ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.91 by root, Wed Oct 1 07:40:39 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.3; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>.
53 41
54The L<AnyEvent::Intro> tutorial contains some well-documented 42The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 43AnyEvent::Handle examples.
56 44
57In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
60 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
61All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
62argument. 53argument.
63 54
64=head2 SIGPIPE is not handled by this module 55=cut
65 56
66SIGPIPE is not handled by this module, so one of the practical 57package AnyEvent::Handle;
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} = 58
68'IGNORE'>). At least, this is highly recommend in a networked program: If 59use Scalar::Util ();
69you use AnyEvent::Handle in a filter program (like sort), exiting on 60use List::Util ();
70SIGPIPE is probably the right thing to do. 61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
71 66
72=head1 METHODS 67=head1 METHODS
73 68
74=over 4 69=over 4
75 70
76=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 72
78The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
79 74
80=over 4 75=over 4
81 76
82=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 78
84The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 80NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 82that mode.
89 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
90=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
91 102
92Set the callback to be called when an end-of-file condition is detected, 103This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
94connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
95 108
96For sockets, this just means that the other side has stopped sending data, 109The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 111timeout is to be used).
99down.
100 112
101While not mandatory, it is I<highly> recommended to set an eof callback, 113=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 114
105If an EOF condition has been detected but no C<on_eof> callback has been 115This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
108=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
109 140
110This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 143connect or a read error.
113 144
114Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 146fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 147destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 148examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
119 157
120Non-fatal errors can be retried by simply returning, but it is recommended 158Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 159to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 160when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 162
125On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
127 166
128While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
130C<croak>. 169C<croak>.
131 170
135and no read request is in the queue (unlike read queue callbacks, this 174and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 175callback will only be called when at least one octet of data is in the
137read buffer). 176read buffer).
138 177
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
141 182
142When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
146 208
147=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
148 210
149This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
157memory and push it into the queue, but instead only read more data from 219memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty. 220the file when the write queue becomes empty.
159 221
160=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
161 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
162If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
163seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
164handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
165missing, a non-fatal C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
166 239
167Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
240write data and will install a watcher that will write this data to the 313write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating 314socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time). 315system treats outstanding data at socket close time).
243 316
244This will not work for partial TLS data that could not be encoded 317This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. 318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
246 330
247=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
248 332
249When this parameter is given, it enables TLS (SSL) mode, that means 333When this parameter is given, it enables TLS (SSL) mode, that means
250AnyEvent will start a TLS handshake as soon as the conenction has been 334AnyEvent will start a TLS handshake as soon as the conenction has been
251established and will transparently encrypt/decrypt data afterwards. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
252 339
253TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
254automatically when you try to create a TLS handle): this module doesn't 341automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have 342have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself. 343to add the dependency yourself.
260mode. 347mode.
261 348
262You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
263to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
264or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
265AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
266 363
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 365
269=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
270 367
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
274 407
275=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
276 409
277This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
278 411
281texts. 414texts.
282 415
283Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
285 418
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
292
293=back 419=back
294 420
295=cut 421=cut
296 422
297sub new { 423sub new {
298 my $class = shift; 424 my $class = shift;
299
300 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
301 426
302 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
303 490
304 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305 492
306 if ($self->{tls}) { 493 $self->{_activity} =
307 require Net::SSLeay; 494 $self->{_ractivity} =
308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309 }
310
311 $self->{_activity} = AnyEvent->now; 495 $self->{_wactivity} = AE::now;
312 $self->_timeout;
313 496
314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
316 502
503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
504 if $self->{tls};
505
506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
507
317 $self->start_read 508 $self->start_read
318 if $self->{on_read}; 509 if $self->{on_read} || @{ $self->{_queue} };
319 510
320 $self 511 $self->_drain_wbuf;
321} 512}
322 513
323sub _shutdown { 514#sub _shutdown {
324 my ($self) = @_; 515# my ($self) = @_;
325 516#
326 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
327 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
328 delete $self->{_ww}; 519#
329 delete $self->{fh}; 520# &_freetls;
330 521#}
331 $self->stoptls;
332
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336 522
337sub _error { 523sub _error {
338 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
339
340 $self->_shutdown
341 if $fatal;
342 525
343 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
344 528
345 if ($self->{on_error}) { 529 if ($self->{on_error}) {
346 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
347 } else { 531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
348 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
349 } 535 }
350} 536}
351 537
352=item $fh = $handle->fh 538=item $fh = $handle->fh
353 539
377 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
378} 564}
379 565
380=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
381 567
382Replace the current C<on_timeout> callback, or disables the callback (but 568=item $handle->on_rtimeout ($cb)
383not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
384argument and method.
385 569
386=cut 570=item $handle->on_wtimeout ($cb)
387 571
388sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
389 $_[0]{on_timeout} = $_[1]; 573callback, or disables the callback (but not the timeout) if C<$cb> =
390} 574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
391 579
392=item $handle->autocork ($boolean) 580=item $handle->autocork ($boolean)
393 581
394Enables or disables the current autocork behaviour (see C<autocork> 582Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument). 583constructor argument). Changes will only take effect on the next write.
396 584
397=cut 585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
398 590
399=item $handle->no_delay ($boolean) 591=item $handle->no_delay ($boolean)
400 592
401Enables or disables the C<no_delay> setting (see constructor argument of 593Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details). 594the same name for details).
406sub no_delay { 598sub no_delay {
407 $_[0]{no_delay} = $_[1]; 599 $_[0]{no_delay} = $_[1];
408 600
409 eval { 601 eval {
410 local $SIG{__DIE__}; 602 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
412 }; 605 };
413} 606}
414 607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
636}
637
415############################################################################# 638#############################################################################
416 639
417=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
418 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
419Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
420 647
421=cut 648=item $handle->timeout_reset
422 649
423sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
424 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
425 673
426 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
427 $self->_timeout; 675 delete $self->{$tw}; &$cb;
428} 676 };
429 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
430# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
431# also check for time-outs 684 # also check for time-outs
432sub _timeout { 685 $cb = sub {
433 my ($self) = @_; 686 my ($self) = @_;
434 687
435 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
436 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
437 690
438 # when would the timeout trigger? 691 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
440 693
441 # now or in the past already? 694 # now or in the past already?
442 if ($after <= 0) { 695 if ($after <= 0) {
443 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
444 697
445 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
446 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
447 } else { 700 } else {
448 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
449 } 709 }
450 710
451 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
452 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
453 713
454 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
455 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
456 } 720 }
457
458 Scalar::Util::weaken $self;
459 return unless $self; # ->error could have destroyed $self
460
461 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
462 delete $self->{_tw};
463 $self->_timeout;
464 });
465 } else {
466 delete $self->{_tw};
467 } 721 }
468} 722}
469 723
470############################################################################# 724#############################################################################
471 725
495 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
496 750
497 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
498 752
499 $cb->($self) 753 $cb->($self)
500 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
501} 755}
502 756
503=item $handle->push_write ($data) 757=item $handle->push_write ($data)
504 758
505Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
516 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
517 771
518 my $cb = sub { 772 my $cb = sub {
519 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
520 774
521 if ($len >= 0) { 775 if (defined $len) {
522 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
523 777
524 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
525 779
526 $self->{on_drain}($self) 780 $self->{on_drain}($self)
527 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
528 && $self->{on_drain}; 782 && $self->{on_drain};
529 783
530 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 $self->_error ($!, 1); 786 $self->_error ($!, 1);
535 789
536 # try to write data immediately 790 # try to write data immediately
537 $cb->() unless $self->{autocork}; 791 $cb->() unless $self->{autocork};
538 792
539 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
540 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
541 if length $self->{wbuf}; 795 if length $self->{wbuf};
542 }; 796 };
543} 797}
544 798
545our %WH; 799our %WH;
556 810
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_); 812 ->($self, @_);
559 } 813 }
560 814
561 if ($self->{filter_w}) { 815 if ($self->{tls}) {
562 $self->{filter_w}($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
563 } else { 818 } else {
564 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
565 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
566 } 821 }
567} 822}
568 823
569=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
570 825
584=cut 839=cut
585 840
586register_write_type netstring => sub { 841register_write_type netstring => sub {
587 my ($self, $string) = @_; 842 my ($self, $string) = @_;
588 843
589 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
590}; 845};
591 846
592=item packstring => $format, $data 847=item packstring => $format, $data
593 848
594An octet string prefixed with an encoded length. The encoding C<$format> 849An octet string prefixed with an encoded length. The encoding C<$format>
659 914
660 pack "w/a*", Storable::nfreeze ($ref) 915 pack "w/a*", Storable::nfreeze ($ref)
661}; 916};
662 917
663=back 918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
664 944
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 946
667This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
762=cut 1042=cut
763 1043
764sub _drain_rbuf { 1044sub _drain_rbuf {
765 my ($self) = @_; 1045 my ($self) = @_;
766 1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
767 local $self->{_in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
768
769 if (
770 defined $self->{rbuf_max}
771 && $self->{rbuf_max} < length $self->{rbuf}
772 ) {
773 $self->_error (&Errno::ENOSPC, 1), return;
774 }
775 1050
776 while () { 1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
777 my $len = length $self->{rbuf}; 1057 my $len = length $self->{rbuf};
778 1058
779 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
780 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
781 if ($self->{_eof}) { 1061 # no progress can be made
782 # no progress can be made (not enough data and no data forthcoming) 1062 # (not enough data and no data forthcoming)
783 $self->_error (&Errno::EPIPE, 1), return; 1063 $self->_error (Errno::EPIPE, 1), return
784 } 1064 if $self->{_eof};
785 1065
786 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
787 last; 1067 last;
788 } 1068 }
789 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
796 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
797 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
798 ) { 1078 ) {
799 # no further data will arrive 1079 # no further data will arrive
800 # so no progress can be made 1080 # so no progress can be made
801 $self->_error (&Errno::EPIPE, 1), return 1081 $self->_error (Errno::EPIPE, 1), return
802 if $self->{_eof}; 1082 if $self->{_eof};
803 1083
804 last; # more data might arrive 1084 last; # more data might arrive
805 } 1085 }
806 } else { 1086 } else {
807 # read side becomes idle 1087 # read side becomes idle
808 delete $self->{_rw}; 1088 delete $self->{_rw} unless $self->{tls};
809 last; 1089 last;
810 } 1090 }
811 } 1091 }
812 1092
813 if ($self->{_eof}) { 1093 if ($self->{_eof}) {
814 if ($self->{on_eof}) { 1094 $self->{on_eof}
815 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
816 } else { 1096 : $self->_error (0, 1, "Unexpected end-of-file");
817 $self->_error (0, 1); 1097
818 } 1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
819 } 1106 }
820 1107
821 # may need to restart read watcher 1108 # may need to restart read watcher
822 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
823 $self->start_read 1110 $self->start_read
835 1122
836sub on_read { 1123sub on_read {
837 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
838 1125
839 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1127 $self->_drain_rbuf if $cb;
841} 1128}
842 1129
843=item $handle->rbuf 1130=item $handle->rbuf
844 1131
845Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
846 1133
847You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
848you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
849 1139
850NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
851C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
852automatically manage the read buffer. 1142automatically manage the read buffer.
853 1143
894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1184 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895 ->($self, $cb, @_); 1185 ->($self, $cb, @_);
896 } 1186 }
897 1187
898 push @{ $self->{_queue} }, $cb; 1188 push @{ $self->{_queue} }, $cb;
899 $self->_drain_rbuf unless $self->{_in_drain}; 1189 $self->_drain_rbuf;
900} 1190}
901 1191
902sub unshift_read { 1192sub unshift_read {
903 my $self = shift; 1193 my $self = shift;
904 my $cb = pop; 1194 my $cb = pop;
910 ->($self, $cb, @_); 1200 ->($self, $cb, @_);
911 } 1201 }
912 1202
913 1203
914 unshift @{ $self->{_queue} }, $cb; 1204 unshift @{ $self->{_queue} }, $cb;
915 $self->_drain_rbuf unless $self->{_in_drain}; 1205 $self->_drain_rbuf;
916} 1206}
917 1207
918=item $handle->push_read (type => @args, $cb) 1208=item $handle->push_read (type => @args, $cb)
919 1209
920=item $handle->unshift_read (type => @args, $cb) 1210=item $handle->unshift_read (type => @args, $cb)
1053 return 1; 1343 return 1;
1054 } 1344 }
1055 1345
1056 # reject 1346 # reject
1057 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
1059 } 1349 }
1060 1350
1061 # skip 1351 # skip
1062 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
1079 my ($self, $cb) = @_; 1369 my ($self, $cb) = @_;
1080 1370
1081 sub { 1371 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) { 1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG); 1374 $self->_error (Errno::EBADMSG);
1085 } 1375 }
1086 return; 1376 return;
1087 } 1377 }
1088 1378
1089 my $len = $1; 1379 my $len = $1;
1092 my $string = $_[1]; 1382 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub { 1383 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") { 1384 if ($_[1] eq ",") {
1095 $cb->($_[0], $string); 1385 $cb->($_[0], $string);
1096 } else { 1386 } else {
1097 $self->_error (&Errno::EBADMSG); 1387 $self->_error (Errno::EBADMSG);
1098 } 1388 }
1099 }); 1389 });
1100 }); 1390 });
1101 1391
1102 1 1392 1
1108An octet string prefixed with an encoded length. The encoding C<$format> 1398An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single 1399uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier). 1401optional C<!>, C<< < >> or C<< > >> modifier).
1112 1402
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1114 1405
1115Example: read a block of data prefixed by its length in BER-encoded 1406Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient). 1407format (very efficient).
1117 1408
1118 $handle->push_read (packstring => "w", sub { 1409 $handle->push_read (packstring => "w", sub {
1148 } 1439 }
1149}; 1440};
1150 1441
1151=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
1152 1443
1153Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 1446
1155If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157 1449
1158This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
1167=cut 1459=cut
1168 1460
1169register_read_type json => sub { 1461register_read_type json => sub {
1170 my ($self, $cb) = @_; 1462 my ($self, $cb) = @_;
1171 1463
1172 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
1173 1467
1174 my $data; 1468 my $data;
1175 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
1176 1470
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub { 1471 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1473
1182 if ($ref) { 1474 if ($ref) {
1183 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = ""; 1476 $json->incr_text = "";
1185 $cb->($self, $ref); 1477 $cb->($self, $ref);
1186 1478
1187 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1188 } else { 1490 } else {
1189 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1190 () 1493 ()
1191 } 1494 }
1192 } 1495 }
1193}; 1496};
1194 1497
1226 # read remaining chunk 1529 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub { 1530 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref); 1532 $cb->($_[0], $ref);
1230 } else { 1533 } else {
1231 $self->_error (&Errno::EBADMSG); 1534 $self->_error (Errno::EBADMSG);
1232 } 1535 }
1233 }); 1536 });
1234 } 1537 }
1235 1538
1236 1 1539 1
1271Note that AnyEvent::Handle will automatically C<start_read> for you when 1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it 1575you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor 1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue. 1577there are any read requests in the queue.
1275 1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1276=cut 1582=cut
1277 1583
1278sub stop_read { 1584sub stop_read {
1279 my ($self) = @_; 1585 my ($self) = @_;
1280 1586
1281 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1282} 1588}
1283 1589
1284sub start_read { 1590sub start_read {
1285 my ($self) = @_; 1591 my ($self) = @_;
1286 1592
1287 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1288 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1289 1595
1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 1599
1294 if ($len > 0) { 1600 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1296 1602
1297 $self->{filter_r} 1603 if ($self->{tls}) {
1298 ? $self->{filter_r}($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1299 : $self->{_in_drain} || $self->_drain_rbuf; 1605
1606 &_dotls ($self);
1607 } else {
1608 $self->_drain_rbuf;
1609 }
1300 1610
1301 } elsif (defined $len) { 1611 } elsif (defined $len) {
1302 delete $self->{_rw}; 1612 delete $self->{_rw};
1303 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1614 $self->_drain_rbuf;
1305 1615
1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1308 } 1618 }
1309 }); 1619 };
1310 } 1620 }
1311} 1621}
1312 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1651sub _dotls {
1314 my ($self) = @_; 1652 my ($self) = @_;
1315 1653
1316 my $buf; 1654 my $tmp;
1317 1655
1318 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1659 }
1322 }
1323 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) { 1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1326 # let's treat SSL-eof as we treat normal EOF 1677 # let's treat SSL-eof as we treat normal EOF
1327 delete $self->{_rw}; 1678 delete $self->{_rw};
1328 $self->{_eof} = 1; 1679 $self->{_eof} = 1;
1680 }
1329 } 1681 }
1330 1682
1331 $self->{rbuf} .= $buf; 1683 $self->{_tls_rbuf} .= $tmp;
1332 $self->_drain_rbuf unless $self->{_in_drain}; 1684 $self->_drain_rbuf;
1333
1334 $self->{tls} or return; # tls could have gone away 1685 $self->{tls} or return; # tls session might have gone away in callback
1335 } 1686 }
1336 1687
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1); 1689 return $self->_tls_error ($tmp)
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1690 if $tmp != $ERROR_WANT_READ
1343 return $self->_error (&Errno::EIO, 1); 1691 && ($tmp != $ERROR_SYSCALL || $!);
1344 }
1345 1692
1346 # all others are fine for our purposes
1347 }
1348
1349 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1351 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1352 } 1696 }
1697
1698 $self->{_on_starttls}
1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1353} 1701}
1354 1702
1355=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1356 1704
1357Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1359C<starttls>. 1707C<starttls>.
1360 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1361The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1362C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363 1715
1364The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1365used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1366 1720
1367The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1368call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1369might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1370 1725
1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1729
1371=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1372 1733
1373sub starttls { 1734sub starttls {
1374 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1375 1736
1376 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1377 1739
1378 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1379 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1380 Net::SSLeay::set_accept_state ($ssl); 1742
1381 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1382 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1383 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1384 } 1765
1385 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1386 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1387 1768
1388 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1389 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1390 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1391 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1392 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1393 # 1774 #
1394 # in short: this is a mess. 1775 # in short: this is a mess.
1395 # 1776 #
1396 # note that we do not try to kepe the length constant between writes as we are required to do. 1777 # note that we do not try to keep the length constant between writes as we are required to do.
1397 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1398 # and we drive openssl fully in blocking mode here. 1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1399 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1400 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1401 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1402 1785
1403 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1404 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1405 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1406 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1407 1792
1408 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1409 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1410 &_dotls;
1411 };
1412 $self->{filter_r} = sub {
1413 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1414 &_dotls;
1415 };
1416 1795
1417 &_dotls; # need to trigger the initial negotiation exchange 1796 &_dotls; # need to trigger the initial handshake
1797 $self->start_read; # make sure we actually do read
1418} 1798}
1419 1799
1420=item $handle->stoptls 1800=item $handle->stoptls
1421 1801
1422Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1423lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1424 1806
1425=cut 1807=cut
1426 1808
1427sub stoptls { 1809sub stoptls {
1428 my ($self) = @_; 1810 my ($self) = @_;
1429 1811
1430 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1431 1814
1432 delete $self->{_rbio}; 1815 &_dotls;
1433 delete $self->{_wbio}; 1816
1434 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1435 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1436 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1437} 1832}
1438 1833
1439sub DESTROY { 1834sub DESTROY {
1440 my $self = shift; 1835 my ($self) = @_;
1441 1836
1442 $self->stoptls; 1837 &_freetls;
1443 1838
1444 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1445 1840
1446 if ($linger && length $self->{wbuf}) { 1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1447 my $fh = delete $self->{fh}; 1842 my $fh = delete $self->{fh};
1448 my $wbuf = delete $self->{wbuf}; 1843 my $wbuf = delete $self->{wbuf};
1449 1844
1450 my @linger; 1845 my @linger;
1451 1846
1452 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1847 push @linger, AE::io $fh, 1, sub {
1453 my $len = syswrite $fh, $wbuf, length $wbuf; 1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1454 1849
1455 if ($len > 0) { 1850 if ($len > 0) {
1456 substr $wbuf, 0, $len, ""; 1851 substr $wbuf, 0, $len, "";
1457 } else { 1852 } else {
1458 @linger = (); # end 1853 @linger = (); # end
1459 } 1854 }
1460 }); 1855 };
1461 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1856 push @linger, AE::timer $linger, 0, sub {
1462 @linger = (); 1857 @linger = ();
1463 }); 1858 };
1464 } 1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1465} 1897}
1466 1898
1467=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1468 1900
1469This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1470default for TLS mode. 1902for TLS mode.
1471 1903
1472The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1473
1474 Net::SSLeay::load_error_strings;
1475 Net::SSLeay::SSLeay_add_ssl_algorithms;
1476 Net::SSLeay::randomize;
1477
1478 my $CTX = Net::SSLeay::CTX_new;
1479
1480 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1481 1905
1482=cut 1906=cut
1483 1907
1484our $TLS_CTX; 1908our $TLS_CTX;
1485 1909
1486sub TLS_CTX() { 1910sub TLS_CTX() {
1487 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1488 require Net::SSLeay; 1912 require AnyEvent::TLS;
1489 1913
1490 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1491 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1492 Net::SSLeay::randomize ();
1493
1494 $TLS_CTX = Net::SSLeay::CTX_new ();
1495
1496 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1497
1498 $TLS_CTX
1499 } 1915 }
1500} 1916}
1501 1917
1502=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1503 2078
1504=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1505 2080
1506In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1507 2082

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines