ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.44 by root, Thu May 29 00:00:07 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = '0.04'; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>. 41
42The L<AnyEvent::Intro> tutorial contains some well-documented
43AnyEvent::Handle examples.
53 44
54In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
57 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
58All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
59argument. 53argument.
60 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
61=head1 METHODS 67=head1 METHODS
62 68
63=over 4 69=over 4
64 70
65=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 72
67The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
68 74
69=over 4 75=over 4
70 76
71=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 78
73The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 80NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82that mode.
77 83
78=item on_eof => $cb->($handle) 84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
79 85
80Set the callback to be called on EOF. 86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
81 89
82While not mandatory, it is highly recommended to set an eof callback, 90You have to specify either this parameter, or C<fh>, above.
83otherwise you might end up with a closed socket while you are still
84waiting for data.
85 91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
86=item on_error => $cb->($handle) 101=item on_prepare => $cb->($handle)
87 102
103This (rarely used) callback is called before a new connection is
104attempted, but after the file handle has been created. It could be used to
105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
108
109The return value of this callback should be the connect timeout value in
110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
111timeout is to be used).
112
113=item on_connect => $cb->($handle, $host, $port, $retry->())
114
115This callback is called when a connection has been successfully established.
116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
139=item on_error => $cb->($handle, $fatal, $message)
140
88This is the fatal error callback, that is called when, well, a fatal error 141This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 142occured, such as not being able to resolve the hostname, failure to
90or a read error. 143connect or a read error.
91 144
92The object will not be in a usable state when this callback has been 145Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 146fatal errors the handle object will be destroyed (by a call to C<< ->
147destroy >>) after invoking the error callback (which means you are free to
148examine the handle object). Examples of fatal errors are an EOF condition
149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
157
158Non-fatal errors can be retried by simply returning, but it is recommended
159to simply ignore this parameter and instead abondon the handle object
160when this callback is invoked. Examples of non-fatal errors are timeouts
161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 162
95On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 165C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 166
101While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
103die. 169C<croak>.
104 170
105=item on_read => $cb->($handle) 171=item on_read => $cb->($handle)
106 172
107This sets the default read callback, which is called when data arrives 173This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 174and no read request is in the queue (unlike read queue callbacks, this
175callback will only be called when at least one octet of data is in the
176read buffer).
109 177
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
112 182
113When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
117 187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
208
118=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
119 210
120This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
122 213
123To append to the write buffer, use the C<< ->push_write >> method. 214To append to the write buffer, use the C<< ->push_write >> method.
124 215
216This callback is useful when you don't want to put all of your write data
217into the queue at once, for example, when you want to write the contents
218of some file to the socket you might not want to read the whole file into
219memory and push it into the queue, but instead only read more data from
220the file when the write queue becomes empty.
221
125=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
126 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
127If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
128seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
129handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
130missing, an C<ETIMEDOUT> errror will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
131 239
132Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
136 245
137Zero (the default) disables this timeout. 246Zero (the default) disables this timeout.
138 247
139=item on_timeout => $cb->($handle) 248=item on_timeout => $cb->($handle)
140 249
144 253
145=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
146 255
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
150 259
151For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
155isn't finished). 264isn't finished).
156 265
266=item autocork => <boolean>
267
268When disabled (the default), then C<push_write> will try to immediately
269write the data to the handle, if possible. This avoids having to register
270a write watcher and wait for the next event loop iteration, but can
271be inefficient if you write multiple small chunks (on the wire, this
272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
274
275When enabled, then writes will always be queued till the next event loop
276iteration. This is efficient when you do many small writes per iteration,
277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
279
280=item no_delay => <boolean>
281
282When doing small writes on sockets, your operating system kernel might
283wait a bit for more data before actually sending it out. This is called
284the Nagle algorithm, and usually it is beneficial.
285
286In some situations you want as low a delay as possible, which can be
287accomplishd by setting this option to a true value.
288
289The default is your opertaing system's default behaviour (most likely
290enabled), this option explicitly enables or disables it, if possible.
291
157=item read_size => <bytes> 292=item read_size => <bytes>
158 293
159The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
160on each [loop iteration). Default: C<4096>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
161 297
162=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
163 299
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
166considered empty. 302considered empty.
167 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
309=item linger => <seconds>
310
311If non-zero (default: C<3600>), then the destructor of the
312AnyEvent::Handle object will check whether there is still outstanding
313write data and will install a watcher that will write this data to the
314socket. No errors will be reported (this mostly matches how the operating
315system treats outstanding data at socket close time).
316
317This will not work for partial TLS data that could not be encoded
318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
330
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 332
170When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
173 339
174TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
176 344
177For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
179 348
180You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
184 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
185See the C<starttls> method if you need to start TLs negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 365
187=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
188 367
189Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
193=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
194 409
195This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
196 411
197If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
199 415
200Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
202 418
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 419=back
210 420
211=cut 421=cut
212 422
213sub new { 423sub new {
214 my $class = shift; 424 my $class = shift;
215
216 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
217 426
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
219 490
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 492
222 if ($self->{tls}) { 493 $self->{_activity} =
223 require Net::SSLeay; 494 $self->{_ractivity} =
495 $self->{_wactivity} = AE::now;
496
497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
502
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
225 } 504 if $self->{tls};
226 505
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 507
232 $self->{_activity} = AnyEvent->now;
233 $self->_timeout;
234
235 $self->start_read; 508 $self->start_read
509 if $self->{on_read} || @{ $self->{_queue} };
236 510
237 $self 511 $self->_drain_wbuf;
238} 512}
239 513
240sub _shutdown { 514#sub _shutdown {
241 my ($self) = @_; 515# my ($self) = @_;
516#
517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
518# $self->{_eof} = 1; # tell starttls et. al to stop trying
519#
520# &_freetls;
521#}
242 522
243 delete $self->{_rw};
244 delete $self->{_ww};
245 delete $self->{fh};
246}
247
248sub error { 523sub _error {
249 my ($self) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
250 525
251 { 526 $! = $errno;
252 local $!; 527 $message ||= "$!";
253 $self->_shutdown;
254 }
255 528
256 $self->{on_error}($self)
257 if $self->{on_error}; 529 if ($self->{on_error}) {
258 530 $self->{on_error}($self, $fatal, $message);
531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
259 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
535 }
260} 536}
261 537
262=item $fh = $handle->fh 538=item $fh = $handle->fh
263 539
264This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
265 541
266=cut 542=cut
267 543
268sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
269 545
287 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
288} 564}
289 565
290=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
291 567
292Replace the current C<on_timeout> callback, or disables the callback 568=item $handle->on_rtimeout ($cb)
293(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
294argument.
295 569
296=cut 570=item $handle->on_wtimeout ($cb)
297 571
298sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
573callback, or disables the callback (but not the timeout) if C<$cb> =
574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
579
580=item $handle->autocork ($boolean)
581
582Enables or disables the current autocork behaviour (see C<autocork>
583constructor argument). Changes will only take effect on the next write.
584
585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
590
591=item $handle->no_delay ($boolean)
592
593Enables or disables the C<no_delay> setting (see constructor argument of
594the same name for details).
595
596=cut
597
598sub no_delay {
599 $_[0]{no_delay} = $_[1];
600
601 eval {
602 local $SIG{__DIE__};
603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
605 };
606}
607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
299 $_[0]{on_timeout} = $_[1]; 625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
300} 636}
301 637
302############################################################################# 638#############################################################################
303 639
304=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
305 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
306Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
307 647
308=cut 648=item $handle->timeout_reset
309 649
310sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
311 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
312 673
313 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
314 $self->_timeout; 675 delete $self->{$tw}; &$cb;
315} 676 };
316 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
317# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
318# also check for time-outs 684 # also check for time-outs
319sub _timeout { 685 $cb = sub {
320 my ($self) = @_; 686 my ($self) = @_;
321 687
322 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
323 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
324 690
325 # when would the timeout trigger? 691 # when would the timeout trigger?
326 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
327 693
328 # now or in the past already? 694 # now or in the past already?
329 if ($after <= 0) { 695 if ($after <= 0) {
330 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
331 697
332 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
333 $self->{on_timeout}->($self); 699 $self->{$on_timeout}($self);
334 } else { 700 } else {
335 $! = Errno::ETIMEDOUT; 701 $self->_error (Errno::ETIMEDOUT);
336 $self->error; 702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
337 } 709 }
338 710
339 # callbakx could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
340 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
341 713
342 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
343 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
344 } 720 }
345
346 Scalar::Util::weaken $self;
347
348 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
349 delete $self->{_tw};
350 $self->_timeout;
351 });
352 } else {
353 delete $self->{_tw};
354 } 721 }
355} 722}
356 723
357############################################################################# 724#############################################################################
358 725
382 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
383 750
384 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
385 752
386 $cb->($self) 753 $cb->($self)
387 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
388} 755}
389 756
390=item $handle->push_write ($data) 757=item $handle->push_write ($data)
391 758
392Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
403 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
404 771
405 my $cb = sub { 772 my $cb = sub {
406 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
407 774
408 if ($len >= 0) { 775 if (defined $len) {
409 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
410 777
411 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
412 779
413 $self->{on_drain}($self) 780 $self->{on_drain}($self)
414 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
415 && $self->{on_drain}; 782 && $self->{on_drain};
416 783
417 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
418 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
419 $self->error; 786 $self->_error ($!, 1);
420 } 787 }
421 }; 788 };
422 789
423 # try to write data immediately 790 # try to write data immediately
424 $cb->(); 791 $cb->() unless $self->{autocork};
425 792
426 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
427 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
428 if length $self->{wbuf}; 795 if length $self->{wbuf};
429 }; 796 };
430} 797}
431 798
432our %WH; 799our %WH;
443 810
444 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
445 ->($self, @_); 812 ->($self, @_);
446 } 813 }
447 814
448 if ($self->{filter_w}) { 815 if ($self->{tls}) {
449 $self->{filter_w}->($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
450 } else { 818 } else {
451 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
452 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
453 } 821 }
454} 822}
455 823
456=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
457
458=item $handle->unshift_write (type => @args)
459 825
460Instead of formatting your data yourself, you can also let this module do 826Instead of formatting your data yourself, you can also let this module do
461the job by specifying a type and type-specific arguments. 827the job by specifying a type and type-specific arguments.
462 828
463Predefined types are (if you have ideas for additional types, feel free to 829Predefined types are (if you have ideas for additional types, feel free to
468=item netstring => $string 834=item netstring => $string
469 835
470Formats the given value as netstring 836Formats the given value as netstring
471(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 837(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472 838
473=back
474
475=cut 839=cut
476 840
477register_write_type netstring => sub { 841register_write_type netstring => sub {
478 my ($self, $string) = @_; 842 my ($self, $string) = @_;
479 843
480 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
845};
846
847=item packstring => $format, $data
848
849An octet string prefixed with an encoded length. The encoding C<$format>
850uses the same format as a Perl C<pack> format, but must specify a single
851integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
852optional C<!>, C<< < >> or C<< > >> modifier).
853
854=cut
855
856register_write_type packstring => sub {
857 my ($self, $format, $string) = @_;
858
859 pack "$format/a*", $string
481}; 860};
482 861
483=item json => $array_or_hashref 862=item json => $array_or_hashref
484 863
485Encodes the given hash or array reference into a JSON object. Unless you 864Encodes the given hash or array reference into a JSON object. Unless you
519 898
520 $self->{json} ? $self->{json}->encode ($ref) 899 $self->{json} ? $self->{json}->encode ($ref)
521 : JSON::encode_json ($ref) 900 : JSON::encode_json ($ref)
522}; 901};
523 902
903=item storable => $reference
904
905Freezes the given reference using L<Storable> and writes it to the
906handle. Uses the C<nfreeze> format.
907
908=cut
909
910register_write_type storable => sub {
911 my ($self, $ref) = @_;
912
913 require Storable;
914
915 pack "w/a*", Storable::nfreeze ($ref)
916};
917
918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
944
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 946
526This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
528reference with the handle object and the remaining arguments. 949reference with the handle object and the remaining arguments.
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 969ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 970a queue.
550 971
551In the simple case, you just install an C<on_read> callback and whenever 972In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 973new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 974enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 975leave the data there if you want to accumulate more (e.g. when only a
976partial message has been received so far).
555 977
556In the more complex case, you want to queue multiple callbacks. In this 978In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 979case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 980data arrives (also the first time it is queued) and removes it when it has
559below). 981done its job (see C<push_read>, below).
560 982
561This way you can, for example, push three line-reads, followed by reading 983This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 984a chunk of data, and AnyEvent::Handle will execute them in order.
563 985
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 986Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565the specified number of bytes which give an XML datagram. 987the specified number of bytes which give an XML datagram.
566 988
567 # in the default state, expect some header bytes 989 # in the default state, expect some header bytes
568 $handle->on_read (sub { 990 $handle->on_read (sub {
569 # some data is here, now queue the length-header-read (4 octets) 991 # some data is here, now queue the length-header-read (4 octets)
570 shift->unshift_read_chunk (4, sub { 992 shift->unshift_read (chunk => 4, sub {
571 # header arrived, decode 993 # header arrived, decode
572 my $len = unpack "N", $_[1]; 994 my $len = unpack "N", $_[1];
573 995
574 # now read the payload 996 # now read the payload
575 shift->unshift_read_chunk ($len, sub { 997 shift->unshift_read (chunk => $len, sub {
576 my $xml = $_[1]; 998 my $xml = $_[1];
577 # handle xml 999 # handle xml
578 }); 1000 });
579 }); 1001 });
580 }); 1002 });
581 1003
582Example 2: Implement a client for a protocol that replies either with 1004Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 1005and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 1006bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 1007just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 1008in the callbacks.
587 1009
588 # request one 1010When the first callback is called and sees an "OK" response, it will
1011C<unshift> another line-read. This line-read will be queued I<before> the
101264-byte chunk callback.
1013
1014 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 1015 $handle->push_write ("request 1\015\012");
590 1016
591 # we expect "ERROR" or "OK" as response, so push a line read 1017 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read_line (sub { 1018 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 1019 # if we got an "OK", we have to _prepend_ another line,
594 # so it will be read before the second request reads its 64 bytes 1020 # so it will be read before the second request reads its 64 bytes
595 # which are already in the queue when this callback is called 1021 # which are already in the queue when this callback is called
596 # we don't do this in case we got an error 1022 # we don't do this in case we got an error
597 if ($_[1] eq "OK") { 1023 if ($_[1] eq "OK") {
598 $_[0]->unshift_read_line (sub { 1024 $_[0]->unshift_read (line => sub {
599 my $response = $_[1]; 1025 my $response = $_[1];
600 ... 1026 ...
601 }); 1027 });
602 } 1028 }
603 }); 1029 });
604 1030
605 # request two 1031 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 1032 $handle->push_write ("request 2\015\012");
607 1033
608 # simply read 64 bytes, always 1034 # simply read 64 bytes, always
609 $handle->push_read_chunk (64, sub { 1035 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 1036 my $response = $_[1];
611 ... 1037 ...
612 }); 1038 });
613 1039
614=over 4 1040=over 4
615 1041
616=cut 1042=cut
617 1043
618sub _drain_rbuf { 1044sub _drain_rbuf {
619 my ($self) = @_; 1045 my ($self) = @_;
1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
1049 local $self->{_skip_drain_rbuf} = 1;
1050
1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
1057 my $len = length $self->{rbuf};
1058
1059 if (my $cb = shift @{ $self->{_queue} }) {
1060 unless ($cb->($self)) {
1061 # no progress can be made
1062 # (not enough data and no data forthcoming)
1063 $self->_error (Errno::EPIPE, 1), return
1064 if $self->{_eof};
1065
1066 unshift @{ $self->{_queue} }, $cb;
1067 last;
1068 }
1069 } elsif ($self->{on_read}) {
1070 last unless $len;
1071
1072 $self->{on_read}($self);
1073
1074 if (
1075 $len == length $self->{rbuf} # if no data has been consumed
1076 && !@{ $self->{_queue} } # and the queue is still empty
1077 && $self->{on_read} # but we still have on_read
1078 ) {
1079 # no further data will arrive
1080 # so no progress can be made
1081 $self->_error (Errno::EPIPE, 1), return
1082 if $self->{_eof};
1083
1084 last; # more data might arrive
1085 }
1086 } else {
1087 # read side becomes idle
1088 delete $self->{_rw} unless $self->{tls};
1089 last;
1090 }
1091 }
1092
1093 if ($self->{_eof}) {
1094 $self->{on_eof}
1095 ? $self->{on_eof}($self)
1096 : $self->_error (0, 1, "Unexpected end-of-file");
1097
1098 return;
1099 }
620 1100
621 if ( 1101 if (
622 defined $self->{rbuf_max} 1102 defined $self->{rbuf_max}
623 && $self->{rbuf_max} < length $self->{rbuf} 1103 && $self->{rbuf_max} < length $self->{rbuf}
624 ) { 1104 ) {
625 $! = &Errno::ENOSPC; 1105 $self->_error (Errno::ENOSPC, 1), return;
626 $self->error;
627 } 1106 }
628 1107
629 return if $self->{in_drain}; 1108 # may need to restart read watcher
630 local $self->{in_drain} = 1; 1109 unless ($self->{_rw}) {
631 1110 $self->start_read
632 while (my $len = length $self->{rbuf}) { 1111 if $self->{on_read} || @{ $self->{_queue} };
633 no strict 'refs';
634 if (my $cb = shift @{ $self->{_queue} }) {
635 unless ($cb->($self)) {
636 if ($self->{_eof}) {
637 # no progress can be made (not enough data and no data forthcoming)
638 $! = &Errno::EPIPE;
639 $self->error;
640 }
641
642 unshift @{ $self->{_queue} }, $cb;
643 return;
644 }
645 } elsif ($self->{on_read}) {
646 $self->{on_read}($self);
647
648 if (
649 $self->{_eof} # if no further data will arrive
650 && $len == length $self->{rbuf} # and no data has been consumed
651 && !@{ $self->{_queue} } # and the queue is still empty
652 && $self->{on_read} # and we still want to read data
653 ) {
654 # then no progress can be made
655 $! = &Errno::EPIPE;
656 $self->error;
657 }
658 } else {
659 # read side becomes idle
660 delete $self->{_rw};
661 return;
662 }
663 }
664
665 if ($self->{_eof}) {
666 $self->_shutdown;
667 $self->{on_eof}($self)
668 if $self->{on_eof};
669 } 1112 }
670} 1113}
671 1114
672=item $handle->on_read ($cb) 1115=item $handle->on_read ($cb)
673 1116
679 1122
680sub on_read { 1123sub on_read {
681 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
682 1125
683 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
1127 $self->_drain_rbuf if $cb;
684} 1128}
685 1129
686=item $handle->rbuf 1130=item $handle->rbuf
687 1131
688Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
689 1133
690You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
691you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
692 1139
693NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
694C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
695automatically manage the read buffer. 1142automatically manage the read buffer.
696 1143
793 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1240 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
794 1 1241 1
795 } 1242 }
796}; 1243};
797 1244
798# compatibility with older API
799sub push_read_chunk {
800 $_[0]->push_read (chunk => $_[1], $_[2]);
801}
802
803sub unshift_read_chunk {
804 $_[0]->unshift_read (chunk => $_[1], $_[2]);
805}
806
807=item line => [$eol, ]$cb->($handle, $line, $eol) 1245=item line => [$eol, ]$cb->($handle, $line, $eol)
808 1246
809The callback will be called only once a full line (including the end of 1247The callback will be called only once a full line (including the end of
810line marker, C<$eol>) has been read. This line (excluding the end of line 1248line marker, C<$eol>) has been read. This line (excluding the end of line
811marker) will be passed to the callback as second argument (C<$line>), and 1249marker) will be passed to the callback as second argument (C<$line>), and
826=cut 1264=cut
827 1265
828register_read_type line => sub { 1266register_read_type line => sub {
829 my ($self, $cb, $eol) = @_; 1267 my ($self, $cb, $eol) = @_;
830 1268
831 $eol = qr|(\015?\012)| if @_ < 3; 1269 if (@_ < 3) {
832 $eol = quotemeta $eol unless ref $eol; 1270 # this is more than twice as fast as the generic code below
833 $eol = qr|^(.*?)($eol)|s;
834
835 sub { 1271 sub {
836 $_[0]{rbuf} =~ s/$eol// or return; 1272 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
837 1273
838 $cb->($_[0], $1, $2); 1274 $cb->($_[0], $1, $2);
839 1
840 }
841};
842
843# compatibility with older API
844sub push_read_line {
845 my $self = shift;
846 $self->push_read (line => @_);
847}
848
849sub unshift_read_line {
850 my $self = shift;
851 $self->unshift_read (line => @_);
852}
853
854=item netstring => $cb->($handle, $string)
855
856A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
857
858Throws an error with C<$!> set to EBADMSG on format violations.
859
860=cut
861
862register_read_type netstring => sub {
863 my ($self, $cb) = @_;
864
865 sub {
866 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
867 if ($_[0]{rbuf} =~ /[^0-9]/) {
868 $! = &Errno::EBADMSG;
869 $self->error;
870 } 1275 1
871 return;
872 } 1276 }
1277 } else {
1278 $eol = quotemeta $eol unless ref $eol;
1279 $eol = qr|^(.*?)($eol)|s;
873 1280
874 my $len = $1; 1281 sub {
1282 $_[0]{rbuf} =~ s/$eol// or return;
875 1283
876 $self->unshift_read (chunk => $len, sub { 1284 $cb->($_[0], $1, $2);
877 my $string = $_[1];
878 $_[0]->unshift_read (chunk => 1, sub {
879 if ($_[1] eq ",") {
880 $cb->($_[0], $string);
881 } else {
882 $! = &Errno::EBADMSG;
883 $self->error;
884 }
885 }); 1285 1
886 }); 1286 }
887
888 1
889 } 1287 }
890}; 1288};
891 1289
892=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1290=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
893 1291
945 return 1; 1343 return 1;
946 } 1344 }
947 1345
948 # reject 1346 # reject
949 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
950 $! = &Errno::EBADMSG; 1348 $self->_error (Errno::EBADMSG);
951 $self->error;
952 } 1349 }
953 1350
954 # skip 1351 # skip
955 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
956 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
958 1355
959 () 1356 ()
960 } 1357 }
961}; 1358};
962 1359
1360=item netstring => $cb->($handle, $string)
1361
1362A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1363
1364Throws an error with C<$!> set to EBADMSG on format violations.
1365
1366=cut
1367
1368register_read_type netstring => sub {
1369 my ($self, $cb) = @_;
1370
1371 sub {
1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1374 $self->_error (Errno::EBADMSG);
1375 }
1376 return;
1377 }
1378
1379 my $len = $1;
1380
1381 $self->unshift_read (chunk => $len, sub {
1382 my $string = $_[1];
1383 $_[0]->unshift_read (chunk => 1, sub {
1384 if ($_[1] eq ",") {
1385 $cb->($_[0], $string);
1386 } else {
1387 $self->_error (Errno::EBADMSG);
1388 }
1389 });
1390 });
1391
1392 1
1393 }
1394};
1395
1396=item packstring => $format, $cb->($handle, $string)
1397
1398An octet string prefixed with an encoded length. The encoding C<$format>
1399uses the same format as a Perl C<pack> format, but must specify a single
1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1401optional C<!>, C<< < >> or C<< > >> modifier).
1402
1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1405
1406Example: read a block of data prefixed by its length in BER-encoded
1407format (very efficient).
1408
1409 $handle->push_read (packstring => "w", sub {
1410 my ($handle, $data) = @_;
1411 });
1412
1413=cut
1414
1415register_read_type packstring => sub {
1416 my ($self, $cb, $format) = @_;
1417
1418 sub {
1419 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1420 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1421 or return;
1422
1423 $format = length pack $format, $len;
1424
1425 # bypass unshift if we already have the remaining chunk
1426 if ($format + $len <= length $_[0]{rbuf}) {
1427 my $data = substr $_[0]{rbuf}, $format, $len;
1428 substr $_[0]{rbuf}, 0, $format + $len, "";
1429 $cb->($_[0], $data);
1430 } else {
1431 # remove prefix
1432 substr $_[0]{rbuf}, 0, $format, "";
1433
1434 # read remaining chunk
1435 $_[0]->unshift_read (chunk => $len, $cb);
1436 }
1437
1438 1
1439 }
1440};
1441
963=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
964 1443
965Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
966 1446
967If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
968for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
969 1449
970This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
977the C<json> write type description, above, for an actual example. 1457the C<json> write type description, above, for an actual example.
978 1458
979=cut 1459=cut
980 1460
981register_read_type json => sub { 1461register_read_type json => sub {
982 my ($self, $cb, $accept, $reject, $skip) = @_; 1462 my ($self, $cb) = @_;
983 1463
984 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
985 1467
986 my $data; 1468 my $data;
987 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
988 1470
989 my $json = $self->{json} ||= JSON->new->utf8;
990
991 sub { 1471 sub {
992 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
993 1473
994 if ($ref) { 1474 if ($ref) {
995 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
996 $json->incr_text = ""; 1476 $json->incr_text = "";
997 $cb->($self, $ref); 1477 $cb->($self, $ref);
998 1478
999 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1000 } else { 1490 } else {
1001 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1002 () 1493 ()
1003 } 1494 }
1495 }
1496};
1497
1498=item storable => $cb->($handle, $ref)
1499
1500Deserialises a L<Storable> frozen representation as written by the
1501C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1502data).
1503
1504Raises C<EBADMSG> error if the data could not be decoded.
1505
1506=cut
1507
1508register_read_type storable => sub {
1509 my ($self, $cb) = @_;
1510
1511 require Storable;
1512
1513 sub {
1514 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1515 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1516 or return;
1517
1518 my $format = length pack "w", $len;
1519
1520 # bypass unshift if we already have the remaining chunk
1521 if ($format + $len <= length $_[0]{rbuf}) {
1522 my $data = substr $_[0]{rbuf}, $format, $len;
1523 substr $_[0]{rbuf}, 0, $format + $len, "";
1524 $cb->($_[0], Storable::thaw ($data));
1525 } else {
1526 # remove prefix
1527 substr $_[0]{rbuf}, 0, $format, "";
1528
1529 # read remaining chunk
1530 $_[0]->unshift_read (chunk => $len, sub {
1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1532 $cb->($_[0], $ref);
1533 } else {
1534 $self->_error (Errno::EBADMSG);
1535 }
1536 });
1537 }
1538
1539 1
1004 } 1540 }
1005}; 1541};
1006 1542
1007=back 1543=back
1008 1544
1029=item $handle->stop_read 1565=item $handle->stop_read
1030 1566
1031=item $handle->start_read 1567=item $handle->start_read
1032 1568
1033In rare cases you actually do not want to read anything from the 1569In rare cases you actually do not want to read anything from the
1034socket. In this case you can call C<stop_read>. Neither C<on_read> no 1570socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1035any queued callbacks will be executed then. To start reading again, call 1571any queued callbacks will be executed then. To start reading again, call
1036C<start_read>. 1572C<start_read>.
1037 1573
1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1575you change the C<on_read> callback or push/unshift a read callback, and it
1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1577there are any read requests in the queue.
1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1038=cut 1582=cut
1039 1583
1040sub stop_read { 1584sub stop_read {
1041 my ($self) = @_; 1585 my ($self) = @_;
1042 1586
1043 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1044} 1588}
1045 1589
1046sub start_read { 1590sub start_read {
1047 my ($self) = @_; 1591 my ($self) = @_;
1048 1592
1049 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1050 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1051 1595
1052 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1053 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1054 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1055 1599
1056 if ($len > 0) { 1600 if ($len > 0) {
1057 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1058 1602
1059 $self->{filter_r} 1603 if ($self->{tls}) {
1060 ? $self->{filter_r}->($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1605
1606 &_dotls ($self);
1607 } else {
1061 : $self->_drain_rbuf; 1608 $self->_drain_rbuf;
1609 }
1062 1610
1063 } elsif (defined $len) { 1611 } elsif (defined $len) {
1064 delete $self->{_rw}; 1612 delete $self->{_rw};
1065 delete $self->{_ww};
1066 delete $self->{_tw};
1067 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1068 $self->_drain_rbuf; 1614 $self->_drain_rbuf;
1069 1615
1070 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1071 return $self->error; 1617 return $self->_error ($!, 1);
1072 } 1618 }
1073 }); 1619 };
1074 } 1620 }
1075} 1621}
1076 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1077sub _dotls { 1651sub _dotls {
1078 my ($self) = @_; 1652 my ($self) = @_;
1079 1653
1654 my $tmp;
1655
1080 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1081 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1082 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1083 } 1659 }
1084 }
1085 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
1086 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1087 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1088 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1089 } 1696 }
1090 1697
1091 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
1092 $self->{rbuf} .= $buf; 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1093 $self->_drain_rbuf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1094 }
1095
1096 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1097
1098 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1099 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1100 $self->error;
1101 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1102 $! = &Errno::EIO;
1103 $self->error;
1104 }
1105
1106 # all others are fine for our purposes
1107 }
1108} 1701}
1109 1702
1110=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1111 1704
1112Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1113object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1114C<starttls>. 1707C<starttls>.
1115 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1116The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1117C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118 1715
1119The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1120used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1121 1720
1122The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1123call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1124might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1125 1725
1126=cut 1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1127 1729
1128# TODO: maybe document... 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1733
1129sub starttls { 1734sub starttls {
1130 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1131 1736
1132 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1133 1739
1134 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1135 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1136 Net::SSLeay::set_accept_state ($ssl); 1742
1137 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1138 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1139 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1140 } 1765
1141 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1142 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1143 1768
1144 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1145 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1146 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1147 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1148 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1149 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1150 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1151 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1152 1785
1153 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1155 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1156 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1157 1792
1158 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1159 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1160 &_dotls; 1795
1161 }; 1796 &_dotls; # need to trigger the initial handshake
1162 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1163 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1164 &_dotls;
1165 };
1166} 1798}
1167 1799
1168=item $handle->stoptls 1800=item $handle->stoptls
1169 1801
1170Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1171lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1172 1806
1173=cut 1807=cut
1174 1808
1175sub stoptls { 1809sub stoptls {
1176 my ($self) = @_; 1810 my ($self) = @_;
1177 1811
1178 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1179 1814
1180 delete $self->{_rbio}; 1815 &_dotls;
1181 delete $self->{_wbio}; 1816
1182 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1183 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1184 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1185} 1832}
1186 1833
1187sub DESTROY { 1834sub DESTROY {
1188 my $self = shift; 1835 my ($self) = @_;
1189 1836
1190 $self->stoptls; 1837 &_freetls;
1838
1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1840
1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1842 my $fh = delete $self->{fh};
1843 my $wbuf = delete $self->{wbuf};
1844
1845 my @linger;
1846
1847 push @linger, AE::io $fh, 1, sub {
1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1849
1850 if ($len > 0) {
1851 substr $wbuf, 0, $len, "";
1852 } else {
1853 @linger = (); # end
1854 }
1855 };
1856 push @linger, AE::timer $linger, 0, sub {
1857 @linger = ();
1858 };
1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1191} 1897}
1192 1898
1193=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1194 1900
1195This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1196default for TLS mode. 1902for TLS mode.
1197 1903
1198The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1199
1200 Net::SSLeay::load_error_strings;
1201 Net::SSLeay::SSLeay_add_ssl_algorithms;
1202 Net::SSLeay::randomize;
1203
1204 my $CTX = Net::SSLeay::CTX_new;
1205
1206 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1207 1905
1208=cut 1906=cut
1209 1907
1210our $TLS_CTX; 1908our $TLS_CTX;
1211 1909
1212sub TLS_CTX() { 1910sub TLS_CTX() {
1213 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1214 require Net::SSLeay; 1912 require AnyEvent::TLS;
1215 1913
1216 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1217 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1218 Net::SSLeay::randomize ();
1219
1220 $TLS_CTX = Net::SSLeay::CTX_new ();
1221
1222 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1223
1224 $TLS_CTX
1225 } 1915 }
1226} 1916}
1227 1917
1228=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1229 2078
1230=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1231 2080
1232In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1233 2082
1237=over 4 2086=over 4
1238 2087
1239=item * all constructor arguments become object members. 2088=item * all constructor arguments become object members.
1240 2089
1241At least initially, when you pass a C<tls>-argument to the constructor it 2090At least initially, when you pass a C<tls>-argument to the constructor it
1242will end up in C<< $handle->{tls} >>. Those members might be changes or 2091will end up in C<< $handle->{tls} >>. Those members might be changed or
1243mutated later on (for example C<tls> will hold the TLS connection object). 2092mutated later on (for example C<tls> will hold the TLS connection object).
1244 2093
1245=item * other object member names are prefixed with an C<_>. 2094=item * other object member names are prefixed with an C<_>.
1246 2095
1247All object members not explicitly documented (internal use) are prefixed 2096All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines