handle->on_error (sub { 1961 $handle->on_error (sub {
1545 my $data = delete $_[0]{rbuf}; 1962 my $data = delete $_[0]{rbuf};
1546 undef $handle;
1547 }); 1963 });
1548 1964
1549The reason to use C<on_error> is that TCP connections, due to latencies 1965The reason to use C<on_error> is that TCP connections, due to latencies
1550and packets loss, might get closed quite violently with an error, when in 1966and packets loss, might get closed quite violently with an error, when in
1551fact, all data has been received. 1967fact, all data has been received.
1552 1968
1553It is usually better to use acknowledgements when transfering data, 1969It is usually better to use acknowledgements when transferring data,
1554to make sure the other side hasn't just died and you got the data 1970to make sure the other side hasn't just died and you got the data
1555intact. This is also one reason why so many internet protocols have an 1971intact. This is also one reason why so many internet protocols have an
1556explicit QUIT command. 1972explicit QUIT command.
1557
1558 1973
1559=item I don't want to destroy the handle too early - how do I wait until 1974=item I don't want to destroy the handle too early - how do I wait until
1560all data has been written? 1975all data has been written?
1561 1976
1562After writing your last bits of data, set the C<on_drain> callback 1977After writing your last bits of data, set the C<on_drain> callback
1568 $handle->on_drain (sub { 1983 $handle->on_drain (sub {
1569 warn "all data submitted to the kernel\n"; 1984 warn "all data submitted to the kernel\n";
1570 undef $handle; 1985 undef $handle;
1571 }); 1986 });
1572 1987
1573=item I get different callback invocations in TLS mode/Why can't I pause 1988If you just want to queue some data and then signal EOF to the other side,
1574reading? 1989consider using C<< ->push_shutdown >> instead.
1575 1990
1576Unlike, say, TCP, TLS conenctions do not consist of two independent 1991=item I want to contact a TLS/SSL server, I don't care about security.
1577communication channels, one for each direction. Or put differently. the
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580 1992
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof> 1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1582callback invocations when you are not expecting any read data - the reason 1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1583is that AnyEvent::Handle always reads in TLS mode. 1995parameter:
1584 1996
1585During the connection, you have to make sure that you always have a 1997 tcp_connect $host, $port, sub {
1586non-empty read-queue, or an C<on_read> watcher. At the end of the 1998 my ($fh) = @_;
1587connection (or when you no longer want to use it) you can call the 1999
1588C<destroy> method. 2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
1589 2075
1590=back 2076=back
1591 2077
1592 2078
1593=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines