ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.64 by root, Fri Jun 6 11:01:17 2008 UTC vs.
Revision 1.185 by root, Thu Sep 3 19:48:27 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.15;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
61=head1 METHODS 80=head1 METHODS
62 81
63=over 4 82=over 4
64 83
65=item B<new (%args)> 84=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 85
67The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
68 87
69=over 4 88=over 4
70 89
71=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 91
73The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 93NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95that mode.
77 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
78=item on_eof => $cb->($handle) 114=item on_prepare => $cb->($handle)
79 115
80Set the callback to be called when an end-of-file condition is detcted, 116This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 117attempted, but after the file handle has been created. It could be used to
82connection cleanly. 118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
83 121
84While not mandatory, it is highly recommended to set an eof callback, 122The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 124timeout is to be used).
87 125
126=item on_connect => $cb->($handle, $host, $port, $retry->())
127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next conenction target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). When it is called then the read and write queues, eof status,
137tls status and similar properties of the handle are being reset.
138
139In most cases, ignoring the C<$retry> parameter is the way to go.
140
141=item on_connect_error => $cb->($handle, $message)
142
143This callback is called when the conenction could not be
144established. C<$!> will contain the relevant error code, and C<$message> a
145message describing it (usually the same as C<"$!">).
146
147If this callback isn't specified, then C<on_error> will be called with a
148fatal error instead.
149
150=back
151
88=item on_error => $cb->($handle, $fatal) 152=item on_error => $cb->($handle, $fatal, $message)
89 153
90This is the error callback, which is called when, well, some error 154This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 155occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 156connect or a read error.
93 157
94Some errors are fatal (which is indicated by C<$fatal> being true). On 158Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 159fatal errors the handle object will be destroyed (by a call to C<< ->
160destroy >>) after invoking the error callback (which means you are free to
161examine the handle object). Examples of fatal errors are an EOF condition
162with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163cases where the other side can close the connection at their will it is
164often easiest to not report C<EPIPE> errors in this callback.
165
166AnyEvent::Handle tries to find an appropriate error code for you to check
167against, but in some cases (TLS errors), this does not work well. It is
168recommended to always output the C<$message> argument in human-readable
169error messages (it's usually the same as C<"$!">).
170
96usable. Non-fatal errors can be retried by simply returning, but it is 171Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 172to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 173when this callback is invoked. Examples of non-fatal errors are timeouts
174C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 175
100On callback entrance, the value of C<$!> contains the operating system 176On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 177error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178C<EPROTO>).
102 179
103While not mandatory, it is I<highly> recommended to set this callback, as 180While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 181you will not be notified of errors otherwise. The default simply calls
105C<croak>. 182C<croak>.
106 183
110and no read request is in the queue (unlike read queue callbacks, this 187and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 188callback will only be called when at least one octet of data is in the
112read buffer). 189read buffer).
113 190
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 191To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 192method or access the C<< $handle->{rbuf} >> member directly. Note that you
193must not enlarge or modify the read buffer, you can only remove data at
194the beginning from it.
116 195
117When an EOF condition is detected then AnyEvent::Handle will first try to 196When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 197feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 198calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 199error will be raised (with C<$!> set to C<EPIPE>).
121 200
201Note that, unlike requests in the read queue, an C<on_read> callback
202doesn't mean you I<require> some data: if there is an EOF and there
203are outstanding read requests then an error will be flagged. With an
204C<on_read> callback, the C<on_eof> callback will be invoked.
205
206=item on_eof => $cb->($handle)
207
208Set the callback to be called when an end-of-file condition is detected,
209i.e. in the case of a socket, when the other side has closed the
210connection cleanly, and there are no outstanding read requests in the
211queue (if there are read requests, then an EOF counts as an unexpected
212connection close and will be flagged as an error).
213
214For sockets, this just means that the other side has stopped sending data,
215you can still try to write data, and, in fact, one can return from the EOF
216callback and continue writing data, as only the read part has been shut
217down.
218
219If an EOF condition has been detected but no C<on_eof> callback has been
220set, then a fatal error will be raised with C<$!> set to <0>.
221
122=item on_drain => $cb->($handle) 222=item on_drain => $cb->($handle)
123 223
124This sets the callback that is called when the write buffer becomes empty 224This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 225(or when the callback is set and the buffer is empty already).
126 226
127To append to the write buffer, use the C<< ->push_write >> method. 227To append to the write buffer, use the C<< ->push_write >> method.
128 228
229This callback is useful when you don't want to put all of your write data
230into the queue at once, for example, when you want to write the contents
231of some file to the socket you might not want to read the whole file into
232memory and push it into the queue, but instead only read more data from
233the file when the write queue becomes empty.
234
129=item timeout => $fractional_seconds 235=item timeout => $fractional_seconds
130 236
237=item rtimeout => $fractional_seconds
238
239=item wtimeout => $fractional_seconds
240
131If non-zero, then this enables an "inactivity" timeout: whenever this many 241If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 242many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 243file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 244will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
245error will be raised).
246
247There are three variants of the timeouts that work fully independent
248of each other, for both read and write, just read, and just write:
249C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
250C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
251C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 252
136Note that timeout processing is also active when you currently do not have 253Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 254any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 255idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 256in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
257restart the timeout.
140 258
141Zero (the default) disables this timeout. 259Zero (the default) disables this timeout.
142 260
143=item on_timeout => $cb->($handle) 261=item on_timeout => $cb->($handle)
144 262
148 266
149=item rbuf_max => <bytes> 267=item rbuf_max => <bytes>
150 268
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 269If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 270when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 271avoid some forms of denial-of-service attacks.
154 272
155For example, a server accepting connections from untrusted sources should 273For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 274be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 275(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 276amount of data without a callback ever being called as long as the line
159isn't finished). 277isn't finished).
160 278
279=item autocork => <boolean>
280
281When disabled (the default), then C<push_write> will try to immediately
282write the data to the handle, if possible. This avoids having to register
283a write watcher and wait for the next event loop iteration, but can
284be inefficient if you write multiple small chunks (on the wire, this
285disadvantage is usually avoided by your kernel's nagle algorithm, see
286C<no_delay>, but this option can save costly syscalls).
287
288When enabled, then writes will always be queued till the next event loop
289iteration. This is efficient when you do many small writes per iteration,
290but less efficient when you do a single write only per iteration (or when
291the write buffer often is full). It also increases write latency.
292
293=item no_delay => <boolean>
294
295When doing small writes on sockets, your operating system kernel might
296wait a bit for more data before actually sending it out. This is called
297the Nagle algorithm, and usually it is beneficial.
298
299In some situations you want as low a delay as possible, which can be
300accomplishd by setting this option to a true value.
301
302The default is your opertaing system's default behaviour (most likely
303enabled), this option explicitly enables or disables it, if possible.
304
305=item keepalive => <boolean>
306
307Enables (default disable) the SO_KEEPALIVE option on the stream socket:
308normally, TCP connections have no time-out once established, so TCP
309conenctions, once established, can stay alive forever even when the other
310side has long gone. TCP keepalives are a cheap way to take down long-lived
311TCP connections whent he other side becomes unreachable. While the default
312is OS-dependent, TCP keepalives usually kick in after around two hours,
313and, if the other side doesn't reply, take down the TCP connection some 10
314to 15 minutes later.
315
316It is harmless to specify this option for file handles that do not support
317keepalives, and enabling it on connections that are potentially long-lived
318is usually a good idea.
319
320=item oobinline => <boolean>
321
322BSD majorly fucked up the implementation of TCP urgent data. The result
323is that almost no OS implements TCP according to the specs, and every OS
324implements it slightly differently.
325
326If you want to handle TCP urgent data, then setting this flag (the default
327is enabled) gives you the most portable way of getting urgent data, by
328putting it into the stream.
329
330Since BSD emulation of OOB data on top of TCP's urgent data can have
331security implications, AnyEvent::Handle sets this flag automatically
332unless explicitly specified. Note that setting this flag after
333establishing a connection I<may> be a bit too late (data loss could
334already have occured on BSD systems), but at least it will protect you
335from most attacks.
336
161=item read_size => <bytes> 337=item read_size => <bytes>
162 338
163The default read block size (the amount of bytes this module will try to read 339The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 340try to read during each loop iteration, which affects memory
341requirements). Default: C<8192>.
165 342
166=item low_water_mark => <bytes> 343=item low_water_mark => <bytes>
167 344
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 345Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 346buffer: If the write reaches this size or gets even samller it is
170considered empty. 347considered empty.
171 348
349Sometimes it can be beneficial (for performance reasons) to add data to
350the write buffer before it is fully drained, but this is a rare case, as
351the operating system kernel usually buffers data as well, so the default
352is good in almost all cases.
353
172=item linger => <seconds> 354=item linger => <seconds>
173 355
174If non-zero (default: C<3600>), then the destructor of the 356If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 357AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 358write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 359socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 360system treats outstanding data at socket close time).
179 361
180This will not work for partial TLS data that could not yet been 362This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 363yet. This data will be lost. Calling the C<stoptls> method in time might
364help.
365
366=item peername => $string
367
368A string used to identify the remote site - usually the DNS hostname
369(I<not> IDN!) used to create the connection, rarely the IP address.
370
371Apart from being useful in error messages, this string is also used in TLS
372peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
373verification will be skipped when C<peername> is not specified or
374C<undef>.
182 375
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 376=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 377
185When this parameter is given, it enables TLS (SSL) mode, that means it 378When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 379AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 380established and will transparently encrypt/decrypt data afterwards.
381
382All TLS protocol errors will be signalled as C<EPROTO>, with an
383appropriate error message.
188 384
189TLS mode requires Net::SSLeay to be installed (it will be loaded 385TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 386automatically when you try to create a TLS handle): this module doesn't
387have a dependency on that module, so if your module requires it, you have
388to add the dependency yourself.
191 389
192For the TLS server side, use C<accept>, and for the TLS client side of a 390Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 391C<accept>, and for the TLS client side of a connection, use C<connect>
392mode.
194 393
195You can also provide your own TLS connection object, but you have 394You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 395to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 396or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 397AnyEvent::Handle. Also, this module will take ownership of this connection
398object.
199 399
400At some future point, AnyEvent::Handle might switch to another TLS
401implementation, then the option to use your own session object will go
402away.
403
404B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
405passing in the wrong integer will lead to certain crash. This most often
406happens when one uses a stylish C<< tls => 1 >> and is surprised about the
407segmentation fault.
408
200See the C<starttls> method if you need to start TLs negotiation later. 409See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 410
202=item tls_ctx => $ssl_ctx 411=item tls_ctx => $anyevent_tls
203 412
204Use the given Net::SSLeay::CTX object to create the new TLS connection 413Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 414(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 415missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 416
417Instead of an object, you can also specify a hash reference with C<< key
418=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
419new TLS context object.
420
421=item on_starttls => $cb->($handle, $success[, $error_message])
422
423This callback will be invoked when the TLS/SSL handshake has finished. If
424C<$success> is true, then the TLS handshake succeeded, otherwise it failed
425(C<on_stoptls> will not be called in this case).
426
427The session in C<< $handle->{tls} >> can still be examined in this
428callback, even when the handshake was not successful.
429
430TLS handshake failures will not cause C<on_error> to be invoked when this
431callback is in effect, instead, the error message will be passed to C<on_starttls>.
432
433Without this callback, handshake failures lead to C<on_error> being
434called, as normal.
435
436Note that you cannot call C<starttls> right again in this callback. If you
437need to do that, start an zero-second timer instead whose callback can
438then call C<< ->starttls >> again.
439
440=item on_stoptls => $cb->($handle)
441
442When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
443set, then it will be invoked after freeing the TLS session. If it is not,
444then a TLS shutdown condition will be treated like a normal EOF condition
445on the handle.
446
447The session in C<< $handle->{tls} >> can still be examined in this
448callback.
449
450This callback will only be called on TLS shutdowns, not when the
451underlying handle signals EOF.
452
208=item json => JSON or JSON::XS object 453=item json => JSON or JSON::XS object
209 454
210This is the json coder object used by the C<json> read and write types. 455This is the json coder object used by the C<json> read and write types.
211 456
212If you don't supply it, then AnyEvent::Handle will create and use a 457If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 458suitable one (on demand), which will write and expect UTF-8 encoded JSON
459texts.
214 460
215Note that you are responsible to depend on the JSON module if you want to 461Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 462use this functionality, as AnyEvent does not have a dependency itself.
217 463
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 464=back
225 465
226=cut 466=cut
227 467
228sub new { 468sub new {
229 my $class = shift; 469 my $class = shift;
230
231 my $self = bless { @_ }, $class; 470 my $self = bless { @_ }, $class;
232 471
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 472 if ($self->{fh}) {
473 $self->_start;
474 return unless $self->{fh}; # could be gone by now
475
476 } elsif ($self->{connect}) {
477 require AnyEvent::Socket;
478
479 $self->{peername} = $self->{connect}[0]
480 unless exists $self->{peername};
481
482 $self->{_skip_drain_rbuf} = 1;
483
484 {
485 Scalar::Util::weaken (my $self = $self);
486
487 $self->{_connect} =
488 AnyEvent::Socket::tcp_connect (
489 $self->{connect}[0],
490 $self->{connect}[1],
491 sub {
492 my ($fh, $host, $port, $retry) = @_;
493
494 if ($fh) {
495 $self->{fh} = $fh;
496
497 delete $self->{_skip_drain_rbuf};
498 $self->_start;
499
500 $self->{on_connect}
501 and $self->{on_connect}($self, $host, $port, sub {
502 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
503 $self->{_skip_drain_rbuf} = 1;
504 &$retry;
505 });
506
507 } else {
508 if ($self->{on_connect_error}) {
509 $self->{on_connect_error}($self, "$!");
510 $self->destroy;
511 } else {
512 $self->_error ($!, 1);
513 }
514 }
515 },
516 sub {
517 local $self->{fh} = $_[0];
518
519 $self->{on_prepare}
520 ? $self->{on_prepare}->($self)
521 : ()
522 }
523 );
524 }
525
526 } else {
527 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
528 }
529
530 $self
531}
532
533sub _start {
534 my ($self) = @_;
234 535
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 536 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 537
237 if ($self->{tls}) { 538 $self->{_activity} =
238 require Net::SSLeay; 539 $self->{_ractivity} =
540 $self->{_wactivity} = AE::now;
541
542 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
543 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
544 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
545
546 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
547 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
548
549 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
550
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 551 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 552 if $self->{tls};
241 553
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 554 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 555
247 $self 556 $self->start_read
248} 557 if $self->{on_read} || @{ $self->{_queue} };
249 558
250sub _shutdown { 559 $self->_drain_wbuf;
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259} 560}
260 561
261sub _error { 562sub _error {
262 my ($self, $errno, $fatal) = @_; 563 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 564
267 $! = $errno; 565 $! = $errno;
566 $message ||= "$!";
268 567
269 if ($self->{on_error}) { 568 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 569 $self->{on_error}($self, $fatal, $message);
271 } else { 570 $self->destroy if $fatal;
571 } elsif ($self->{fh}) {
572 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 573 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 574 }
274} 575}
275 576
276=item $fh = $handle->fh 577=item $fh = $handle->fh
277 578
278This method returns the file handle of the L<AnyEvent::Handle> object. 579This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 580
280=cut 581=cut
281 582
282sub fh { $_[0]{fh} } 583sub fh { $_[0]{fh} }
283 584
301 $_[0]{on_eof} = $_[1]; 602 $_[0]{on_eof} = $_[1];
302} 603}
303 604
304=item $handle->on_timeout ($cb) 605=item $handle->on_timeout ($cb)
305 606
306Replace the current C<on_timeout> callback, or disables the callback 607=item $handle->on_rtimeout ($cb)
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309 608
310=cut 609=item $handle->on_wtimeout ($cb)
311 610
312sub on_timeout { 611Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
612callback, or disables the callback (but not the timeout) if C<$cb> =
613C<undef>. See the C<timeout> constructor argument and method.
614
615=cut
616
617# see below
618
619=item $handle->autocork ($boolean)
620
621Enables or disables the current autocork behaviour (see C<autocork>
622constructor argument). Changes will only take effect on the next write.
623
624=cut
625
626sub autocork {
627 $_[0]{autocork} = $_[1];
628}
629
630=item $handle->no_delay ($boolean)
631
632Enables or disables the C<no_delay> setting (see constructor argument of
633the same name for details).
634
635=cut
636
637sub no_delay {
638 $_[0]{no_delay} = $_[1];
639
640 eval {
641 local $SIG{__DIE__};
642 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
643 if $_[0]{fh};
644 };
645}
646
647=item $handle->keepalive ($boolean)
648
649Enables or disables the C<keepalive> setting (see constructor argument of
650the same name for details).
651
652=cut
653
654sub keepalive {
655 $_[0]{keepalive} = $_[1];
656
657 eval {
658 local $SIG{__DIE__};
659 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
660 if $_[0]{fh};
661 };
662}
663
664=item $handle->oobinline ($boolean)
665
666Enables or disables the C<oobinline> setting (see constructor argument of
667the same name for details).
668
669=cut
670
671sub oobinline {
672 $_[0]{oobinline} = $_[1];
673
674 eval {
675 local $SIG{__DIE__};
676 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
677 if $_[0]{fh};
678 };
679}
680
681=item $handle->keepalive ($boolean)
682
683Enables or disables the C<keepalive> setting (see constructor argument of
684the same name for details).
685
686=cut
687
688sub keepalive {
689 $_[0]{keepalive} = $_[1];
690
691 eval {
692 local $SIG{__DIE__};
693 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
694 if $_[0]{fh};
695 };
696}
697
698=item $handle->on_starttls ($cb)
699
700Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
701
702=cut
703
704sub on_starttls {
705 $_[0]{on_starttls} = $_[1];
706}
707
708=item $handle->on_stoptls ($cb)
709
710Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
711
712=cut
713
714sub on_starttls {
313 $_[0]{on_timeout} = $_[1]; 715 $_[0]{on_stoptls} = $_[1];
716}
717
718=item $handle->rbuf_max ($max_octets)
719
720Configures the C<rbuf_max> setting (C<undef> disables it).
721
722=cut
723
724sub rbuf_max {
725 $_[0]{rbuf_max} = $_[1];
314} 726}
315 727
316############################################################################# 728#############################################################################
317 729
318=item $handle->timeout ($seconds) 730=item $handle->timeout ($seconds)
319 731
732=item $handle->rtimeout ($seconds)
733
734=item $handle->wtimeout ($seconds)
735
320Configures (or disables) the inactivity timeout. 736Configures (or disables) the inactivity timeout.
321 737
322=cut 738=item $handle->timeout_reset
323 739
324sub timeout { 740=item $handle->rtimeout_reset
741
742=item $handle->wtimeout_reset
743
744Reset the activity timeout, as if data was received or sent.
745
746These methods are cheap to call.
747
748=cut
749
750for my $dir ("", "r", "w") {
751 my $timeout = "${dir}timeout";
752 my $tw = "_${dir}tw";
753 my $on_timeout = "on_${dir}timeout";
754 my $activity = "_${dir}activity";
755 my $cb;
756
757 *$on_timeout = sub {
758 $_[0]{$on_timeout} = $_[1];
759 };
760
761 *$timeout = sub {
325 my ($self, $timeout) = @_; 762 my ($self, $new_value) = @_;
326 763
327 $self->{timeout} = $timeout; 764 $self->{$timeout} = $new_value;
328 $self->_timeout; 765 delete $self->{$tw}; &$cb;
329} 766 };
330 767
768 *{"${dir}timeout_reset"} = sub {
769 $_[0]{$activity} = AE::now;
770 };
771
772 # main workhorse:
331# reset the timeout watcher, as neccessary 773 # reset the timeout watcher, as neccessary
332# also check for time-outs 774 # also check for time-outs
333sub _timeout { 775 $cb = sub {
334 my ($self) = @_; 776 my ($self) = @_;
335 777
336 if ($self->{timeout}) { 778 if ($self->{$timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 779 my $NOW = AE::now;
338 780
339 # when would the timeout trigger? 781 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 782 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
341 783
342 # now or in the past already? 784 # now or in the past already?
343 if ($after <= 0) { 785 if ($after <= 0) {
344 $self->{_activity} = $NOW; 786 $self->{$activity} = $NOW;
345 787
346 if ($self->{on_timeout}) { 788 if ($self->{$on_timeout}) {
347 $self->{on_timeout}($self); 789 $self->{$on_timeout}($self);
348 } else { 790 } else {
349 $self->_error (&Errno::ETIMEDOUT); 791 $self->_error (Errno::ETIMEDOUT);
792 }
793
794 # callback could have changed timeout value, optimise
795 return unless $self->{$timeout};
796
797 # calculate new after
798 $after = $self->{$timeout};
350 } 799 }
351 800
352 # callback could have changed timeout value, optimise 801 Scalar::Util::weaken $self;
353 return unless $self->{timeout}; 802 return unless $self; # ->error could have destroyed $self
354 803
355 # calculate new after 804 $self->{$tw} ||= AE::timer $after, 0, sub {
356 $after = $self->{timeout}; 805 delete $self->{$tw};
806 $cb->($self);
807 };
808 } else {
809 delete $self->{$tw};
357 } 810 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 } 811 }
369} 812}
370 813
371############################################################################# 814#############################################################################
372 815
396 my ($self, $cb) = @_; 839 my ($self, $cb) = @_;
397 840
398 $self->{on_drain} = $cb; 841 $self->{on_drain} = $cb;
399 842
400 $cb->($self) 843 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 844 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 845}
403 846
404=item $handle->push_write ($data) 847=item $handle->push_write ($data)
405 848
406Queues the given scalar to be written. You can push as much data as you 849Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 860 Scalar::Util::weaken $self;
418 861
419 my $cb = sub { 862 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 863 my $len = syswrite $self->{fh}, $self->{wbuf};
421 864
422 if ($len >= 0) { 865 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 866 substr $self->{wbuf}, 0, $len, "";
424 867
425 $self->{_activity} = AnyEvent->now; 868 $self->{_activity} = $self->{_wactivity} = AE::now;
426 869
427 $self->{on_drain}($self) 870 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 871 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 872 && $self->{on_drain};
430 873
431 delete $self->{_ww} unless length $self->{wbuf}; 874 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 875 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 876 $self->_error ($!, 1);
434 } 877 }
435 }; 878 };
436 879
437 # try to write data immediately 880 # try to write data immediately
438 $cb->(); 881 $cb->() unless $self->{autocork};
439 882
440 # if still data left in wbuf, we need to poll 883 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 884 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 885 if length $self->{wbuf};
443 }; 886 };
444} 887}
445 888
446our %WH; 889our %WH;
447 890
891# deprecated
448sub register_write_type($$) { 892sub register_write_type($$) {
449 $WH{$_[0]} = $_[1]; 893 $WH{$_[0]} = $_[1];
450} 894}
451 895
452sub push_write { 896sub push_write {
453 my $self = shift; 897 my $self = shift;
454 898
455 if (@_ > 1) { 899 if (@_ > 1) {
456 my $type = shift; 900 my $type = shift;
457 901
902 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 903 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 904 ->($self, @_);
460 } 905 }
461 906
462 if ($self->{filter_w}) { 907 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 908 $self->{_tls_wbuf} .= $_[0];
909 &_dotls ($self) if $self->{fh};
464 } else { 910 } else {
465 $self->{wbuf} .= $_[0]; 911 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 912 $self->_drain_wbuf if $self->{fh};
467 } 913 }
468} 914}
469 915
470=item $handle->push_write (type => @args) 916=item $handle->push_write (type => @args)
471 917
472Instead of formatting your data yourself, you can also let this module do 918Instead of formatting your data yourself, you can also let this module
473the job by specifying a type and type-specific arguments. 919do the job by specifying a type and type-specific arguments. You
920can also specify the (fully qualified) name of a package, in which
921case AnyEvent tries to load the package and then expects to find the
922C<anyevent_read_type> function inside (see "custom write types", below).
474 923
475Predefined types are (if you have ideas for additional types, feel free to 924Predefined types are (if you have ideas for additional types, feel free to
476drop by and tell us): 925drop by and tell us):
477 926
478=over 4 927=over 4
485=cut 934=cut
486 935
487register_write_type netstring => sub { 936register_write_type netstring => sub {
488 my ($self, $string) = @_; 937 my ($self, $string) = @_;
489 938
490 sprintf "%d:%s,", (length $string), $string 939 (length $string) . ":$string,"
491}; 940};
492 941
493=item packstring => $format, $data 942=item packstring => $format, $data
494 943
495An octet string prefixed with an encoded length. The encoding C<$format> 944An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 949=cut
501 950
502register_write_type packstring => sub { 951register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 952 my ($self, $format, $string) = @_;
504 953
505 pack "$format/a", $string 954 pack "$format/a*", $string
506}; 955};
507 956
508=item json => $array_or_hashref 957=item json => $array_or_hashref
509 958
510Encodes the given hash or array reference into a JSON object. Unless you 959Encodes the given hash or array reference into a JSON object. Unless you
535Other languages could read single lines terminated by a newline and pass 984Other languages could read single lines terminated by a newline and pass
536this line into their JSON decoder of choice. 985this line into their JSON decoder of choice.
537 986
538=cut 987=cut
539 988
989sub json_coder() {
990 eval { require JSON::XS; JSON::XS->new->utf8 }
991 || do { require JSON; JSON->new->utf8 }
992}
993
540register_write_type json => sub { 994register_write_type json => sub {
541 my ($self, $ref) = @_; 995 my ($self, $ref) = @_;
542 996
543 require JSON; 997 my $json = $self->{json} ||= json_coder;
544 998
545 $self->{json} ? $self->{json}->encode ($ref) 999 $json->encode ($ref)
546 : JSON::encode_json ($ref)
547}; 1000};
548 1001
549=item storable => $reference 1002=item storable => $reference
550 1003
551Freezes the given reference using L<Storable> and writes it to the 1004Freezes the given reference using L<Storable> and writes it to the
556register_write_type storable => sub { 1009register_write_type storable => sub {
557 my ($self, $ref) = @_; 1010 my ($self, $ref) = @_;
558 1011
559 require Storable; 1012 require Storable;
560 1013
561 pack "w/a", Storable::nfreeze ($ref) 1014 pack "w/a*", Storable::nfreeze ($ref)
562}; 1015};
563 1016
564=back 1017=back
565 1018
566=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1019=item $handle->push_shutdown
567 1020
568This function (not method) lets you add your own types to C<push_write>. 1021Sometimes you know you want to close the socket after writing your data
1022before it was actually written. One way to do that is to replace your
1023C<on_drain> handler by a callback that shuts down the socket (and set
1024C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1025replaces the C<on_drain> callback with:
1026
1027 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1028
1029This simply shuts down the write side and signals an EOF condition to the
1030the peer.
1031
1032You can rely on the normal read queue and C<on_eof> handling
1033afterwards. This is the cleanest way to close a connection.
1034
1035=cut
1036
1037sub push_shutdown {
1038 my ($self) = @_;
1039
1040 delete $self->{low_water_mark};
1041 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1042}
1043
1044=item custom write types - Package::anyevent_write_type $handle, @args
1045
1046Instead of one of the predefined types, you can also specify the name of
1047a package. AnyEvent will try to load the package and then expects to find
1048a function named C<anyevent_write_type> inside. If it isn't found, it
1049progressively tries to load the parent package until it either finds the
1050function (good) or runs out of packages (bad).
1051
569Whenever the given C<type> is used, C<push_write> will invoke the code 1052Whenever the given C<type> is used, C<push_write> will the function with
570reference with the handle object and the remaining arguments. 1053the handle object and the remaining arguments.
571 1054
572The code reference is supposed to return a single octet string that will 1055The function is supposed to return a single octet string that will be
573be appended to the write buffer. 1056appended to the write buffer, so you cna mentally treat this function as a
1057"arguments to on-the-wire-format" converter.
574 1058
575Note that this is a function, and all types registered this way will be 1059Example: implement a custom write type C<join> that joins the remaining
576global, so try to use unique names. 1060arguments using the first one.
1061
1062 $handle->push_write (My::Type => " ", 1,2,3);
1063
1064 # uses the following package, which can be defined in the "My::Type" or in
1065 # the "My" modules to be auto-loaded, or just about anywhere when the
1066 # My::Type::anyevent_write_type is defined before invoking it.
1067
1068 package My::Type;
1069
1070 sub anyevent_write_type {
1071 my ($handle, $delim, @args) = @_;
1072
1073 join $delim, @args
1074 }
577 1075
578=cut 1076=cut
579 1077
580############################################################################# 1078#############################################################################
581 1079
590ways, the "simple" way, using only C<on_read> and the "complex" way, using 1088ways, the "simple" way, using only C<on_read> and the "complex" way, using
591a queue. 1089a queue.
592 1090
593In the simple case, you just install an C<on_read> callback and whenever 1091In the simple case, you just install an C<on_read> callback and whenever
594new data arrives, it will be called. You can then remove some data (if 1092new data arrives, it will be called. You can then remove some data (if
595enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1093enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
596or not. 1094leave the data there if you want to accumulate more (e.g. when only a
1095partial message has been received so far).
597 1096
598In the more complex case, you want to queue multiple callbacks. In this 1097In the more complex case, you want to queue multiple callbacks. In this
599case, AnyEvent::Handle will call the first queued callback each time new 1098case, AnyEvent::Handle will call the first queued callback each time new
600data arrives (also the first time it is queued) and removes it when it has 1099data arrives (also the first time it is queued) and removes it when it has
601done its job (see C<push_read>, below). 1100done its job (see C<push_read>, below).
619 # handle xml 1118 # handle xml
620 }); 1119 });
621 }); 1120 });
622 }); 1121 });
623 1122
624Example 2: Implement a client for a protocol that replies either with 1123Example 2: Implement a client for a protocol that replies either with "OK"
625"OK" and another line or "ERROR" for one request, and 64 bytes for the 1124and another line or "ERROR" for the first request that is sent, and 64
626second request. Due tot he availability of a full queue, we can just 1125bytes for the second request. Due to the availability of a queue, we can
627pipeline sending both requests and manipulate the queue as necessary in 1126just pipeline sending both requests and manipulate the queue as necessary
628the callbacks: 1127in the callbacks.
629 1128
630 # request one 1129When the first callback is called and sees an "OK" response, it will
1130C<unshift> another line-read. This line-read will be queued I<before> the
113164-byte chunk callback.
1132
1133 # request one, returns either "OK + extra line" or "ERROR"
631 $handle->push_write ("request 1\015\012"); 1134 $handle->push_write ("request 1\015\012");
632 1135
633 # we expect "ERROR" or "OK" as response, so push a line read 1136 # we expect "ERROR" or "OK" as response, so push a line read
634 $handle->push_read (line => sub { 1137 $handle->push_read (line => sub {
635 # if we got an "OK", we have to _prepend_ another line, 1138 # if we got an "OK", we have to _prepend_ another line,
642 ... 1145 ...
643 }); 1146 });
644 } 1147 }
645 }); 1148 });
646 1149
647 # request two 1150 # request two, simply returns 64 octets
648 $handle->push_write ("request 2\015\012"); 1151 $handle->push_write ("request 2\015\012");
649 1152
650 # simply read 64 bytes, always 1153 # simply read 64 bytes, always
651 $handle->push_read (chunk => 64, sub { 1154 $handle->push_read (chunk => 64, sub {
652 my $response = $_[1]; 1155 my $response = $_[1];
658=cut 1161=cut
659 1162
660sub _drain_rbuf { 1163sub _drain_rbuf {
661 my ($self) = @_; 1164 my ($self) = @_;
662 1165
1166 # avoid recursion
1167 return if $self->{_skip_drain_rbuf};
663 local $self->{_in_drain} = 1; 1168 local $self->{_skip_drain_rbuf} = 1;
664
665 if (
666 defined $self->{rbuf_max}
667 && $self->{rbuf_max} < length $self->{rbuf}
668 ) {
669 return $self->_error (&Errno::ENOSPC, 1);
670 }
671 1169
672 while () { 1170 while () {
673 no strict 'refs'; 1171 # we need to use a separate tls read buffer, as we must not receive data while
1172 # we are draining the buffer, and this can only happen with TLS.
1173 $self->{rbuf} .= delete $self->{_tls_rbuf}
1174 if exists $self->{_tls_rbuf};
674 1175
675 my $len = length $self->{rbuf}; 1176 my $len = length $self->{rbuf};
676 1177
677 if (my $cb = shift @{ $self->{_queue} }) { 1178 if (my $cb = shift @{ $self->{_queue} }) {
678 unless ($cb->($self)) { 1179 unless ($cb->($self)) {
679 if ($self->{_eof}) { 1180 # no progress can be made
680 # no progress can be made (not enough data and no data forthcoming) 1181 # (not enough data and no data forthcoming)
681 $self->_error (&Errno::EPIPE, 1), last; 1182 $self->_error (Errno::EPIPE, 1), return
682 } 1183 if $self->{_eof};
683 1184
684 unshift @{ $self->{_queue} }, $cb; 1185 unshift @{ $self->{_queue} }, $cb;
685 last; 1186 last;
686 } 1187 }
687 } elsif ($self->{on_read}) { 1188 } elsif ($self->{on_read}) {
694 && !@{ $self->{_queue} } # and the queue is still empty 1195 && !@{ $self->{_queue} } # and the queue is still empty
695 && $self->{on_read} # but we still have on_read 1196 && $self->{on_read} # but we still have on_read
696 ) { 1197 ) {
697 # no further data will arrive 1198 # no further data will arrive
698 # so no progress can be made 1199 # so no progress can be made
699 $self->_error (&Errno::EPIPE, 1), last 1200 $self->_error (Errno::EPIPE, 1), return
700 if $self->{_eof}; 1201 if $self->{_eof};
701 1202
702 last; # more data might arrive 1203 last; # more data might arrive
703 } 1204 }
704 } else { 1205 } else {
705 # read side becomes idle 1206 # read side becomes idle
706 delete $self->{_rw}; 1207 delete $self->{_rw} unless $self->{tls};
707 last; 1208 last;
708 } 1209 }
709 } 1210 }
710 1211
1212 if ($self->{_eof}) {
1213 $self->{on_eof}
711 $self->{on_eof}($self) 1214 ? $self->{on_eof}($self)
712 if $self->{_eof} && $self->{on_eof}; 1215 : $self->_error (0, 1, "Unexpected end-of-file");
1216
1217 return;
1218 }
1219
1220 if (
1221 defined $self->{rbuf_max}
1222 && $self->{rbuf_max} < length $self->{rbuf}
1223 ) {
1224 $self->_error (Errno::ENOSPC, 1), return;
1225 }
713 1226
714 # may need to restart read watcher 1227 # may need to restart read watcher
715 unless ($self->{_rw}) { 1228 unless ($self->{_rw}) {
716 $self->start_read 1229 $self->start_read
717 if $self->{on_read} || @{ $self->{_queue} }; 1230 if $self->{on_read} || @{ $self->{_queue} };
728 1241
729sub on_read { 1242sub on_read {
730 my ($self, $cb) = @_; 1243 my ($self, $cb) = @_;
731 1244
732 $self->{on_read} = $cb; 1245 $self->{on_read} = $cb;
733 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1246 $self->_drain_rbuf if $cb;
734} 1247}
735 1248
736=item $handle->rbuf 1249=item $handle->rbuf
737 1250
738Returns the read buffer (as a modifiable lvalue). 1251Returns the read buffer (as a modifiable lvalue).
739 1252
740You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1253You can access the read buffer directly as the C<< ->{rbuf} >>
741you want. 1254member, if you want. However, the only operation allowed on the
1255read buffer (apart from looking at it) is removing data from its
1256beginning. Otherwise modifying or appending to it is not allowed and will
1257lead to hard-to-track-down bugs.
742 1258
743NOTE: The read buffer should only be used or modified if the C<on_read>, 1259NOTE: The read buffer should only be used or modified if the C<on_read>,
744C<push_read> or C<unshift_read> methods are used. The other read methods 1260C<push_read> or C<unshift_read> methods are used. The other read methods
745automatically manage the read buffer. 1261automatically manage the read buffer.
746 1262
782 my $cb = pop; 1298 my $cb = pop;
783 1299
784 if (@_) { 1300 if (@_) {
785 my $type = shift; 1301 my $type = shift;
786 1302
1303 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1304 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
788 ->($self, $cb, @_); 1305 ->($self, $cb, @_);
789 } 1306 }
790 1307
791 push @{ $self->{_queue} }, $cb; 1308 push @{ $self->{_queue} }, $cb;
792 $self->_drain_rbuf unless $self->{_in_drain}; 1309 $self->_drain_rbuf;
793} 1310}
794 1311
795sub unshift_read { 1312sub unshift_read {
796 my $self = shift; 1313 my $self = shift;
797 my $cb = pop; 1314 my $cb = pop;
801 1318
802 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1319 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
803 ->($self, $cb, @_); 1320 ->($self, $cb, @_);
804 } 1321 }
805 1322
806
807 unshift @{ $self->{_queue} }, $cb; 1323 unshift @{ $self->{_queue} }, $cb;
808 $self->_drain_rbuf unless $self->{_in_drain}; 1324 $self->_drain_rbuf;
809} 1325}
810 1326
811=item $handle->push_read (type => @args, $cb) 1327=item $handle->push_read (type => @args, $cb)
812 1328
813=item $handle->unshift_read (type => @args, $cb) 1329=item $handle->unshift_read (type => @args, $cb)
814 1330
815Instead of providing a callback that parses the data itself you can chose 1331Instead of providing a callback that parses the data itself you can chose
816between a number of predefined parsing formats, for chunks of data, lines 1332between a number of predefined parsing formats, for chunks of data, lines
817etc. 1333etc. You can also specify the (fully qualified) name of a package, in
1334which case AnyEvent tries to load the package and then expects to find the
1335C<anyevent_read_type> function inside (see "custom read types", below).
818 1336
819Predefined types are (if you have ideas for additional types, feel free to 1337Predefined types are (if you have ideas for additional types, feel free to
820drop by and tell us): 1338drop by and tell us):
821 1339
822=over 4 1340=over 4
843 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1361 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 1 1362 1
845 } 1363 }
846}; 1364};
847 1365
848# compatibility with older API
849sub push_read_chunk {
850 $_[0]->push_read (chunk => $_[1], $_[2]);
851}
852
853sub unshift_read_chunk {
854 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855}
856
857=item line => [$eol, ]$cb->($handle, $line, $eol) 1366=item line => [$eol, ]$cb->($handle, $line, $eol)
858 1367
859The callback will be called only once a full line (including the end of 1368The callback will be called only once a full line (including the end of
860line marker, C<$eol>) has been read. This line (excluding the end of line 1369line marker, C<$eol>) has been read. This line (excluding the end of line
861marker) will be passed to the callback as second argument (C<$line>), and 1370marker) will be passed to the callback as second argument (C<$line>), and
876=cut 1385=cut
877 1386
878register_read_type line => sub { 1387register_read_type line => sub {
879 my ($self, $cb, $eol) = @_; 1388 my ($self, $cb, $eol) = @_;
880 1389
881 $eol = qr|(\015?\012)| if @_ < 3; 1390 if (@_ < 3) {
1391 # this is more than twice as fast as the generic code below
1392 sub {
1393 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1394
1395 $cb->($_[0], $1, $2);
1396 1
1397 }
1398 } else {
882 $eol = quotemeta $eol unless ref $eol; 1399 $eol = quotemeta $eol unless ref $eol;
883 $eol = qr|^(.*?)($eol)|s; 1400 $eol = qr|^(.*?)($eol)|s;
884 1401
885 sub { 1402 sub {
886 $_[0]{rbuf} =~ s/$eol// or return; 1403 $_[0]{rbuf} =~ s/$eol// or return;
887 1404
888 $cb->($_[0], $1, $2); 1405 $cb->($_[0], $1, $2);
1406 1
889 1 1407 }
890 } 1408 }
891}; 1409};
892
893# compatibility with older API
894sub push_read_line {
895 my $self = shift;
896 $self->push_read (line => @_);
897}
898
899sub unshift_read_line {
900 my $self = shift;
901 $self->unshift_read (line => @_);
902}
903 1410
904=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1411=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905 1412
906Makes a regex match against the regex object C<$accept> and returns 1413Makes a regex match against the regex object C<$accept> and returns
907everything up to and including the match. 1414everything up to and including the match.
957 return 1; 1464 return 1;
958 } 1465 }
959 1466
960 # reject 1467 # reject
961 if ($reject && $$rbuf =~ $reject) { 1468 if ($reject && $$rbuf =~ $reject) {
962 $self->_error (&Errno::EBADMSG); 1469 $self->_error (Errno::EBADMSG);
963 } 1470 }
964 1471
965 # skip 1472 # skip
966 if ($skip && $$rbuf =~ $skip) { 1473 if ($skip && $$rbuf =~ $skip) {
967 $data .= substr $$rbuf, 0, $+[0], ""; 1474 $data .= substr $$rbuf, 0, $+[0], "";
983 my ($self, $cb) = @_; 1490 my ($self, $cb) = @_;
984 1491
985 sub { 1492 sub {
986 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1493 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987 if ($_[0]{rbuf} =~ /[^0-9]/) { 1494 if ($_[0]{rbuf} =~ /[^0-9]/) {
988 $self->_error (&Errno::EBADMSG); 1495 $self->_error (Errno::EBADMSG);
989 } 1496 }
990 return; 1497 return;
991 } 1498 }
992 1499
993 my $len = $1; 1500 my $len = $1;
996 my $string = $_[1]; 1503 my $string = $_[1];
997 $_[0]->unshift_read (chunk => 1, sub { 1504 $_[0]->unshift_read (chunk => 1, sub {
998 if ($_[1] eq ",") { 1505 if ($_[1] eq ",") {
999 $cb->($_[0], $string); 1506 $cb->($_[0], $string);
1000 } else { 1507 } else {
1001 $self->_error (&Errno::EBADMSG); 1508 $self->_error (Errno::EBADMSG);
1002 } 1509 }
1003 }); 1510 });
1004 }); 1511 });
1005 1512
1006 1 1513 1
1012An octet string prefixed with an encoded length. The encoding C<$format> 1519An octet string prefixed with an encoded length. The encoding C<$format>
1013uses the same format as a Perl C<pack> format, but must specify a single 1520uses the same format as a Perl C<pack> format, but must specify a single
1014integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1521integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015optional C<!>, C<< < >> or C<< > >> modifier). 1522optional C<!>, C<< < >> or C<< > >> modifier).
1016 1523
1017DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1524For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1525EPP uses a prefix of C<N> (4 octtes).
1018 1526
1019Example: read a block of data prefixed by its length in BER-encoded 1527Example: read a block of data prefixed by its length in BER-encoded
1020format (very efficient). 1528format (very efficient).
1021 1529
1022 $handle->push_read (packstring => "w", sub { 1530 $handle->push_read (packstring => "w", sub {
1028register_read_type packstring => sub { 1536register_read_type packstring => sub {
1029 my ($self, $cb, $format) = @_; 1537 my ($self, $cb, $format) = @_;
1030 1538
1031 sub { 1539 sub {
1032 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1540 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1541 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1034 or return; 1542 or return;
1035 1543
1544 $format = length pack $format, $len;
1545
1546 # bypass unshift if we already have the remaining chunk
1547 if ($format + $len <= length $_[0]{rbuf}) {
1548 my $data = substr $_[0]{rbuf}, $format, $len;
1549 substr $_[0]{rbuf}, 0, $format + $len, "";
1550 $cb->($_[0], $data);
1551 } else {
1036 # remove prefix 1552 # remove prefix
1037 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1553 substr $_[0]{rbuf}, 0, $format, "";
1038 1554
1039 # read rest 1555 # read remaining chunk
1040 $_[0]->unshift_read (chunk => $len, $cb); 1556 $_[0]->unshift_read (chunk => $len, $cb);
1557 }
1041 1558
1042 1 1559 1
1043 } 1560 }
1044}; 1561};
1045 1562
1046=item json => $cb->($handle, $hash_or_arrayref) 1563=item json => $cb->($handle, $hash_or_arrayref)
1047 1564
1048Reads a JSON object or array, decodes it and passes it to the callback. 1565Reads a JSON object or array, decodes it and passes it to the
1566callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1049 1567
1050If a C<json> object was passed to the constructor, then that will be used 1568If a C<json> object was passed to the constructor, then that will be used
1051for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1569for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052 1570
1053This read type uses the incremental parser available with JSON version 1571This read type uses the incremental parser available with JSON version
1062=cut 1580=cut
1063 1581
1064register_read_type json => sub { 1582register_read_type json => sub {
1065 my ($self, $cb) = @_; 1583 my ($self, $cb) = @_;
1066 1584
1067 require JSON; 1585 my $json = $self->{json} ||= json_coder;
1068 1586
1069 my $data; 1587 my $data;
1070 my $rbuf = \$self->{rbuf}; 1588 my $rbuf = \$self->{rbuf};
1071 1589
1072 my $json = $self->{json} ||= JSON->new->utf8;
1073
1074 sub { 1590 sub {
1075 my $ref = $json->incr_parse ($self->{rbuf}); 1591 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1076 1592
1077 if ($ref) { 1593 if ($ref) {
1078 $self->{rbuf} = $json->incr_text; 1594 $self->{rbuf} = $json->incr_text;
1079 $json->incr_text = ""; 1595 $json->incr_text = "";
1080 $cb->($self, $ref); 1596 $cb->($self, $ref);
1081 1597
1082 1 1598 1
1599 } elsif ($@) {
1600 # error case
1601 $json->incr_skip;
1602
1603 $self->{rbuf} = $json->incr_text;
1604 $json->incr_text = "";
1605
1606 $self->_error (Errno::EBADMSG);
1607
1608 ()
1083 } else { 1609 } else {
1084 $self->{rbuf} = ""; 1610 $self->{rbuf} = "";
1611
1085 () 1612 ()
1086 } 1613 }
1087 } 1614 }
1088}; 1615};
1089 1616
1102 1629
1103 require Storable; 1630 require Storable;
1104 1631
1105 sub { 1632 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1633 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1634 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1108 or return; 1635 or return;
1109 1636
1637 my $format = length pack "w", $len;
1638
1639 # bypass unshift if we already have the remaining chunk
1640 if ($format + $len <= length $_[0]{rbuf}) {
1641 my $data = substr $_[0]{rbuf}, $format, $len;
1642 substr $_[0]{rbuf}, 0, $format + $len, "";
1643 $cb->($_[0], Storable::thaw ($data));
1644 } else {
1110 # remove prefix 1645 # remove prefix
1111 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1646 substr $_[0]{rbuf}, 0, $format, "";
1112 1647
1113 # read rest 1648 # read remaining chunk
1114 $_[0]->unshift_read (chunk => $len, sub { 1649 $_[0]->unshift_read (chunk => $len, sub {
1115 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1650 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116 $cb->($_[0], $ref); 1651 $cb->($_[0], $ref);
1117 } else { 1652 } else {
1118 $self->_error (&Errno::EBADMSG); 1653 $self->_error (Errno::EBADMSG);
1654 }
1119 } 1655 });
1120 }); 1656 }
1657
1658 1
1121 } 1659 }
1122}; 1660};
1123 1661
1124=back 1662=back
1125 1663
1126=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1664=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1127 1665
1128This function (not method) lets you add your own types to C<push_read>. 1666Instead of one of the predefined types, you can also specify the name
1667of a package. AnyEvent will try to load the package and then expects to
1668find a function named C<anyevent_read_type> inside. If it isn't found, it
1669progressively tries to load the parent package until it either finds the
1670function (good) or runs out of packages (bad).
1129 1671
1130Whenever the given C<type> is used, C<push_read> will invoke the code 1672Whenever this type is used, C<push_read> will invoke the function with the
1131reference with the handle object, the callback and the remaining 1673handle object, the original callback and the remaining arguments.
1132arguments.
1133 1674
1134The code reference is supposed to return a callback (usually a closure) 1675The function is supposed to return a callback (usually a closure) that
1135that works as a plain read callback (see C<< ->push_read ($cb) >>). 1676works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1677mentally treat the function as a "configurable read type to read callback"
1678converter.
1136 1679
1137It should invoke the passed callback when it is done reading (remember to 1680It should invoke the original callback when it is done reading (remember
1138pass C<$handle> as first argument as all other callbacks do that). 1681to pass C<$handle> as first argument as all other callbacks do that,
1682although there is no strict requirement on this).
1139 1683
1140Note that this is a function, and all types registered this way will be
1141global, so try to use unique names.
1142
1143For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1684For examples, see the source of this module (F<perldoc -m
1144search for C<register_read_type>)). 1685AnyEvent::Handle>, search for C<register_read_type>)).
1145 1686
1146=item $handle->stop_read 1687=item $handle->stop_read
1147 1688
1148=item $handle->start_read 1689=item $handle->start_read
1149 1690
1155Note that AnyEvent::Handle will automatically C<start_read> for you when 1696Note that AnyEvent::Handle will automatically C<start_read> for you when
1156you change the C<on_read> callback or push/unshift a read callback, and it 1697you change the C<on_read> callback or push/unshift a read callback, and it
1157will automatically C<stop_read> for you when neither C<on_read> is set nor 1698will automatically C<stop_read> for you when neither C<on_read> is set nor
1158there are any read requests in the queue. 1699there are any read requests in the queue.
1159 1700
1701These methods will have no effect when in TLS mode (as TLS doesn't support
1702half-duplex connections).
1703
1160=cut 1704=cut
1161 1705
1162sub stop_read { 1706sub stop_read {
1163 my ($self) = @_; 1707 my ($self) = @_;
1164 1708
1165 delete $self->{_rw}; 1709 delete $self->{_rw} unless $self->{tls};
1166} 1710}
1167 1711
1168sub start_read { 1712sub start_read {
1169 my ($self) = @_; 1713 my ($self) = @_;
1170 1714
1171 unless ($self->{_rw} || $self->{_eof}) { 1715 unless ($self->{_rw} || $self->{_eof}) {
1172 Scalar::Util::weaken $self; 1716 Scalar::Util::weaken $self;
1173 1717
1174 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1718 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1175 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1719 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1176 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1720 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1177 1721
1178 if ($len > 0) { 1722 if ($len > 0) {
1179 $self->{_activity} = AnyEvent->now; 1723 $self->{_activity} = $self->{_ractivity} = AE::now;
1180 1724
1181 $self->{filter_r} 1725 if ($self->{tls}) {
1182 ? $self->{filter_r}($self, $rbuf) 1726 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1183 : $self->{_in_drain} || $self->_drain_rbuf; 1727
1728 &_dotls ($self);
1729 } else {
1730 $self->_drain_rbuf;
1731 }
1184 1732
1185 } elsif (defined $len) { 1733 } elsif (defined $len) {
1186 delete $self->{_rw}; 1734 delete $self->{_rw};
1187 $self->{_eof} = 1; 1735 $self->{_eof} = 1;
1188 $self->_drain_rbuf unless $self->{_in_drain}; 1736 $self->_drain_rbuf;
1189 1737
1190 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1738 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1191 return $self->_error ($!, 1); 1739 return $self->_error ($!, 1);
1192 } 1740 }
1193 }); 1741 };
1194 } 1742 }
1195} 1743}
1196 1744
1745our $ERROR_SYSCALL;
1746our $ERROR_WANT_READ;
1747
1748sub _tls_error {
1749 my ($self, $err) = @_;
1750
1751 return $self->_error ($!, 1)
1752 if $err == Net::SSLeay::ERROR_SYSCALL ();
1753
1754 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1755
1756 # reduce error string to look less scary
1757 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1758
1759 if ($self->{_on_starttls}) {
1760 (delete $self->{_on_starttls})->($self, undef, $err);
1761 &_freetls;
1762 } else {
1763 &_freetls;
1764 $self->_error (Errno::EPROTO, 1, $err);
1765 }
1766}
1767
1768# poll the write BIO and send the data if applicable
1769# also decode read data if possible
1770# this is basiclaly our TLS state machine
1771# more efficient implementations are possible with openssl,
1772# but not with the buggy and incomplete Net::SSLeay.
1197sub _dotls { 1773sub _dotls {
1198 my ($self) = @_; 1774 my ($self) = @_;
1199 1775
1200 my $buf; 1776 my $tmp;
1201 1777
1202 if (length $self->{_tls_wbuf}) { 1778 if (length $self->{_tls_wbuf}) {
1203 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1779 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204 substr $self->{_tls_wbuf}, 0, $len, ""; 1780 substr $self->{_tls_wbuf}, 0, $tmp, "";
1205 } 1781 }
1206 }
1207 1782
1783 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1784 return $self->_tls_error ($tmp)
1785 if $tmp != $ERROR_WANT_READ
1786 && ($tmp != $ERROR_SYSCALL || $!);
1787 }
1788
1789 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1790 unless (length $tmp) {
1791 $self->{_on_starttls}
1792 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1793 &_freetls;
1794
1795 if ($self->{on_stoptls}) {
1796 $self->{on_stoptls}($self);
1797 return;
1798 } else {
1799 # let's treat SSL-eof as we treat normal EOF
1800 delete $self->{_rw};
1801 $self->{_eof} = 1;
1802 }
1803 }
1804
1805 $self->{_tls_rbuf} .= $tmp;
1806 $self->_drain_rbuf;
1807 $self->{tls} or return; # tls session might have gone away in callback
1808 }
1809
1810 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1811 return $self->_tls_error ($tmp)
1812 if $tmp != $ERROR_WANT_READ
1813 && ($tmp != $ERROR_SYSCALL || $!);
1814
1208 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1815 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 $self->{wbuf} .= $buf; 1816 $self->{wbuf} .= $tmp;
1210 $self->_drain_wbuf; 1817 $self->_drain_wbuf;
1211 } 1818 }
1212 1819
1213 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1820 $self->{_on_starttls}
1214 if (length $buf) { 1821 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1215 $self->{rbuf} .= $buf; 1822 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1216 $self->_drain_rbuf unless $self->{_in_drain};
1217 } else {
1218 # let's treat SSL-eof as we treat normal EOF
1219 $self->{_eof} = 1;
1220 $self->_shutdown;
1221 return;
1222 }
1223 }
1224
1225 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226
1227 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 return $self->_error ($!, 1);
1230 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 return $self->_error (&Errno::EIO, 1);
1232 }
1233
1234 # all others are fine for our purposes
1235 }
1236} 1823}
1237 1824
1238=item $handle->starttls ($tls[, $tls_ctx]) 1825=item $handle->starttls ($tls[, $tls_ctx])
1239 1826
1240Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1827Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241object is created, you can also do that at a later time by calling 1828object is created, you can also do that at a later time by calling
1242C<starttls>. 1829C<starttls>.
1243 1830
1831Starting TLS is currently an asynchronous operation - when you push some
1832write data and then call C<< ->starttls >> then TLS negotiation will start
1833immediately, after which the queued write data is then sent.
1834
1244The first argument is the same as the C<tls> constructor argument (either 1835The first argument is the same as the C<tls> constructor argument (either
1245C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1836C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246 1837
1247The second argument is the optional C<Net::SSLeay::CTX> object that is 1838The second argument is the optional C<AnyEvent::TLS> object that is used
1248used when AnyEvent::Handle has to create its own TLS connection object. 1839when AnyEvent::Handle has to create its own TLS connection object, or
1840a hash reference with C<< key => value >> pairs that will be used to
1841construct a new context.
1249 1842
1250The TLS connection object will end up in C<< $handle->{tls} >> after this 1843The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1251call and can be used or changed to your liking. Note that the handshake 1844context in C<< $handle->{tls_ctx} >> after this call and can be used or
1252might have already started when this function returns. 1845changed to your liking. Note that the handshake might have already started
1846when this function returns.
1253 1847
1848Due to bugs in OpenSSL, it might or might not be possible to do multiple
1849handshakes on the same stream. Best do not attempt to use the stream after
1850stopping TLS.
1851
1254=cut 1852=cut
1853
1854our %TLS_CACHE; #TODO not yet documented, should we?
1255 1855
1256sub starttls { 1856sub starttls {
1257 my ($self, $ssl, $ctx) = @_; 1857 my ($self, $tls, $ctx) = @_;
1258 1858
1259 $self->stoptls; 1859 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1860 if $self->{tls};
1260 1861
1261 if ($ssl eq "accept") { 1862 $self->{tls} = $tls;
1262 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1863 $self->{tls_ctx} = $ctx if @_ > 2;
1263 Net::SSLeay::set_accept_state ($ssl); 1864
1264 } elsif ($ssl eq "connect") { 1865 return unless $self->{fh};
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1866
1266 Net::SSLeay::set_connect_state ($ssl); 1867 require Net::SSLeay;
1868
1869 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1870 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1871
1872 $tls = delete $self->{tls};
1873 $ctx = $self->{tls_ctx};
1874
1875 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1876
1877 if ("HASH" eq ref $ctx) {
1878 require AnyEvent::TLS;
1879
1880 if ($ctx->{cache}) {
1881 my $key = $ctx+0;
1882 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1883 } else {
1884 $ctx = new AnyEvent::TLS %$ctx;
1885 }
1886 }
1267 } 1887
1268 1888 $self->{tls_ctx} = $ctx || TLS_CTX ();
1269 $self->{tls} = $ssl; 1889 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1270 1890
1271 # basically, this is deep magic (because SSL_read should have the same issues) 1891 # basically, this is deep magic (because SSL_read should have the same issues)
1272 # but the openssl maintainers basically said: "trust us, it just works". 1892 # but the openssl maintainers basically said: "trust us, it just works".
1273 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1893 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274 # and mismaintained ssleay-module doesn't even offer them). 1894 # and mismaintained ssleay-module doesn't even offer them).
1275 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1895 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1896 #
1897 # in short: this is a mess.
1898 #
1899 # note that we do not try to keep the length constant between writes as we are required to do.
1900 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1901 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1902 # have identity issues in that area.
1276 Net::SSLeay::CTX_set_mode ($self->{tls}, 1903# Net::SSLeay::CTX_set_mode ($ssl,
1277 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1904# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1905# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1906 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1279 1907
1280 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1908 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1909 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282 1910
1911 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1912
1283 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1913 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1284 1914
1285 $self->{filter_w} = sub { 1915 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1286 $_[0]{_tls_wbuf} .= ${$_[1]}; 1916 if $self->{on_starttls};
1287 &_dotls; 1917
1288 }; 1918 &_dotls; # need to trigger the initial handshake
1289 $self->{filter_r} = sub { 1919 $self->start_read; # make sure we actually do read
1290 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 &_dotls;
1292 };
1293} 1920}
1294 1921
1295=item $handle->stoptls 1922=item $handle->stoptls
1296 1923
1297Destroys the SSL connection, if any. Partial read or write data will be 1924Shuts down the SSL connection - this makes a proper EOF handshake by
1298lost. 1925sending a close notify to the other side, but since OpenSSL doesn't
1926support non-blocking shut downs, it is not guarenteed that you can re-use
1927the stream afterwards.
1299 1928
1300=cut 1929=cut
1301 1930
1302sub stoptls { 1931sub stoptls {
1303 my ($self) = @_; 1932 my ($self) = @_;
1304 1933
1305 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1934 if ($self->{tls}) {
1935 Net::SSLeay::shutdown ($self->{tls});
1306 1936
1307 delete $self->{_rbio}; 1937 &_dotls;
1308 delete $self->{_wbio}; 1938
1309 delete $self->{_tls_wbuf}; 1939# # we don't give a shit. no, we do, but we can't. no...#d#
1310 delete $self->{filter_r}; 1940# # we, we... have to use openssl :/#d#
1311 delete $self->{filter_w}; 1941# &_freetls;#d#
1942 }
1943}
1944
1945sub _freetls {
1946 my ($self) = @_;
1947
1948 return unless $self->{tls};
1949
1950 $self->{tls_ctx}->_put_session (delete $self->{tls})
1951 if $self->{tls} > 0;
1952
1953 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1312} 1954}
1313 1955
1314sub DESTROY { 1956sub DESTROY {
1315 my $self = shift; 1957 my ($self) = @_;
1316 1958
1317 $self->stoptls; 1959 &_freetls;
1318 1960
1319 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1961 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320 1962
1321 if ($linger && length $self->{wbuf}) { 1963 if ($linger && length $self->{wbuf} && $self->{fh}) {
1322 my $fh = delete $self->{fh}; 1964 my $fh = delete $self->{fh};
1323 my $wbuf = delete $self->{wbuf}; 1965 my $wbuf = delete $self->{wbuf};
1324 1966
1325 my @linger; 1967 my @linger;
1326 1968
1327 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1969 push @linger, AE::io $fh, 1, sub {
1328 my $len = syswrite $fh, $wbuf, length $wbuf; 1970 my $len = syswrite $fh, $wbuf, length $wbuf;
1329 1971
1330 if ($len > 0) { 1972 if ($len > 0) {
1331 substr $wbuf, 0, $len, ""; 1973 substr $wbuf, 0, $len, "";
1332 } else { 1974 } else {
1333 @linger = (); # end 1975 @linger = (); # end
1334 } 1976 }
1335 }); 1977 };
1336 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1978 push @linger, AE::timer $linger, 0, sub {
1337 @linger = (); 1979 @linger = ();
1338 }); 1980 };
1339 } 1981 }
1982}
1983
1984=item $handle->destroy
1985
1986Shuts down the handle object as much as possible - this call ensures that
1987no further callbacks will be invoked and as many resources as possible
1988will be freed. Any method you will call on the handle object after
1989destroying it in this way will be silently ignored (and it will return the
1990empty list).
1991
1992Normally, you can just "forget" any references to an AnyEvent::Handle
1993object and it will simply shut down. This works in fatal error and EOF
1994callbacks, as well as code outside. It does I<NOT> work in a read or write
1995callback, so when you want to destroy the AnyEvent::Handle object from
1996within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1997that case.
1998
1999Destroying the handle object in this way has the advantage that callbacks
2000will be removed as well, so if those are the only reference holders (as
2001is common), then one doesn't need to do anything special to break any
2002reference cycles.
2003
2004The handle might still linger in the background and write out remaining
2005data, as specified by the C<linger> option, however.
2006
2007=cut
2008
2009sub destroy {
2010 my ($self) = @_;
2011
2012 $self->DESTROY;
2013 %$self = ();
2014 bless $self, "AnyEvent::Handle::destroyed";
2015}
2016
2017sub AnyEvent::Handle::destroyed::AUTOLOAD {
2018 #nop
1340} 2019}
1341 2020
1342=item AnyEvent::Handle::TLS_CTX 2021=item AnyEvent::Handle::TLS_CTX
1343 2022
1344This function creates and returns the Net::SSLeay::CTX object used by 2023This function creates and returns the AnyEvent::TLS object used by default
1345default for TLS mode. 2024for TLS mode.
1346 2025
1347The context is created like this: 2026The context is created by calling L<AnyEvent::TLS> without any arguments.
1348
1349 Net::SSLeay::load_error_strings;
1350 Net::SSLeay::SSLeay_add_ssl_algorithms;
1351 Net::SSLeay::randomize;
1352
1353 my $CTX = Net::SSLeay::CTX_new;
1354
1355 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356 2027
1357=cut 2028=cut
1358 2029
1359our $TLS_CTX; 2030our $TLS_CTX;
1360 2031
1361sub TLS_CTX() { 2032sub TLS_CTX() {
1362 $TLS_CTX || do { 2033 $TLS_CTX ||= do {
1363 require Net::SSLeay; 2034 require AnyEvent::TLS;
1364 2035
1365 Net::SSLeay::load_error_strings (); 2036 new AnyEvent::TLS
1366 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367 Net::SSLeay::randomize ();
1368
1369 $TLS_CTX = Net::SSLeay::CTX_new ();
1370
1371 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372
1373 $TLS_CTX
1374 } 2037 }
1375} 2038}
1376 2039
1377=back 2040=back
2041
2042
2043=head1 NONFREQUENTLY ASKED QUESTIONS
2044
2045=over 4
2046
2047=item I C<undef> the AnyEvent::Handle reference inside my callback and
2048still get further invocations!
2049
2050That's because AnyEvent::Handle keeps a reference to itself when handling
2051read or write callbacks.
2052
2053It is only safe to "forget" the reference inside EOF or error callbacks,
2054from within all other callbacks, you need to explicitly call the C<<
2055->destroy >> method.
2056
2057=item I get different callback invocations in TLS mode/Why can't I pause
2058reading?
2059
2060Unlike, say, TCP, TLS connections do not consist of two independent
2061communication channels, one for each direction. Or put differently. The
2062read and write directions are not independent of each other: you cannot
2063write data unless you are also prepared to read, and vice versa.
2064
2065This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2066callback invocations when you are not expecting any read data - the reason
2067is that AnyEvent::Handle always reads in TLS mode.
2068
2069During the connection, you have to make sure that you always have a
2070non-empty read-queue, or an C<on_read> watcher. At the end of the
2071connection (or when you no longer want to use it) you can call the
2072C<destroy> method.
2073
2074=item How do I read data until the other side closes the connection?
2075
2076If you just want to read your data into a perl scalar, the easiest way
2077to achieve this is by setting an C<on_read> callback that does nothing,
2078clearing the C<on_eof> callback and in the C<on_error> callback, the data
2079will be in C<$_[0]{rbuf}>:
2080
2081 $handle->on_read (sub { });
2082 $handle->on_eof (undef);
2083 $handle->on_error (sub {
2084 my $data = delete $_[0]{rbuf};
2085 });
2086
2087The reason to use C<on_error> is that TCP connections, due to latencies
2088and packets loss, might get closed quite violently with an error, when in
2089fact, all data has been received.
2090
2091It is usually better to use acknowledgements when transferring data,
2092to make sure the other side hasn't just died and you got the data
2093intact. This is also one reason why so many internet protocols have an
2094explicit QUIT command.
2095
2096=item I don't want to destroy the handle too early - how do I wait until
2097all data has been written?
2098
2099After writing your last bits of data, set the C<on_drain> callback
2100and destroy the handle in there - with the default setting of
2101C<low_water_mark> this will be called precisely when all data has been
2102written to the socket:
2103
2104 $handle->push_write (...);
2105 $handle->on_drain (sub {
2106 warn "all data submitted to the kernel\n";
2107 undef $handle;
2108 });
2109
2110If you just want to queue some data and then signal EOF to the other side,
2111consider using C<< ->push_shutdown >> instead.
2112
2113=item I want to contact a TLS/SSL server, I don't care about security.
2114
2115If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2116simply connect to it and then create the AnyEvent::Handle with the C<tls>
2117parameter:
2118
2119 tcp_connect $host, $port, sub {
2120 my ($fh) = @_;
2121
2122 my $handle = new AnyEvent::Handle
2123 fh => $fh,
2124 tls => "connect",
2125 on_error => sub { ... };
2126
2127 $handle->push_write (...);
2128 };
2129
2130=item I want to contact a TLS/SSL server, I do care about security.
2131
2132Then you should additionally enable certificate verification, including
2133peername verification, if the protocol you use supports it (see
2134L<AnyEvent::TLS>, C<verify_peername>).
2135
2136E.g. for HTTPS:
2137
2138 tcp_connect $host, $port, sub {
2139 my ($fh) = @_;
2140
2141 my $handle = new AnyEvent::Handle
2142 fh => $fh,
2143 peername => $host,
2144 tls => "connect",
2145 tls_ctx => { verify => 1, verify_peername => "https" },
2146 ...
2147
2148Note that you must specify the hostname you connected to (or whatever
2149"peername" the protocol needs) as the C<peername> argument, otherwise no
2150peername verification will be done.
2151
2152The above will use the system-dependent default set of trusted CA
2153certificates. If you want to check against a specific CA, add the
2154C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2155
2156 tls_ctx => {
2157 verify => 1,
2158 verify_peername => "https",
2159 ca_file => "my-ca-cert.pem",
2160 },
2161
2162=item I want to create a TLS/SSL server, how do I do that?
2163
2164Well, you first need to get a server certificate and key. You have
2165three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2166self-signed certificate (cheap. check the search engine of your choice,
2167there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2168nice program for that purpose).
2169
2170Then create a file with your private key (in PEM format, see
2171L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2172file should then look like this:
2173
2174 -----BEGIN RSA PRIVATE KEY-----
2175 ...header data
2176 ... lots of base64'y-stuff
2177 -----END RSA PRIVATE KEY-----
2178
2179 -----BEGIN CERTIFICATE-----
2180 ... lots of base64'y-stuff
2181 -----END CERTIFICATE-----
2182
2183The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2184specify this file as C<cert_file>:
2185
2186 tcp_server undef, $port, sub {
2187 my ($fh) = @_;
2188
2189 my $handle = new AnyEvent::Handle
2190 fh => $fh,
2191 tls => "accept",
2192 tls_ctx => { cert_file => "my-server-keycert.pem" },
2193 ...
2194
2195When you have intermediate CA certificates that your clients might not
2196know about, just append them to the C<cert_file>.
2197
2198=back
2199
1378 2200
1379=head1 SUBCLASSING AnyEvent::Handle 2201=head1 SUBCLASSING AnyEvent::Handle
1380 2202
1381In many cases, you might want to subclass AnyEvent::Handle. 2203In many cases, you might want to subclass AnyEvent::Handle.
1382 2204
1386=over 4 2208=over 4
1387 2209
1388=item * all constructor arguments become object members. 2210=item * all constructor arguments become object members.
1389 2211
1390At least initially, when you pass a C<tls>-argument to the constructor it 2212At least initially, when you pass a C<tls>-argument to the constructor it
1391will end up in C<< $handle->{tls} >>. Those members might be changes or 2213will end up in C<< $handle->{tls} >>. Those members might be changed or
1392mutated later on (for example C<tls> will hold the TLS connection object). 2214mutated later on (for example C<tls> will hold the TLS connection object).
1393 2215
1394=item * other object member names are prefixed with an C<_>. 2216=item * other object member names are prefixed with an C<_>.
1395 2217
1396All object members not explicitly documented (internal use) are prefixed 2218All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines