ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.63
Committed: Fri Jun 6 11:00:32 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.62: +50 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = 4.14;
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called when an end-of-file condition is detcted,
81 i.e. in the case of a socket, when the other side has closed the
82 connection cleanly.
83
84 While not mandatory, it is highly recommended to set an eof callback,
85 otherwise you might end up with a closed socket while you are still
86 waiting for data.
87
88 =item on_error => $cb->($handle, $fatal)
89
90 This is the error callback, which is called when, well, some error
91 occured, such as not being able to resolve the hostname, failure to
92 connect or a read error.
93
94 Some errors are fatal (which is indicated by C<$fatal> being true). On
95 fatal errors the handle object will be shut down and will not be
96 usable. Non-fatal errors can be retried by simply returning, but it is
97 recommended to simply ignore this parameter and instead abondon the handle
98 object when this callback is invoked.
99
100 On callback entrance, the value of C<$!> contains the operating system
101 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103 While not mandatory, it is I<highly> recommended to set this callback, as
104 you will not be notified of errors otherwise. The default simply calls
105 C<croak>.
106
107 =item on_read => $cb->($handle)
108
109 This sets the default read callback, which is called when data arrives
110 and no read request is in the queue (unlike read queue callbacks, this
111 callback will only be called when at least one octet of data is in the
112 read buffer).
113
114 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 method or access the C<$handle->{rbuf}> member directly.
116
117 When an EOF condition is detected then AnyEvent::Handle will first try to
118 feed all the remaining data to the queued callbacks and C<on_read> before
119 calling the C<on_eof> callback. If no progress can be made, then a fatal
120 error will be raised (with C<$!> set to C<EPIPE>).
121
122 =item on_drain => $cb->($handle)
123
124 This sets the callback that is called when the write buffer becomes empty
125 (or when the callback is set and the buffer is empty already).
126
127 To append to the write buffer, use the C<< ->push_write >> method.
128
129 =item timeout => $fractional_seconds
130
131 If non-zero, then this enables an "inactivity" timeout: whenever this many
132 seconds pass without a successful read or write on the underlying file
133 handle, the C<on_timeout> callback will be invoked (and if that one is
134 missing, an C<ETIMEDOUT> error will be raised).
135
136 Note that timeout processing is also active when you currently do not have
137 any outstanding read or write requests: If you plan to keep the connection
138 idle then you should disable the timout temporarily or ignore the timeout
139 in the C<on_timeout> callback.
140
141 Zero (the default) disables this timeout.
142
143 =item on_timeout => $cb->($handle)
144
145 Called whenever the inactivity timeout passes. If you return from this
146 callback, then the timeout will be reset as if some activity had happened,
147 so this condition is not fatal in any way.
148
149 =item rbuf_max => <bytes>
150
151 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152 when the read buffer ever (strictly) exceeds this size. This is useful to
153 avoid denial-of-service attacks.
154
155 For example, a server accepting connections from untrusted sources should
156 be configured to accept only so-and-so much data that it cannot act on
157 (for example, when expecting a line, an attacker could send an unlimited
158 amount of data without a callback ever being called as long as the line
159 isn't finished).
160
161 =item read_size => <bytes>
162
163 The default read block size (the amount of bytes this module will try to read
164 during each (loop iteration). Default: C<8192>.
165
166 =item low_water_mark => <bytes>
167
168 Sets the amount of bytes (default: C<0>) that make up an "empty" write
169 buffer: If the write reaches this size or gets even samller it is
170 considered empty.
171
172 =item linger => <seconds>
173
174 If non-zero (default: C<3600>), then the destructor of the
175 AnyEvent::Handle object will check wether there is still outstanding write
176 data and will install a watcher that will write out this data. No errors
177 will be reported (this mostly matches how the operating system treats
178 outstanding data at socket close time).
179
180 This will not work for partial TLS data that could not yet been
181 encoded. This data will be lost.
182
183 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
184
185 When this parameter is given, it enables TLS (SSL) mode, that means it
186 will start making tls handshake and will transparently encrypt/decrypt
187 data.
188
189 TLS mode requires Net::SSLeay to be installed (it will be loaded
190 automatically when you try to create a TLS handle).
191
192 For the TLS server side, use C<accept>, and for the TLS client side of a
193 connection, use C<connect> mode.
194
195 You can also provide your own TLS connection object, but you have
196 to make sure that you call either C<Net::SSLeay::set_connect_state>
197 or C<Net::SSLeay::set_accept_state> on it before you pass it to
198 AnyEvent::Handle.
199
200 See the C<starttls> method if you need to start TLs negotiation later.
201
202 =item tls_ctx => $ssl_ctx
203
204 Use the given Net::SSLeay::CTX object to create the new TLS connection
205 (unless a connection object was specified directly). If this parameter is
206 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207
208 =item json => JSON or JSON::XS object
209
210 This is the json coder object used by the C<json> read and write types.
211
212 If you don't supply it, then AnyEvent::Handle will create and use a
213 suitable one, which will write and expect UTF-8 encoded JSON texts.
214
215 Note that you are responsible to depend on the JSON module if you want to
216 use this functionality, as AnyEvent does not have a dependency itself.
217
218 =item filter_r => $cb
219
220 =item filter_w => $cb
221
222 These exist, but are undocumented at this time.
223
224 =back
225
226 =cut
227
228 sub new {
229 my $class = shift;
230
231 my $self = bless { @_ }, $class;
232
233 $self->{fh} or Carp::croak "mandatory argument fh is missing";
234
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236
237 if ($self->{tls}) {
238 require Net::SSLeay;
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240 }
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246
247 $self
248 }
249
250 sub _shutdown {
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259 }
260
261 sub _error {
262 my ($self, $errno, $fatal) = @_;
263
264 $self->_shutdown
265 if $fatal;
266
267 $! = $errno;
268
269 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal);
271 } else {
272 Carp::croak "AnyEvent::Handle uncaught error: $!";
273 }
274 }
275
276 =item $fh = $handle->fh
277
278 This method returns the file handle of the L<AnyEvent::Handle> object.
279
280 =cut
281
282 sub fh { $_[0]{fh} }
283
284 =item $handle->on_error ($cb)
285
286 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
287
288 =cut
289
290 sub on_error {
291 $_[0]{on_error} = $_[1];
292 }
293
294 =item $handle->on_eof ($cb)
295
296 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
297
298 =cut
299
300 sub on_eof {
301 $_[0]{on_eof} = $_[1];
302 }
303
304 =item $handle->on_timeout ($cb)
305
306 Replace the current C<on_timeout> callback, or disables the callback
307 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308 argument.
309
310 =cut
311
312 sub on_timeout {
313 $_[0]{on_timeout} = $_[1];
314 }
315
316 #############################################################################
317
318 =item $handle->timeout ($seconds)
319
320 Configures (or disables) the inactivity timeout.
321
322 =cut
323
324 sub timeout {
325 my ($self, $timeout) = @_;
326
327 $self->{timeout} = $timeout;
328 $self->_timeout;
329 }
330
331 # reset the timeout watcher, as neccessary
332 # also check for time-outs
333 sub _timeout {
334 my ($self) = @_;
335
336 if ($self->{timeout}) {
337 my $NOW = AnyEvent->now;
338
339 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW;
341
342 # now or in the past already?
343 if ($after <= 0) {
344 $self->{_activity} = $NOW;
345
346 if ($self->{on_timeout}) {
347 $self->{on_timeout}($self);
348 } else {
349 $self->_error (&Errno::ETIMEDOUT);
350 }
351
352 # callback could have changed timeout value, optimise
353 return unless $self->{timeout};
354
355 # calculate new after
356 $after = $self->{timeout};
357 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 }
369 }
370
371 #############################################################################
372
373 =back
374
375 =head2 WRITE QUEUE
376
377 AnyEvent::Handle manages two queues per handle, one for writing and one
378 for reading.
379
380 The write queue is very simple: you can add data to its end, and
381 AnyEvent::Handle will automatically try to get rid of it for you.
382
383 When data could be written and the write buffer is shorter then the low
384 water mark, the C<on_drain> callback will be invoked.
385
386 =over 4
387
388 =item $handle->on_drain ($cb)
389
390 Sets the C<on_drain> callback or clears it (see the description of
391 C<on_drain> in the constructor).
392
393 =cut
394
395 sub on_drain {
396 my ($self, $cb) = @_;
397
398 $self->{on_drain} = $cb;
399
400 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
402 }
403
404 =item $handle->push_write ($data)
405
406 Queues the given scalar to be written. You can push as much data as you
407 want (only limited by the available memory), as C<AnyEvent::Handle>
408 buffers it independently of the kernel.
409
410 =cut
411
412 sub _drain_wbuf {
413 my ($self) = @_;
414
415 if (!$self->{_ww} && length $self->{wbuf}) {
416
417 Scalar::Util::weaken $self;
418
419 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf};
421
422 if ($len >= 0) {
423 substr $self->{wbuf}, 0, $len, "";
424
425 $self->{_activity} = AnyEvent->now;
426
427 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf}
429 && $self->{on_drain};
430
431 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1);
434 }
435 };
436
437 # try to write data immediately
438 $cb->();
439
440 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
442 if length $self->{wbuf};
443 };
444 }
445
446 our %WH;
447
448 sub register_write_type($$) {
449 $WH{$_[0]} = $_[1];
450 }
451
452 sub push_write {
453 my $self = shift;
454
455 if (@_ > 1) {
456 my $type = shift;
457
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_);
460 }
461
462 if ($self->{filter_w}) {
463 $self->{filter_w}($self, \$_[0]);
464 } else {
465 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf;
467 }
468 }
469
470 =item $handle->push_write (type => @args)
471
472 Instead of formatting your data yourself, you can also let this module do
473 the job by specifying a type and type-specific arguments.
474
475 Predefined types are (if you have ideas for additional types, feel free to
476 drop by and tell us):
477
478 =over 4
479
480 =item netstring => $string
481
482 Formats the given value as netstring
483 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
484
485 =cut
486
487 register_write_type netstring => sub {
488 my ($self, $string) = @_;
489
490 sprintf "%d:%s,", (length $string), $string
491 };
492
493 =item packstring => $format, $data
494
495 An octet string prefixed with an encoded length. The encoding C<$format>
496 uses the same format as a Perl C<pack> format, but must specify a single
497 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
498 optional C<!>, C<< < >> or C<< > >> modifier).
499
500 =cut
501
502 register_write_type packstring => sub {
503 my ($self, $format, $string) = @_;
504
505 pack "$format/a", $string
506 };
507
508 =item json => $array_or_hashref
509
510 Encodes the given hash or array reference into a JSON object. Unless you
511 provide your own JSON object, this means it will be encoded to JSON text
512 in UTF-8.
513
514 JSON objects (and arrays) are self-delimiting, so you can write JSON at
515 one end of a handle and read them at the other end without using any
516 additional framing.
517
518 The generated JSON text is guaranteed not to contain any newlines: While
519 this module doesn't need delimiters after or between JSON texts to be
520 able to read them, many other languages depend on that.
521
522 A simple RPC protocol that interoperates easily with others is to send
523 JSON arrays (or objects, although arrays are usually the better choice as
524 they mimic how function argument passing works) and a newline after each
525 JSON text:
526
527 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
528 $handle->push_write ("\012");
529
530 An AnyEvent::Handle receiver would simply use the C<json> read type and
531 rely on the fact that the newline will be skipped as leading whitespace:
532
533 $handle->push_read (json => sub { my $array = $_[1]; ... });
534
535 Other languages could read single lines terminated by a newline and pass
536 this line into their JSON decoder of choice.
537
538 =cut
539
540 register_write_type json => sub {
541 my ($self, $ref) = @_;
542
543 require JSON;
544
545 $self->{json} ? $self->{json}->encode ($ref)
546 : JSON::encode_json ($ref)
547 };
548
549 =item storable => $reference
550
551 Freezes the given reference using L<Storable> and writes it to the
552 handle. Uses the C<nfreeze> format.
553
554 =cut
555
556 register_write_type storable => sub {
557 my ($self, $ref) = @_;
558
559 require Storable;
560
561 pack "w/a", Storable::nfreeze ($ref)
562 };
563
564 =back
565
566 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
567
568 This function (not method) lets you add your own types to C<push_write>.
569 Whenever the given C<type> is used, C<push_write> will invoke the code
570 reference with the handle object and the remaining arguments.
571
572 The code reference is supposed to return a single octet string that will
573 be appended to the write buffer.
574
575 Note that this is a function, and all types registered this way will be
576 global, so try to use unique names.
577
578 =cut
579
580 #############################################################################
581
582 =back
583
584 =head2 READ QUEUE
585
586 AnyEvent::Handle manages two queues per handle, one for writing and one
587 for reading.
588
589 The read queue is more complex than the write queue. It can be used in two
590 ways, the "simple" way, using only C<on_read> and the "complex" way, using
591 a queue.
592
593 In the simple case, you just install an C<on_read> callback and whenever
594 new data arrives, it will be called. You can then remove some data (if
595 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
596 or not.
597
598 In the more complex case, you want to queue multiple callbacks. In this
599 case, AnyEvent::Handle will call the first queued callback each time new
600 data arrives (also the first time it is queued) and removes it when it has
601 done its job (see C<push_read>, below).
602
603 This way you can, for example, push three line-reads, followed by reading
604 a chunk of data, and AnyEvent::Handle will execute them in order.
605
606 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
607 the specified number of bytes which give an XML datagram.
608
609 # in the default state, expect some header bytes
610 $handle->on_read (sub {
611 # some data is here, now queue the length-header-read (4 octets)
612 shift->unshift_read (chunk => 4, sub {
613 # header arrived, decode
614 my $len = unpack "N", $_[1];
615
616 # now read the payload
617 shift->unshift_read (chunk => $len, sub {
618 my $xml = $_[1];
619 # handle xml
620 });
621 });
622 });
623
624 Example 2: Implement a client for a protocol that replies either with
625 "OK" and another line or "ERROR" for one request, and 64 bytes for the
626 second request. Due tot he availability of a full queue, we can just
627 pipeline sending both requests and manipulate the queue as necessary in
628 the callbacks:
629
630 # request one
631 $handle->push_write ("request 1\015\012");
632
633 # we expect "ERROR" or "OK" as response, so push a line read
634 $handle->push_read (line => sub {
635 # if we got an "OK", we have to _prepend_ another line,
636 # so it will be read before the second request reads its 64 bytes
637 # which are already in the queue when this callback is called
638 # we don't do this in case we got an error
639 if ($_[1] eq "OK") {
640 $_[0]->unshift_read (line => sub {
641 my $response = $_[1];
642 ...
643 });
644 }
645 });
646
647 # request two
648 $handle->push_write ("request 2\015\012");
649
650 # simply read 64 bytes, always
651 $handle->push_read (chunk => 64, sub {
652 my $response = $_[1];
653 ...
654 });
655
656 =over 4
657
658 =cut
659
660 sub _drain_rbuf {
661 my ($self) = @_;
662
663 local $self->{_in_drain} = 1;
664
665 if (
666 defined $self->{rbuf_max}
667 && $self->{rbuf_max} < length $self->{rbuf}
668 ) {
669 return $self->_error (&Errno::ENOSPC, 1);
670 }
671
672 while () {
673 no strict 'refs';
674
675 my $len = length $self->{rbuf};
676
677 if (my $cb = shift @{ $self->{_queue} }) {
678 unless ($cb->($self)) {
679 if ($self->{_eof}) {
680 # no progress can be made (not enough data and no data forthcoming)
681 $self->_error (&Errno::EPIPE, 1), last;
682 }
683
684 unshift @{ $self->{_queue} }, $cb;
685 last;
686 }
687 } elsif ($self->{on_read}) {
688 last unless $len;
689
690 $self->{on_read}($self);
691
692 if (
693 $len == length $self->{rbuf} # if no data has been consumed
694 && !@{ $self->{_queue} } # and the queue is still empty
695 && $self->{on_read} # but we still have on_read
696 ) {
697 # no further data will arrive
698 # so no progress can be made
699 $self->_error (&Errno::EPIPE, 1), last
700 if $self->{_eof};
701
702 last; # more data might arrive
703 }
704 } else {
705 # read side becomes idle
706 delete $self->{_rw};
707 last;
708 }
709 }
710
711 $self->{on_eof}($self)
712 if $self->{_eof} && $self->{on_eof};
713
714 # may need to restart read watcher
715 unless ($self->{_rw}) {
716 $self->start_read
717 if $self->{on_read} || @{ $self->{_queue} };
718 }
719 }
720
721 =item $handle->on_read ($cb)
722
723 This replaces the currently set C<on_read> callback, or clears it (when
724 the new callback is C<undef>). See the description of C<on_read> in the
725 constructor.
726
727 =cut
728
729 sub on_read {
730 my ($self, $cb) = @_;
731
732 $self->{on_read} = $cb;
733 $self->_drain_rbuf if $cb && !$self->{_in_drain};
734 }
735
736 =item $handle->rbuf
737
738 Returns the read buffer (as a modifiable lvalue).
739
740 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
741 you want.
742
743 NOTE: The read buffer should only be used or modified if the C<on_read>,
744 C<push_read> or C<unshift_read> methods are used. The other read methods
745 automatically manage the read buffer.
746
747 =cut
748
749 sub rbuf : lvalue {
750 $_[0]{rbuf}
751 }
752
753 =item $handle->push_read ($cb)
754
755 =item $handle->unshift_read ($cb)
756
757 Append the given callback to the end of the queue (C<push_read>) or
758 prepend it (C<unshift_read>).
759
760 The callback is called each time some additional read data arrives.
761
762 It must check whether enough data is in the read buffer already.
763
764 If not enough data is available, it must return the empty list or a false
765 value, in which case it will be called repeatedly until enough data is
766 available (or an error condition is detected).
767
768 If enough data was available, then the callback must remove all data it is
769 interested in (which can be none at all) and return a true value. After returning
770 true, it will be removed from the queue.
771
772 =cut
773
774 our %RH;
775
776 sub register_read_type($$) {
777 $RH{$_[0]} = $_[1];
778 }
779
780 sub push_read {
781 my $self = shift;
782 my $cb = pop;
783
784 if (@_) {
785 my $type = shift;
786
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
788 ->($self, $cb, @_);
789 }
790
791 push @{ $self->{_queue} }, $cb;
792 $self->_drain_rbuf unless $self->{_in_drain};
793 }
794
795 sub unshift_read {
796 my $self = shift;
797 my $cb = pop;
798
799 if (@_) {
800 my $type = shift;
801
802 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
803 ->($self, $cb, @_);
804 }
805
806
807 unshift @{ $self->{_queue} }, $cb;
808 $self->_drain_rbuf unless $self->{_in_drain};
809 }
810
811 =item $handle->push_read (type => @args, $cb)
812
813 =item $handle->unshift_read (type => @args, $cb)
814
815 Instead of providing a callback that parses the data itself you can chose
816 between a number of predefined parsing formats, for chunks of data, lines
817 etc.
818
819 Predefined types are (if you have ideas for additional types, feel free to
820 drop by and tell us):
821
822 =over 4
823
824 =item chunk => $octets, $cb->($handle, $data)
825
826 Invoke the callback only once C<$octets> bytes have been read. Pass the
827 data read to the callback. The callback will never be called with less
828 data.
829
830 Example: read 2 bytes.
831
832 $handle->push_read (chunk => 2, sub {
833 warn "yay ", unpack "H*", $_[1];
834 });
835
836 =cut
837
838 register_read_type chunk => sub {
839 my ($self, $cb, $len) = @_;
840
841 sub {
842 $len <= length $_[0]{rbuf} or return;
843 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 1
845 }
846 };
847
848 # compatibility with older API
849 sub push_read_chunk {
850 $_[0]->push_read (chunk => $_[1], $_[2]);
851 }
852
853 sub unshift_read_chunk {
854 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855 }
856
857 =item line => [$eol, ]$cb->($handle, $line, $eol)
858
859 The callback will be called only once a full line (including the end of
860 line marker, C<$eol>) has been read. This line (excluding the end of line
861 marker) will be passed to the callback as second argument (C<$line>), and
862 the end of line marker as the third argument (C<$eol>).
863
864 The end of line marker, C<$eol>, can be either a string, in which case it
865 will be interpreted as a fixed record end marker, or it can be a regex
866 object (e.g. created by C<qr>), in which case it is interpreted as a
867 regular expression.
868
869 The end of line marker argument C<$eol> is optional, if it is missing (NOT
870 undef), then C<qr|\015?\012|> is used (which is good for most internet
871 protocols).
872
873 Partial lines at the end of the stream will never be returned, as they are
874 not marked by the end of line marker.
875
876 =cut
877
878 register_read_type line => sub {
879 my ($self, $cb, $eol) = @_;
880
881 $eol = qr|(\015?\012)| if @_ < 3;
882 $eol = quotemeta $eol unless ref $eol;
883 $eol = qr|^(.*?)($eol)|s;
884
885 sub {
886 $_[0]{rbuf} =~ s/$eol// or return;
887
888 $cb->($_[0], $1, $2);
889 1
890 }
891 };
892
893 # compatibility with older API
894 sub push_read_line {
895 my $self = shift;
896 $self->push_read (line => @_);
897 }
898
899 sub unshift_read_line {
900 my $self = shift;
901 $self->unshift_read (line => @_);
902 }
903
904 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905
906 Makes a regex match against the regex object C<$accept> and returns
907 everything up to and including the match.
908
909 Example: read a single line terminated by '\n'.
910
911 $handle->push_read (regex => qr<\n>, sub { ... });
912
913 If C<$reject> is given and not undef, then it determines when the data is
914 to be rejected: it is matched against the data when the C<$accept> regex
915 does not match and generates an C<EBADMSG> error when it matches. This is
916 useful to quickly reject wrong data (to avoid waiting for a timeout or a
917 receive buffer overflow).
918
919 Example: expect a single decimal number followed by whitespace, reject
920 anything else (not the use of an anchor).
921
922 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
923
924 If C<$skip> is given and not C<undef>, then it will be matched against
925 the receive buffer when neither C<$accept> nor C<$reject> match,
926 and everything preceding and including the match will be accepted
927 unconditionally. This is useful to skip large amounts of data that you
928 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
929 have to start matching from the beginning. This is purely an optimisation
930 and is usually worth only when you expect more than a few kilobytes.
931
932 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
933 expect the header to be very large (it isn't in practise, but...), we use
934 a skip regex to skip initial portions. The skip regex is tricky in that
935 it only accepts something not ending in either \015 or \012, as these are
936 required for the accept regex.
937
938 $handle->push_read (regex =>
939 qr<\015\012\015\012>,
940 undef, # no reject
941 qr<^.*[^\015\012]>,
942 sub { ... });
943
944 =cut
945
946 register_read_type regex => sub {
947 my ($self, $cb, $accept, $reject, $skip) = @_;
948
949 my $data;
950 my $rbuf = \$self->{rbuf};
951
952 sub {
953 # accept
954 if ($$rbuf =~ $accept) {
955 $data .= substr $$rbuf, 0, $+[0], "";
956 $cb->($self, $data);
957 return 1;
958 }
959
960 # reject
961 if ($reject && $$rbuf =~ $reject) {
962 $self->_error (&Errno::EBADMSG);
963 }
964
965 # skip
966 if ($skip && $$rbuf =~ $skip) {
967 $data .= substr $$rbuf, 0, $+[0], "";
968 }
969
970 ()
971 }
972 };
973
974 =item netstring => $cb->($handle, $string)
975
976 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
977
978 Throws an error with C<$!> set to EBADMSG on format violations.
979
980 =cut
981
982 register_read_type netstring => sub {
983 my ($self, $cb) = @_;
984
985 sub {
986 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987 if ($_[0]{rbuf} =~ /[^0-9]/) {
988 $self->_error (&Errno::EBADMSG);
989 }
990 return;
991 }
992
993 my $len = $1;
994
995 $self->unshift_read (chunk => $len, sub {
996 my $string = $_[1];
997 $_[0]->unshift_read (chunk => 1, sub {
998 if ($_[1] eq ",") {
999 $cb->($_[0], $string);
1000 } else {
1001 $self->_error (&Errno::EBADMSG);
1002 }
1003 });
1004 });
1005
1006 1
1007 }
1008 };
1009
1010 =item packstring => $format, $cb->($handle, $string)
1011
1012 An octet string prefixed with an encoded length. The encoding C<$format>
1013 uses the same format as a Perl C<pack> format, but must specify a single
1014 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015 optional C<!>, C<< < >> or C<< > >> modifier).
1016
1017 DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1018
1019 Example: read a block of data prefixed by its length in BER-encoded
1020 format (very efficient).
1021
1022 $handle->push_read (packstring => "w", sub {
1023 my ($handle, $data) = @_;
1024 });
1025
1026 =cut
1027
1028 register_read_type packstring => sub {
1029 my ($self, $cb, $format) = @_;
1030
1031 sub {
1032 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1034 or return;
1035
1036 # remove prefix
1037 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1038
1039 # read rest
1040 $_[0]->unshift_read (chunk => $len, $cb);
1041
1042 1
1043 }
1044 };
1045
1046 =item json => $cb->($handle, $hash_or_arrayref)
1047
1048 Reads a JSON object or array, decodes it and passes it to the callback.
1049
1050 If a C<json> object was passed to the constructor, then that will be used
1051 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052
1053 This read type uses the incremental parser available with JSON version
1054 2.09 (and JSON::XS version 2.2) and above. You have to provide a
1055 dependency on your own: this module will load the JSON module, but
1056 AnyEvent does not depend on it itself.
1057
1058 Since JSON texts are fully self-delimiting, the C<json> read and write
1059 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1060 the C<json> write type description, above, for an actual example.
1061
1062 =cut
1063
1064 register_read_type json => sub {
1065 my ($self, $cb) = @_;
1066
1067 require JSON;
1068
1069 my $data;
1070 my $rbuf = \$self->{rbuf};
1071
1072 my $json = $self->{json} ||= JSON->new->utf8;
1073
1074 sub {
1075 my $ref = $json->incr_parse ($self->{rbuf});
1076
1077 if ($ref) {
1078 $self->{rbuf} = $json->incr_text;
1079 $json->incr_text = "";
1080 $cb->($self, $ref);
1081
1082 1
1083 } else {
1084 $self->{rbuf} = "";
1085 ()
1086 }
1087 }
1088 };
1089
1090 =item storable => $cb->($handle, $ref)
1091
1092 Deserialises a L<Storable> frozen representation as written by the
1093 C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1094 data).
1095
1096 Raises C<EBADMSG> error if the data could not be decoded.
1097
1098 =cut
1099
1100 register_read_type storable => sub {
1101 my ($self, $cb) = @_;
1102
1103 require Storable;
1104
1105 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1108 or return;
1109
1110 # remove prefix
1111 substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1112
1113 # read rest
1114 $_[0]->unshift_read (chunk => $len, sub {
1115 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116 $cb->($_[0], $ref);
1117 } else {
1118 $self->_error (&Errno::EBADMSG);
1119 }
1120 });
1121 }
1122 };
1123
1124 =back
1125
1126 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1127
1128 This function (not method) lets you add your own types to C<push_read>.
1129
1130 Whenever the given C<type> is used, C<push_read> will invoke the code
1131 reference with the handle object, the callback and the remaining
1132 arguments.
1133
1134 The code reference is supposed to return a callback (usually a closure)
1135 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1136
1137 It should invoke the passed callback when it is done reading (remember to
1138 pass C<$handle> as first argument as all other callbacks do that).
1139
1140 Note that this is a function, and all types registered this way will be
1141 global, so try to use unique names.
1142
1143 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1144 search for C<register_read_type>)).
1145
1146 =item $handle->stop_read
1147
1148 =item $handle->start_read
1149
1150 In rare cases you actually do not want to read anything from the
1151 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1152 any queued callbacks will be executed then. To start reading again, call
1153 C<start_read>.
1154
1155 Note that AnyEvent::Handle will automatically C<start_read> for you when
1156 you change the C<on_read> callback or push/unshift a read callback, and it
1157 will automatically C<stop_read> for you when neither C<on_read> is set nor
1158 there are any read requests in the queue.
1159
1160 =cut
1161
1162 sub stop_read {
1163 my ($self) = @_;
1164
1165 delete $self->{_rw};
1166 }
1167
1168 sub start_read {
1169 my ($self) = @_;
1170
1171 unless ($self->{_rw} || $self->{_eof}) {
1172 Scalar::Util::weaken $self;
1173
1174 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1175 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1176 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1177
1178 if ($len > 0) {
1179 $self->{_activity} = AnyEvent->now;
1180
1181 $self->{filter_r}
1182 ? $self->{filter_r}($self, $rbuf)
1183 : $self->{_in_drain} || $self->_drain_rbuf;
1184
1185 } elsif (defined $len) {
1186 delete $self->{_rw};
1187 $self->{_eof} = 1;
1188 $self->_drain_rbuf unless $self->{_in_drain};
1189
1190 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1191 return $self->_error ($!, 1);
1192 }
1193 });
1194 }
1195 }
1196
1197 sub _dotls {
1198 my ($self) = @_;
1199
1200 my $buf;
1201
1202 if (length $self->{_tls_wbuf}) {
1203 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204 substr $self->{_tls_wbuf}, 0, $len, "";
1205 }
1206 }
1207
1208 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 $self->{wbuf} .= $buf;
1210 $self->_drain_wbuf;
1211 }
1212
1213 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1214 if (length $buf) {
1215 $self->{rbuf} .= $buf;
1216 $self->_drain_rbuf unless $self->{_in_drain};
1217 } else {
1218 # let's treat SSL-eof as we treat normal EOF
1219 $self->{_eof} = 1;
1220 $self->_shutdown;
1221 return;
1222 }
1223 }
1224
1225 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226
1227 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 return $self->_error ($!, 1);
1230 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 return $self->_error (&Errno::EIO, 1);
1232 }
1233
1234 # all others are fine for our purposes
1235 }
1236 }
1237
1238 =item $handle->starttls ($tls[, $tls_ctx])
1239
1240 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241 object is created, you can also do that at a later time by calling
1242 C<starttls>.
1243
1244 The first argument is the same as the C<tls> constructor argument (either
1245 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246
1247 The second argument is the optional C<Net::SSLeay::CTX> object that is
1248 used when AnyEvent::Handle has to create its own TLS connection object.
1249
1250 The TLS connection object will end up in C<< $handle->{tls} >> after this
1251 call and can be used or changed to your liking. Note that the handshake
1252 might have already started when this function returns.
1253
1254 =cut
1255
1256 sub starttls {
1257 my ($self, $ssl, $ctx) = @_;
1258
1259 $self->stoptls;
1260
1261 if ($ssl eq "accept") {
1262 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1263 Net::SSLeay::set_accept_state ($ssl);
1264 } elsif ($ssl eq "connect") {
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1266 Net::SSLeay::set_connect_state ($ssl);
1267 }
1268
1269 $self->{tls} = $ssl;
1270
1271 # basically, this is deep magic (because SSL_read should have the same issues)
1272 # but the openssl maintainers basically said: "trust us, it just works".
1273 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274 # and mismaintained ssleay-module doesn't even offer them).
1275 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1276 Net::SSLeay::CTX_set_mode ($self->{tls},
1277 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1279
1280 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282
1283 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1284
1285 $self->{filter_w} = sub {
1286 $_[0]{_tls_wbuf} .= ${$_[1]};
1287 &_dotls;
1288 };
1289 $self->{filter_r} = sub {
1290 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 &_dotls;
1292 };
1293 }
1294
1295 =item $handle->stoptls
1296
1297 Destroys the SSL connection, if any. Partial read or write data will be
1298 lost.
1299
1300 =cut
1301
1302 sub stoptls {
1303 my ($self) = @_;
1304
1305 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1306
1307 delete $self->{_rbio};
1308 delete $self->{_wbio};
1309 delete $self->{_tls_wbuf};
1310 delete $self->{filter_r};
1311 delete $self->{filter_w};
1312 }
1313
1314 sub DESTROY {
1315 my $self = shift;
1316
1317 $self->stoptls;
1318
1319 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320
1321 if ($linger && length $self->{wbuf}) {
1322 my $fh = delete $self->{fh};
1323 my $wbuf = delete $self->{wbuf};
1324
1325 my @linger;
1326
1327 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1328 my $len = syswrite $fh, $wbuf, length $wbuf;
1329
1330 if ($len > 0) {
1331 substr $wbuf, 0, $len, "";
1332 } else {
1333 @linger = (); # end
1334 }
1335 });
1336 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1337 @linger = ();
1338 });
1339 }
1340 }
1341
1342 =item AnyEvent::Handle::TLS_CTX
1343
1344 This function creates and returns the Net::SSLeay::CTX object used by
1345 default for TLS mode.
1346
1347 The context is created like this:
1348
1349 Net::SSLeay::load_error_strings;
1350 Net::SSLeay::SSLeay_add_ssl_algorithms;
1351 Net::SSLeay::randomize;
1352
1353 my $CTX = Net::SSLeay::CTX_new;
1354
1355 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356
1357 =cut
1358
1359 our $TLS_CTX;
1360
1361 sub TLS_CTX() {
1362 $TLS_CTX || do {
1363 require Net::SSLeay;
1364
1365 Net::SSLeay::load_error_strings ();
1366 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367 Net::SSLeay::randomize ();
1368
1369 $TLS_CTX = Net::SSLeay::CTX_new ();
1370
1371 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372
1373 $TLS_CTX
1374 }
1375 }
1376
1377 =back
1378
1379 =head1 SUBCLASSING AnyEvent::Handle
1380
1381 In many cases, you might want to subclass AnyEvent::Handle.
1382
1383 To make this easier, a given version of AnyEvent::Handle uses these
1384 conventions:
1385
1386 =over 4
1387
1388 =item * all constructor arguments become object members.
1389
1390 At least initially, when you pass a C<tls>-argument to the constructor it
1391 will end up in C<< $handle->{tls} >>. Those members might be changes or
1392 mutated later on (for example C<tls> will hold the TLS connection object).
1393
1394 =item * other object member names are prefixed with an C<_>.
1395
1396 All object members not explicitly documented (internal use) are prefixed
1397 with an underscore character, so the remaining non-C<_>-namespace is free
1398 for use for subclasses.
1399
1400 =item * all members not documented here and not prefixed with an underscore
1401 are free to use in subclasses.
1402
1403 Of course, new versions of AnyEvent::Handle may introduce more "public"
1404 member variables, but thats just life, at least it is documented.
1405
1406 =back
1407
1408 =head1 AUTHOR
1409
1410 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1411
1412 =cut
1413
1414 1; # End of AnyEvent::Handle