ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.43 by root, Wed May 28 23:57:38 2008 UTC vs.
Revision 1.158 by root, Fri Jul 24 08:40:35 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12use Time::HiRes qw(time); 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
13 9
14=head1 NAME 10=head1 NAME
15 11
16AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
17 13
18=cut 14=cut
19 15
20our $VERSION = '0.04'; 16our $VERSION = 4.86;
21 17
22=head1 SYNOPSIS 18=head1 SYNOPSIS
23 19
24 use AnyEvent; 20 use AnyEvent;
25 use AnyEvent::Handle; 21 use AnyEvent::Handle;
26 22
27 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
28 24
29 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
30 AnyEvent::Handle->new (
31 fh => \*STDIN, 26 fh => \*STDIN,
32 on_eof => sub { 27 on_error => sub {
33 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
34 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
35 ); 32 );
36 33
37 # send some request line 34 # send some request line
38 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
39 36
40 # read the response line 37 # read the response line
41 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
42 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
43 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
44 $cv->send; 41 $cv->send;
45 }); 42 });
46 43
47 $cv->recv; 44 $cv->recv;
48 45
50 47
51This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
52filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles. For utility functions for doing non-blocking connects and accepts
53on sockets see L<AnyEvent::Util>. 50on sockets see L<AnyEvent::Util>.
54 51
52The L<AnyEvent::Intro> tutorial contains some well-documented
53AnyEvent::Handle examples.
54
55In the following, when the documentation refers to of "bytes" then this 55In the following, when the documentation refers to of "bytes" then this
56means characters. As sysread and syswrite are used for all I/O, their 56means characters. As sysread and syswrite are used for all I/O, their
57treatment of characters applies to this module as well. 57treatment of characters applies to this module as well.
58 58
59All callbacks will be invoked with the handle object as their first 59All callbacks will be invoked with the handle object as their first
61 61
62=head1 METHODS 62=head1 METHODS
63 63
64=over 4 64=over 4
65 65
66=item B<new (%args)> 66=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
67 67
68The constructor supports these arguments (all as key => value pairs). 68The constructor supports these arguments (all as C<< key => value >> pairs).
69 69
70=over 4 70=over 4
71 71
72=item fh => $filehandle [MANDATORY] 72=item fh => $filehandle [MANDATORY]
73 73
74#=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75
74The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
75
76NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
77AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
80
81#=item connect => [$host, $service]
82#
83# You have to specify either this parameter, or C<connect>, below.
84#Try to connect to the specified host and service (port), using
85#C<AnyEvent::Socket::tcp_connect>.
86#
87#When this
78 88
79=item on_eof => $cb->($handle) 89=item on_eof => $cb->($handle)
80 90
81Set the callback to be called on EOF. 91Set the callback to be called when an end-of-file condition is detected,
92i.e. in the case of a socket, when the other side has closed the
93connection cleanly, and there are no outstanding read requests in the
94queue (if there are read requests, then an EOF counts as an unexpected
95connection close and will be flagged as an error).
82 96
83While not mandatory, it is highly recommended to set an eof callback, 97For sockets, this just means that the other side has stopped sending data,
84otherwise you might end up with a closed socket while you are still 98you can still try to write data, and, in fact, one can return from the EOF
85waiting for data. 99callback and continue writing data, as only the read part has been shut
100down.
86 101
102If an EOF condition has been detected but no C<on_eof> callback has been
103set, then a fatal error will be raised with C<$!> set to <0>.
104
87=item on_error => $cb->($handle) 105=item on_error => $cb->($handle, $fatal, $message)
88 106
89This is the fatal error callback, that is called when, well, a fatal error 107This is the error callback, which is called when, well, some error
90occurs, such as not being able to resolve the hostname, failure to connect 108occured, such as not being able to resolve the hostname, failure to
91or a read error. 109connect or a read error.
92 110
93The object will not be in a usable state when this callback has been 111Some errors are fatal (which is indicated by C<$fatal> being true). On
94called. 112fatal errors the handle object will be destroyed (by a call to C<< ->
113destroy >>) after invoking the error callback (which means you are free to
114examine the handle object). Examples of fatal errors are an EOF condition
115with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
116
117AnyEvent::Handle tries to find an appropriate error code for you to check
118against, but in some cases (TLS errors), this does not work well. It is
119recommended to always output the C<$message> argument in human-readable
120error messages (it's usually the same as C<"$!">).
121
122Non-fatal errors can be retried by simply returning, but it is recommended
123to simply ignore this parameter and instead abondon the handle object
124when this callback is invoked. Examples of non-fatal errors are timeouts
125C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
95 126
96On callback entrance, the value of C<$!> contains the operating system 127On callback entrance, the value of C<$!> contains the operating system
97error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 128error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
98 129C<EPROTO>).
99The callback should throw an exception. If it returns, then
100AnyEvent::Handle will C<croak> for you.
101 130
102While not mandatory, it is I<highly> recommended to set this callback, as 131While not mandatory, it is I<highly> recommended to set this callback, as
103you will not be notified of errors otherwise. The default simply calls 132you will not be notified of errors otherwise. The default simply calls
104die. 133C<croak>.
105 134
106=item on_read => $cb->($handle) 135=item on_read => $cb->($handle)
107 136
108This sets the default read callback, which is called when data arrives 137This sets the default read callback, which is called when data arrives
109and no read request is in the queue. 138and no read request is in the queue (unlike read queue callbacks, this
139callback will only be called when at least one octet of data is in the
140read buffer).
110 141
111To access (and remove data from) the read buffer, use the C<< ->rbuf >> 142To access (and remove data from) the read buffer, use the C<< ->rbuf >>
112method or access the C<$handle->{rbuf}> member directly. 143method or access the C<< $handle->{rbuf} >> member directly. Note that you
144must not enlarge or modify the read buffer, you can only remove data at
145the beginning from it.
113 146
114When an EOF condition is detected then AnyEvent::Handle will first try to 147When an EOF condition is detected then AnyEvent::Handle will first try to
115feed all the remaining data to the queued callbacks and C<on_read> before 148feed all the remaining data to the queued callbacks and C<on_read> before
116calling the C<on_eof> callback. If no progress can be made, then a fatal 149calling the C<on_eof> callback. If no progress can be made, then a fatal
117error will be raised (with C<$!> set to C<EPIPE>). 150error will be raised (with C<$!> set to C<EPIPE>).
118 151
152Note that, unlike requests in the read queue, an C<on_read> callback
153doesn't mean you I<require> some data: if there is an EOF and there
154are outstanding read requests then an error will be flagged. With an
155C<on_read> callback, the C<on_eof> callback will be invoked.
156
119=item on_drain => $cb->($handle) 157=item on_drain => $cb->($handle)
120 158
121This sets the callback that is called when the write buffer becomes empty 159This sets the callback that is called when the write buffer becomes empty
122(or when the callback is set and the buffer is empty already). 160(or when the callback is set and the buffer is empty already).
123 161
124To append to the write buffer, use the C<< ->push_write >> method. 162To append to the write buffer, use the C<< ->push_write >> method.
163
164This callback is useful when you don't want to put all of your write data
165into the queue at once, for example, when you want to write the contents
166of some file to the socket you might not want to read the whole file into
167memory and push it into the queue, but instead only read more data from
168the file when the write queue becomes empty.
125 169
126=item timeout => $fractional_seconds 170=item timeout => $fractional_seconds
127 171
128If non-zero, then this enables an "inactivity" timeout: whenever this many 172If non-zero, then this enables an "inactivity" timeout: whenever this many
129seconds pass without a successful read or write on the underlying file 173seconds pass without a successful read or write on the underlying file
130handle, the C<on_timeout> callback will be invoked (and if that one is 174handle, the C<on_timeout> callback will be invoked (and if that one is
131missing, an C<ETIMEDOUT> errror will be raised). 175missing, a non-fatal C<ETIMEDOUT> error will be raised).
132 176
133Note that timeout processing is also active when you currently do not have 177Note that timeout processing is also active when you currently do not have
134any outstanding read or write requests: If you plan to keep the connection 178any outstanding read or write requests: If you plan to keep the connection
135idle then you should disable the timout temporarily or ignore the timeout 179idle then you should disable the timout temporarily or ignore the timeout
136in the C<on_timeout> callback. 180in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
181restart the timeout.
137 182
138Zero (the default) disables this timeout. 183Zero (the default) disables this timeout.
139 184
140=item on_timeout => $cb->($handle) 185=item on_timeout => $cb->($handle)
141 186
145 190
146=item rbuf_max => <bytes> 191=item rbuf_max => <bytes>
147 192
148If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 193If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
149when the read buffer ever (strictly) exceeds this size. This is useful to 194when the read buffer ever (strictly) exceeds this size. This is useful to
150avoid denial-of-service attacks. 195avoid some forms of denial-of-service attacks.
151 196
152For example, a server accepting connections from untrusted sources should 197For example, a server accepting connections from untrusted sources should
153be configured to accept only so-and-so much data that it cannot act on 198be configured to accept only so-and-so much data that it cannot act on
154(for example, when expecting a line, an attacker could send an unlimited 199(for example, when expecting a line, an attacker could send an unlimited
155amount of data without a callback ever being called as long as the line 200amount of data without a callback ever being called as long as the line
156isn't finished). 201isn't finished).
157 202
203=item autocork => <boolean>
204
205When disabled (the default), then C<push_write> will try to immediately
206write the data to the handle, if possible. This avoids having to register
207a write watcher and wait for the next event loop iteration, but can
208be inefficient if you write multiple small chunks (on the wire, this
209disadvantage is usually avoided by your kernel's nagle algorithm, see
210C<no_delay>, but this option can save costly syscalls).
211
212When enabled, then writes will always be queued till the next event loop
213iteration. This is efficient when you do many small writes per iteration,
214but less efficient when you do a single write only per iteration (or when
215the write buffer often is full). It also increases write latency.
216
217=item no_delay => <boolean>
218
219When doing small writes on sockets, your operating system kernel might
220wait a bit for more data before actually sending it out. This is called
221the Nagle algorithm, and usually it is beneficial.
222
223In some situations you want as low a delay as possible, which can be
224accomplishd by setting this option to a true value.
225
226The default is your opertaing system's default behaviour (most likely
227enabled), this option explicitly enables or disables it, if possible.
228
158=item read_size => <bytes> 229=item read_size => <bytes>
159 230
160The default read block size (the amount of bytes this module will try to read 231The default read block size (the amount of bytes this module will
161on each [loop iteration). Default: C<4096>. 232try to read during each loop iteration, which affects memory
233requirements). Default: C<8192>.
162 234
163=item low_water_mark => <bytes> 235=item low_water_mark => <bytes>
164 236
165Sets the amount of bytes (default: C<0>) that make up an "empty" write 237Sets the amount of bytes (default: C<0>) that make up an "empty" write
166buffer: If the write reaches this size or gets even samller it is 238buffer: If the write reaches this size or gets even samller it is
167considered empty. 239considered empty.
168 240
241Sometimes it can be beneficial (for performance reasons) to add data to
242the write buffer before it is fully drained, but this is a rare case, as
243the operating system kernel usually buffers data as well, so the default
244is good in almost all cases.
245
246=item linger => <seconds>
247
248If non-zero (default: C<3600>), then the destructor of the
249AnyEvent::Handle object will check whether there is still outstanding
250write data and will install a watcher that will write this data to the
251socket. No errors will be reported (this mostly matches how the operating
252system treats outstanding data at socket close time).
253
254This will not work for partial TLS data that could not be encoded
255yet. This data will be lost. Calling the C<stoptls> method in time might
256help.
257
258=item peername => $string
259
260A string used to identify the remote site - usually the DNS hostname
261(I<not> IDN!) used to create the connection, rarely the IP address.
262
263Apart from being useful in error messages, this string is also used in TLS
264peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
265verification will be skipped when C<peername> is not specified or
266C<undef>.
267
169=item tls => "accept" | "connect" | Net::SSLeay::SSL object 268=item tls => "accept" | "connect" | Net::SSLeay::SSL object
170 269
171When this parameter is given, it enables TLS (SSL) mode, that means it 270When this parameter is given, it enables TLS (SSL) mode, that means
172will start making tls handshake and will transparently encrypt/decrypt 271AnyEvent will start a TLS handshake as soon as the conenction has been
173data. 272established and will transparently encrypt/decrypt data afterwards.
273
274All TLS protocol errors will be signalled as C<EPROTO>, with an
275appropriate error message.
174 276
175TLS mode requires Net::SSLeay to be installed (it will be loaded 277TLS mode requires Net::SSLeay to be installed (it will be loaded
176automatically when you try to create a TLS handle). 278automatically when you try to create a TLS handle): this module doesn't
279have a dependency on that module, so if your module requires it, you have
280to add the dependency yourself.
177 281
178For the TLS server side, use C<accept>, and for the TLS client side of a 282Unlike TCP, TLS has a server and client side: for the TLS server side, use
179connection, use C<connect> mode. 283C<accept>, and for the TLS client side of a connection, use C<connect>
284mode.
180 285
181You can also provide your own TLS connection object, but you have 286You can also provide your own TLS connection object, but you have
182to make sure that you call either C<Net::SSLeay::set_connect_state> 287to make sure that you call either C<Net::SSLeay::set_connect_state>
183or C<Net::SSLeay::set_accept_state> on it before you pass it to 288or C<Net::SSLeay::set_accept_state> on it before you pass it to
184AnyEvent::Handle. 289AnyEvent::Handle. Also, this module will take ownership of this connection
290object.
185 291
292At some future point, AnyEvent::Handle might switch to another TLS
293implementation, then the option to use your own session object will go
294away.
295
296B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
297passing in the wrong integer will lead to certain crash. This most often
298happens when one uses a stylish C<< tls => 1 >> and is surprised about the
299segmentation fault.
300
186See the C<starttls> method if you need to start TLs negotiation later. 301See the C<< ->starttls >> method for when need to start TLS negotiation later.
187 302
188=item tls_ctx => $ssl_ctx 303=item tls_ctx => $anyevent_tls
189 304
190Use the given Net::SSLeay::CTX object to create the new TLS connection 305Use the given C<AnyEvent::TLS> object to create the new TLS connection
191(unless a connection object was specified directly). If this parameter is 306(unless a connection object was specified directly). If this parameter is
192missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 307missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
193 308
309Instead of an object, you can also specify a hash reference with C<< key
310=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
311new TLS context object.
312
313=item on_starttls => $cb->($handle, $success[, $error_message])
314
315This callback will be invoked when the TLS/SSL handshake has finished. If
316C<$success> is true, then the TLS handshake succeeded, otherwise it failed
317(C<on_stoptls> will not be called in this case).
318
319The session in C<< $handle->{tls} >> can still be examined in this
320callback, even when the handshake was not successful.
321
322TLS handshake failures will not cause C<on_error> to be invoked when this
323callback is in effect, instead, the error message will be passed to C<on_starttls>.
324
325Without this callback, handshake failures lead to C<on_error> being
326called, as normal.
327
328Note that you cannot call C<starttls> right again in this callback. If you
329need to do that, start an zero-second timer instead whose callback can
330then call C<< ->starttls >> again.
331
332=item on_stoptls => $cb->($handle)
333
334When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
335set, then it will be invoked after freeing the TLS session. If it is not,
336then a TLS shutdown condition will be treated like a normal EOF condition
337on the handle.
338
339The session in C<< $handle->{tls} >> can still be examined in this
340callback.
341
342This callback will only be called on TLS shutdowns, not when the
343underlying handle signals EOF.
344
194=item json => JSON or JSON::XS object 345=item json => JSON or JSON::XS object
195 346
196This is the json coder object used by the C<json> read and write types. 347This is the json coder object used by the C<json> read and write types.
197 348
198If you don't supply it, then AnyEvent::Handle will create and use a 349If you don't supply it, then AnyEvent::Handle will create and use a
199suitable one, which will write and expect UTF-8 encoded JSON texts. 350suitable one (on demand), which will write and expect UTF-8 encoded JSON
351texts.
200 352
201Note that you are responsible to depend on the JSON module if you want to 353Note that you are responsible to depend on the JSON module if you want to
202use this functionality, as AnyEvent does not have a dependency itself. 354use this functionality, as AnyEvent does not have a dependency itself.
203 355
204=item filter_r => $cb
205
206=item filter_w => $cb
207
208These exist, but are undocumented at this time.
209
210=back 356=back
211 357
212=cut 358=cut
213 359
214sub new { 360sub new {
215 my $class = shift; 361 my $class = shift;
216
217 my $self = bless { @_ }, $class; 362 my $self = bless { @_ }, $class;
218 363
219 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 364 $self->{fh} or Carp::croak "mandatory argument fh is missing";
220 365
221 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 366 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
222 367
223 if ($self->{tls}) { 368 $self->{_activity} = AnyEvent->now;
224 require Net::SSLeay; 369 $self->_timeout;
370
371 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
372
225 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 373 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
226 } 374 if $self->{tls};
227 375
228# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
229# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
230# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
231 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 376 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
232 377
233 $self->{_activity} = time;
234 $self->_timeout;
235
236 $self->start_read; 378 $self->start_read
379 if $self->{on_read};
237 380
238 $self 381 $self->{fh} && $self
239} 382}
240 383
241sub _shutdown { 384#sub _shutdown {
242 my ($self) = @_; 385# my ($self) = @_;
386#
387# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
388# $self->{_eof} = 1; # tell starttls et. al to stop trying
389#
390# &_freetls;
391#}
243 392
244 delete $self->{_rw};
245 delete $self->{_ww};
246 delete $self->{fh};
247}
248
249sub error { 393sub _error {
250 my ($self) = @_; 394 my ($self, $errno, $fatal, $message) = @_;
251 395
252 { 396 $! = $errno;
253 local $!; 397 $message ||= "$!";
254 $self->_shutdown;
255 }
256 398
257 $self->{on_error}($self)
258 if $self->{on_error}; 399 if ($self->{on_error}) {
259 400 $self->{on_error}($self, $fatal, $message);
401 $self->destroy if $fatal;
402 } elsif ($self->{fh}) {
403 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 404 Carp::croak "AnyEvent::Handle uncaught error: $message";
405 }
261} 406}
262 407
263=item $fh = $handle->fh 408=item $fh = $handle->fh
264 409
265This method returns the file handle of the L<AnyEvent::Handle> object. 410This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 411
267=cut 412=cut
268 413
269sub fh { $_[0]{fh} } 414sub fh { $_[0]{fh} }
270 415
288 $_[0]{on_eof} = $_[1]; 433 $_[0]{on_eof} = $_[1];
289} 434}
290 435
291=item $handle->on_timeout ($cb) 436=item $handle->on_timeout ($cb)
292 437
293Replace the current C<on_timeout> callback, or disables the callback 438Replace the current C<on_timeout> callback, or disables the callback (but
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 439not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
295argument. 440argument and method.
296 441
297=cut 442=cut
298 443
299sub on_timeout { 444sub on_timeout {
300 $_[0]{on_timeout} = $_[1]; 445 $_[0]{on_timeout} = $_[1];
446}
447
448=item $handle->autocork ($boolean)
449
450Enables or disables the current autocork behaviour (see C<autocork>
451constructor argument). Changes will only take effect on the next write.
452
453=cut
454
455sub autocork {
456 $_[0]{autocork} = $_[1];
457}
458
459=item $handle->no_delay ($boolean)
460
461Enables or disables the C<no_delay> setting (see constructor argument of
462the same name for details).
463
464=cut
465
466sub no_delay {
467 $_[0]{no_delay} = $_[1];
468
469 eval {
470 local $SIG{__DIE__};
471 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
472 };
473}
474
475=item $handle->on_starttls ($cb)
476
477Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
478
479=cut
480
481sub on_starttls {
482 $_[0]{on_starttls} = $_[1];
483}
484
485=item $handle->on_stoptls ($cb)
486
487Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
488
489=cut
490
491sub on_starttls {
492 $_[0]{on_stoptls} = $_[1];
301} 493}
302 494
303############################################################################# 495#############################################################################
304 496
305=item $handle->timeout ($seconds) 497=item $handle->timeout ($seconds)
319# also check for time-outs 511# also check for time-outs
320sub _timeout { 512sub _timeout {
321 my ($self) = @_; 513 my ($self) = @_;
322 514
323 if ($self->{timeout}) { 515 if ($self->{timeout}) {
324 my $NOW = time; 516 my $NOW = AnyEvent->now;
325 517
326 # when would the timeout trigger? 518 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 519 my $after = $self->{_activity} + $self->{timeout} - $NOW;
328
329 warn "next to in $after\n";#d#
330 520
331 # now or in the past already? 521 # now or in the past already?
332 if ($after <= 0) { 522 if ($after <= 0) {
333 $self->{_activity} = $NOW; 523 $self->{_activity} = $NOW;
334 524
335 if ($self->{on_timeout}) { 525 if ($self->{on_timeout}) {
336 $self->{on_timeout}->($self); 526 $self->{on_timeout}($self);
337 } else { 527 } else {
338 $! = Errno::ETIMEDOUT; 528 $self->_error (Errno::ETIMEDOUT);
339 $self->error;
340 } 529 }
341 530
342 # callbakx could have changed timeout value, optimise 531 # callback could have changed timeout value, optimise
343 return unless $self->{timeout}; 532 return unless $self->{timeout};
344 533
345 # calculate new after 534 # calculate new after
346 $after = $self->{timeout}; 535 $after = $self->{timeout};
347 } 536 }
348 537
349 Scalar::Util::weaken $self; 538 Scalar::Util::weaken $self;
539 return unless $self; # ->error could have destroyed $self
350 540
351 warn "after $after\n";#d#
352 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 541 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
353 delete $self->{_tw}; 542 delete $self->{_tw};
354 $self->_timeout; 543 $self->_timeout;
355 }); 544 });
356 } else { 545 } else {
386 my ($self, $cb) = @_; 575 my ($self, $cb) = @_;
387 576
388 $self->{on_drain} = $cb; 577 $self->{on_drain} = $cb;
389 578
390 $cb->($self) 579 $cb->($self)
391 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 580 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
392} 581}
393 582
394=item $handle->push_write ($data) 583=item $handle->push_write ($data)
395 584
396Queues the given scalar to be written. You can push as much data as you 585Queues the given scalar to be written. You can push as much data as you
407 Scalar::Util::weaken $self; 596 Scalar::Util::weaken $self;
408 597
409 my $cb = sub { 598 my $cb = sub {
410 my $len = syswrite $self->{fh}, $self->{wbuf}; 599 my $len = syswrite $self->{fh}, $self->{wbuf};
411 600
412 if ($len >= 0) { 601 if (defined $len) {
413 substr $self->{wbuf}, 0, $len, ""; 602 substr $self->{wbuf}, 0, $len, "";
414 603
415 $self->{_activity} = time; 604 $self->{_activity} = AnyEvent->now;
416 605
417 $self->{on_drain}($self) 606 $self->{on_drain}($self)
418 if $self->{low_water_mark} >= length $self->{wbuf} 607 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
419 && $self->{on_drain}; 608 && $self->{on_drain};
420 609
421 delete $self->{_ww} unless length $self->{wbuf}; 610 delete $self->{_ww} unless length $self->{wbuf};
422 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 611 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
423 $self->error; 612 $self->_error ($!, 1);
424 } 613 }
425 }; 614 };
426 615
427 # try to write data immediately 616 # try to write data immediately
428 $cb->(); 617 $cb->() unless $self->{autocork};
429 618
430 # if still data left in wbuf, we need to poll 619 # if still data left in wbuf, we need to poll
431 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 620 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
432 if length $self->{wbuf}; 621 if length $self->{wbuf};
433 }; 622 };
447 636
448 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 637 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
449 ->($self, @_); 638 ->($self, @_);
450 } 639 }
451 640
452 if ($self->{filter_w}) { 641 if ($self->{tls}) {
453 $self->{filter_w}->($self, \$_[0]); 642 $self->{_tls_wbuf} .= $_[0];
643
644 &_dotls ($self);
454 } else { 645 } else {
455 $self->{wbuf} .= $_[0]; 646 $self->{wbuf} .= $_[0];
456 $self->_drain_wbuf; 647 $self->_drain_wbuf;
457 } 648 }
458} 649}
459 650
460=item $handle->push_write (type => @args) 651=item $handle->push_write (type => @args)
461 652
462=item $handle->unshift_write (type => @args)
463
464Instead of formatting your data yourself, you can also let this module do 653Instead of formatting your data yourself, you can also let this module do
465the job by specifying a type and type-specific arguments. 654the job by specifying a type and type-specific arguments.
466 655
467Predefined types are (if you have ideas for additional types, feel free to 656Predefined types are (if you have ideas for additional types, feel free to
468drop by and tell us): 657drop by and tell us):
472=item netstring => $string 661=item netstring => $string
473 662
474Formats the given value as netstring 663Formats the given value as netstring
475(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 664(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476 665
477=back
478
479=cut 666=cut
480 667
481register_write_type netstring => sub { 668register_write_type netstring => sub {
482 my ($self, $string) = @_; 669 my ($self, $string) = @_;
483 670
484 sprintf "%d:%s,", (length $string), $string 671 (length $string) . ":$string,"
672};
673
674=item packstring => $format, $data
675
676An octet string prefixed with an encoded length. The encoding C<$format>
677uses the same format as a Perl C<pack> format, but must specify a single
678integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
679optional C<!>, C<< < >> or C<< > >> modifier).
680
681=cut
682
683register_write_type packstring => sub {
684 my ($self, $format, $string) = @_;
685
686 pack "$format/a*", $string
485}; 687};
486 688
487=item json => $array_or_hashref 689=item json => $array_or_hashref
488 690
489Encodes the given hash or array reference into a JSON object. Unless you 691Encodes the given hash or array reference into a JSON object. Unless you
523 725
524 $self->{json} ? $self->{json}->encode ($ref) 726 $self->{json} ? $self->{json}->encode ($ref)
525 : JSON::encode_json ($ref) 727 : JSON::encode_json ($ref)
526}; 728};
527 729
730=item storable => $reference
731
732Freezes the given reference using L<Storable> and writes it to the
733handle. Uses the C<nfreeze> format.
734
735=cut
736
737register_write_type storable => sub {
738 my ($self, $ref) = @_;
739
740 require Storable;
741
742 pack "w/a*", Storable::nfreeze ($ref)
743};
744
745=back
746
747=item $handle->push_shutdown
748
749Sometimes you know you want to close the socket after writing your data
750before it was actually written. One way to do that is to replace your
751C<on_drain> handler by a callback that shuts down the socket (and set
752C<low_water_mark> to C<0>). This method is a shorthand for just that, and
753replaces the C<on_drain> callback with:
754
755 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
756
757This simply shuts down the write side and signals an EOF condition to the
758the peer.
759
760You can rely on the normal read queue and C<on_eof> handling
761afterwards. This is the cleanest way to close a connection.
762
763=cut
764
765sub push_shutdown {
766 my ($self) = @_;
767
768 delete $self->{low_water_mark};
769 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
770}
771
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 772=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 773
530This function (not method) lets you add your own types to C<push_write>. 774This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 775Whenever the given C<type> is used, C<push_write> will invoke the code
532reference with the handle object and the remaining arguments. 776reference with the handle object and the remaining arguments.
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 796ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 797a queue.
554 798
555In the simple case, you just install an C<on_read> callback and whenever 799In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 800new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 801enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 802leave the data there if you want to accumulate more (e.g. when only a
803partial message has been received so far).
559 804
560In the more complex case, you want to queue multiple callbacks. In this 805In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 806case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 807data arrives (also the first time it is queued) and removes it when it has
563below). 808done its job (see C<push_read>, below).
564 809
565This way you can, for example, push three line-reads, followed by reading 810This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 811a chunk of data, and AnyEvent::Handle will execute them in order.
567 812
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 813Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569the specified number of bytes which give an XML datagram. 814the specified number of bytes which give an XML datagram.
570 815
571 # in the default state, expect some header bytes 816 # in the default state, expect some header bytes
572 $handle->on_read (sub { 817 $handle->on_read (sub {
573 # some data is here, now queue the length-header-read (4 octets) 818 # some data is here, now queue the length-header-read (4 octets)
574 shift->unshift_read_chunk (4, sub { 819 shift->unshift_read (chunk => 4, sub {
575 # header arrived, decode 820 # header arrived, decode
576 my $len = unpack "N", $_[1]; 821 my $len = unpack "N", $_[1];
577 822
578 # now read the payload 823 # now read the payload
579 shift->unshift_read_chunk ($len, sub { 824 shift->unshift_read (chunk => $len, sub {
580 my $xml = $_[1]; 825 my $xml = $_[1];
581 # handle xml 826 # handle xml
582 }); 827 });
583 }); 828 });
584 }); 829 });
585 830
586Example 2: Implement a client for a protocol that replies either with 831Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 832and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 833bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 834just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 835in the callbacks.
591 836
592 # request one 837When the first callback is called and sees an "OK" response, it will
838C<unshift> another line-read. This line-read will be queued I<before> the
83964-byte chunk callback.
840
841 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 842 $handle->push_write ("request 1\015\012");
594 843
595 # we expect "ERROR" or "OK" as response, so push a line read 844 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read_line (sub { 845 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 846 # if we got an "OK", we have to _prepend_ another line,
598 # so it will be read before the second request reads its 64 bytes 847 # so it will be read before the second request reads its 64 bytes
599 # which are already in the queue when this callback is called 848 # which are already in the queue when this callback is called
600 # we don't do this in case we got an error 849 # we don't do this in case we got an error
601 if ($_[1] eq "OK") { 850 if ($_[1] eq "OK") {
602 $_[0]->unshift_read_line (sub { 851 $_[0]->unshift_read (line => sub {
603 my $response = $_[1]; 852 my $response = $_[1];
604 ... 853 ...
605 }); 854 });
606 } 855 }
607 }); 856 });
608 857
609 # request two 858 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 859 $handle->push_write ("request 2\015\012");
611 860
612 # simply read 64 bytes, always 861 # simply read 64 bytes, always
613 $handle->push_read_chunk (64, sub { 862 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 863 my $response = $_[1];
615 ... 864 ...
616 }); 865 });
617 866
618=over 4 867=over 4
619 868
620=cut 869=cut
621 870
622sub _drain_rbuf { 871sub _drain_rbuf {
623 my ($self) = @_; 872 my ($self) = @_;
873
874 local $self->{_in_drain} = 1;
624 875
625 if ( 876 if (
626 defined $self->{rbuf_max} 877 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 878 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 879 ) {
629 $! = &Errno::ENOSPC; 880 $self->_error (Errno::ENOSPC, 1), return;
630 $self->error;
631 } 881 }
632 882
633 return if $self->{in_drain}; 883 while () {
634 local $self->{in_drain} = 1; 884 # we need to use a separate tls read buffer, as we must not receive data while
885 # we are draining the buffer, and this can only happen with TLS.
886 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
635 887
636 while (my $len = length $self->{rbuf}) { 888 my $len = length $self->{rbuf};
637 no strict 'refs'; 889
638 if (my $cb = shift @{ $self->{_queue} }) { 890 if (my $cb = shift @{ $self->{_queue} }) {
639 unless ($cb->($self)) { 891 unless ($cb->($self)) {
640 if ($self->{_eof}) { 892 if ($self->{_eof}) {
641 # no progress can be made (not enough data and no data forthcoming) 893 # no progress can be made (not enough data and no data forthcoming)
642 $! = &Errno::EPIPE; 894 $self->_error (Errno::EPIPE, 1), return;
643 $self->error;
644 } 895 }
645 896
646 unshift @{ $self->{_queue} }, $cb; 897 unshift @{ $self->{_queue} }, $cb;
647 return; 898 last;
648 } 899 }
649 } elsif ($self->{on_read}) { 900 } elsif ($self->{on_read}) {
901 last unless $len;
902
650 $self->{on_read}($self); 903 $self->{on_read}($self);
651 904
652 if ( 905 if (
653 $self->{_eof} # if no further data will arrive
654 && $len == length $self->{rbuf} # and no data has been consumed 906 $len == length $self->{rbuf} # if no data has been consumed
655 && !@{ $self->{_queue} } # and the queue is still empty 907 && !@{ $self->{_queue} } # and the queue is still empty
656 && $self->{on_read} # and we still want to read data 908 && $self->{on_read} # but we still have on_read
657 ) { 909 ) {
910 # no further data will arrive
658 # then no progress can be made 911 # so no progress can be made
659 $! = &Errno::EPIPE; 912 $self->_error (Errno::EPIPE, 1), return
660 $self->error; 913 if $self->{_eof};
914
915 last; # more data might arrive
661 } 916 }
662 } else { 917 } else {
663 # read side becomes idle 918 # read side becomes idle
664 delete $self->{_rw}; 919 delete $self->{_rw} unless $self->{tls};
665 return; 920 last;
666 } 921 }
667 } 922 }
668 923
669 if ($self->{_eof}) { 924 if ($self->{_eof}) {
670 $self->_shutdown; 925 if ($self->{on_eof}) {
671 $self->{on_eof}($self) 926 $self->{on_eof}($self)
672 if $self->{on_eof}; 927 } else {
928 $self->_error (0, 1, "Unexpected end-of-file");
929 }
930 }
931
932 # may need to restart read watcher
933 unless ($self->{_rw}) {
934 $self->start_read
935 if $self->{on_read} || @{ $self->{_queue} };
673 } 936 }
674} 937}
675 938
676=item $handle->on_read ($cb) 939=item $handle->on_read ($cb)
677 940
683 946
684sub on_read { 947sub on_read {
685 my ($self, $cb) = @_; 948 my ($self, $cb) = @_;
686 949
687 $self->{on_read} = $cb; 950 $self->{on_read} = $cb;
951 $self->_drain_rbuf if $cb && !$self->{_in_drain};
688} 952}
689 953
690=item $handle->rbuf 954=item $handle->rbuf
691 955
692Returns the read buffer (as a modifiable lvalue). 956Returns the read buffer (as a modifiable lvalue).
693 957
694You can access the read buffer directly as the C<< ->{rbuf} >> member, if 958You can access the read buffer directly as the C<< ->{rbuf} >>
695you want. 959member, if you want. However, the only operation allowed on the
960read buffer (apart from looking at it) is removing data from its
961beginning. Otherwise modifying or appending to it is not allowed and will
962lead to hard-to-track-down bugs.
696 963
697NOTE: The read buffer should only be used or modified if the C<on_read>, 964NOTE: The read buffer should only be used or modified if the C<on_read>,
698C<push_read> or C<unshift_read> methods are used. The other read methods 965C<push_read> or C<unshift_read> methods are used. The other read methods
699automatically manage the read buffer. 966automatically manage the read buffer.
700 967
741 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1008 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742 ->($self, $cb, @_); 1009 ->($self, $cb, @_);
743 } 1010 }
744 1011
745 push @{ $self->{_queue} }, $cb; 1012 push @{ $self->{_queue} }, $cb;
746 $self->_drain_rbuf; 1013 $self->_drain_rbuf unless $self->{_in_drain};
747} 1014}
748 1015
749sub unshift_read { 1016sub unshift_read {
750 my $self = shift; 1017 my $self = shift;
751 my $cb = pop; 1018 my $cb = pop;
757 ->($self, $cb, @_); 1024 ->($self, $cb, @_);
758 } 1025 }
759 1026
760 1027
761 unshift @{ $self->{_queue} }, $cb; 1028 unshift @{ $self->{_queue} }, $cb;
762 $self->_drain_rbuf; 1029 $self->_drain_rbuf unless $self->{_in_drain};
763} 1030}
764 1031
765=item $handle->push_read (type => @args, $cb) 1032=item $handle->push_read (type => @args, $cb)
766 1033
767=item $handle->unshift_read (type => @args, $cb) 1034=item $handle->unshift_read (type => @args, $cb)
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1064 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 1065 1
799 } 1066 }
800}; 1067};
801 1068
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 1069=item line => [$eol, ]$cb->($handle, $line, $eol)
812 1070
813The callback will be called only once a full line (including the end of 1071The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 1072line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 1073marker) will be passed to the callback as second argument (C<$line>), and
830=cut 1088=cut
831 1089
832register_read_type line => sub { 1090register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 1091 my ($self, $cb, $eol) = @_;
834 1092
835 $eol = qr|(\015?\012)| if @_ < 3; 1093 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 1094 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 1095 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 1096 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 1097
842 $cb->($_[0], $1, $2); 1098 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $! = &Errno::EBADMSG;
873 $self->error;
874 } 1099 1
875 return;
876 } 1100 }
1101 } else {
1102 $eol = quotemeta $eol unless ref $eol;
1103 $eol = qr|^(.*?)($eol)|s;
877 1104
878 my $len = $1; 1105 sub {
1106 $_[0]{rbuf} =~ s/$eol// or return;
879 1107
880 $self->unshift_read (chunk => $len, sub { 1108 $cb->($_[0], $1, $2);
881 my $string = $_[1];
882 $_[0]->unshift_read (chunk => 1, sub {
883 if ($_[1] eq ",") {
884 $cb->($_[0], $string);
885 } else {
886 $! = &Errno::EBADMSG;
887 $self->error;
888 }
889 }); 1109 1
890 }); 1110 }
891
892 1
893 } 1111 }
894}; 1112};
895 1113
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1114=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1115
949 return 1; 1167 return 1;
950 } 1168 }
951 1169
952 # reject 1170 # reject
953 if ($reject && $$rbuf =~ $reject) { 1171 if ($reject && $$rbuf =~ $reject) {
954 $! = &Errno::EBADMSG; 1172 $self->_error (Errno::EBADMSG);
955 $self->error;
956 } 1173 }
957 1174
958 # skip 1175 # skip
959 if ($skip && $$rbuf =~ $skip) { 1176 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1177 $data .= substr $$rbuf, 0, $+[0], "";
962 1179
963 () 1180 ()
964 } 1181 }
965}; 1182};
966 1183
1184=item netstring => $cb->($handle, $string)
1185
1186A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1187
1188Throws an error with C<$!> set to EBADMSG on format violations.
1189
1190=cut
1191
1192register_read_type netstring => sub {
1193 my ($self, $cb) = @_;
1194
1195 sub {
1196 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1197 if ($_[0]{rbuf} =~ /[^0-9]/) {
1198 $self->_error (Errno::EBADMSG);
1199 }
1200 return;
1201 }
1202
1203 my $len = $1;
1204
1205 $self->unshift_read (chunk => $len, sub {
1206 my $string = $_[1];
1207 $_[0]->unshift_read (chunk => 1, sub {
1208 if ($_[1] eq ",") {
1209 $cb->($_[0], $string);
1210 } else {
1211 $self->_error (Errno::EBADMSG);
1212 }
1213 });
1214 });
1215
1216 1
1217 }
1218};
1219
1220=item packstring => $format, $cb->($handle, $string)
1221
1222An octet string prefixed with an encoded length. The encoding C<$format>
1223uses the same format as a Perl C<pack> format, but must specify a single
1224integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1225optional C<!>, C<< < >> or C<< > >> modifier).
1226
1227For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1228EPP uses a prefix of C<N> (4 octtes).
1229
1230Example: read a block of data prefixed by its length in BER-encoded
1231format (very efficient).
1232
1233 $handle->push_read (packstring => "w", sub {
1234 my ($handle, $data) = @_;
1235 });
1236
1237=cut
1238
1239register_read_type packstring => sub {
1240 my ($self, $cb, $format) = @_;
1241
1242 sub {
1243 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1244 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1245 or return;
1246
1247 $format = length pack $format, $len;
1248
1249 # bypass unshift if we already have the remaining chunk
1250 if ($format + $len <= length $_[0]{rbuf}) {
1251 my $data = substr $_[0]{rbuf}, $format, $len;
1252 substr $_[0]{rbuf}, 0, $format + $len, "";
1253 $cb->($_[0], $data);
1254 } else {
1255 # remove prefix
1256 substr $_[0]{rbuf}, 0, $format, "";
1257
1258 # read remaining chunk
1259 $_[0]->unshift_read (chunk => $len, $cb);
1260 }
1261
1262 1
1263 }
1264};
1265
967=item json => $cb->($handle, $hash_or_arrayref) 1266=item json => $cb->($handle, $hash_or_arrayref)
968 1267
969Reads a JSON object or array, decodes it and passes it to the callback. 1268Reads a JSON object or array, decodes it and passes it to the
1269callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1270
971If a C<json> object was passed to the constructor, then that will be used 1271If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1272for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1273
974This read type uses the incremental parser available with JSON version 1274This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1281the C<json> write type description, above, for an actual example.
982 1282
983=cut 1283=cut
984 1284
985register_read_type json => sub { 1285register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1286 my ($self, $cb) = @_;
987 1287
988 require JSON; 1288 my $json = $self->{json} ||=
1289 eval { require JSON::XS; JSON::XS->new->utf8 }
1290 || do { require JSON; JSON->new->utf8 };
989 1291
990 my $data; 1292 my $data;
991 my $rbuf = \$self->{rbuf}; 1293 my $rbuf = \$self->{rbuf};
992 1294
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1295 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1296 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1297
998 if ($ref) { 1298 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1299 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1300 $json->incr_text = "";
1001 $cb->($self, $ref); 1301 $cb->($self, $ref);
1002 1302
1003 1 1303 1
1304 } elsif ($@) {
1305 # error case
1306 $json->incr_skip;
1307
1308 $self->{rbuf} = $json->incr_text;
1309 $json->incr_text = "";
1310
1311 $self->_error (Errno::EBADMSG);
1312
1313 ()
1004 } else { 1314 } else {
1005 $self->{rbuf} = ""; 1315 $self->{rbuf} = "";
1316
1006 () 1317 ()
1007 } 1318 }
1319 }
1320};
1321
1322=item storable => $cb->($handle, $ref)
1323
1324Deserialises a L<Storable> frozen representation as written by the
1325C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1326data).
1327
1328Raises C<EBADMSG> error if the data could not be decoded.
1329
1330=cut
1331
1332register_read_type storable => sub {
1333 my ($self, $cb) = @_;
1334
1335 require Storable;
1336
1337 sub {
1338 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1339 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1340 or return;
1341
1342 my $format = length pack "w", $len;
1343
1344 # bypass unshift if we already have the remaining chunk
1345 if ($format + $len <= length $_[0]{rbuf}) {
1346 my $data = substr $_[0]{rbuf}, $format, $len;
1347 substr $_[0]{rbuf}, 0, $format + $len, "";
1348 $cb->($_[0], Storable::thaw ($data));
1349 } else {
1350 # remove prefix
1351 substr $_[0]{rbuf}, 0, $format, "";
1352
1353 # read remaining chunk
1354 $_[0]->unshift_read (chunk => $len, sub {
1355 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1356 $cb->($_[0], $ref);
1357 } else {
1358 $self->_error (Errno::EBADMSG);
1359 }
1360 });
1361 }
1362
1363 1
1008 } 1364 }
1009}; 1365};
1010 1366
1011=back 1367=back
1012 1368
1033=item $handle->stop_read 1389=item $handle->stop_read
1034 1390
1035=item $handle->start_read 1391=item $handle->start_read
1036 1392
1037In rare cases you actually do not want to read anything from the 1393In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1394socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1395any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1396C<start_read>.
1041 1397
1398Note that AnyEvent::Handle will automatically C<start_read> for you when
1399you change the C<on_read> callback or push/unshift a read callback, and it
1400will automatically C<stop_read> for you when neither C<on_read> is set nor
1401there are any read requests in the queue.
1402
1403These methods will have no effect when in TLS mode (as TLS doesn't support
1404half-duplex connections).
1405
1042=cut 1406=cut
1043 1407
1044sub stop_read { 1408sub stop_read {
1045 my ($self) = @_; 1409 my ($self) = @_;
1046 1410
1047 delete $self->{_rw}; 1411 delete $self->{_rw} unless $self->{tls};
1048} 1412}
1049 1413
1050sub start_read { 1414sub start_read {
1051 my ($self) = @_; 1415 my ($self) = @_;
1052 1416
1053 unless ($self->{_rw} || $self->{_eof}) { 1417 unless ($self->{_rw} || $self->{_eof}) {
1054 Scalar::Util::weaken $self; 1418 Scalar::Util::weaken $self;
1055 1419
1056 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1420 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1057 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1421 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1058 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1422 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1059 1423
1060 if ($len > 0) { 1424 if ($len > 0) {
1061 $self->{_activity} = time; 1425 $self->{_activity} = AnyEvent->now;
1062 1426
1063 $self->{filter_r} 1427 if ($self->{tls}) {
1064 ? $self->{filter_r}->($self, $rbuf) 1428 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1065 : $self->_drain_rbuf; 1429
1430 &_dotls ($self);
1431 } else {
1432 $self->_drain_rbuf unless $self->{_in_drain};
1433 }
1066 1434
1067 } elsif (defined $len) { 1435 } elsif (defined $len) {
1068 delete $self->{_rw}; 1436 delete $self->{_rw};
1069 delete $self->{_ww};
1070 delete $self->{_tw};
1071 $self->{_eof} = 1; 1437 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1438 $self->_drain_rbuf unless $self->{_in_drain};
1073 1439
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1440 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->error; 1441 return $self->_error ($!, 1);
1076 } 1442 }
1077 }); 1443 });
1078 } 1444 }
1079} 1445}
1080 1446
1447our $ERROR_SYSCALL;
1448our $ERROR_WANT_READ;
1449
1450sub _tls_error {
1451 my ($self, $err) = @_;
1452
1453 return $self->_error ($!, 1)
1454 if $err == Net::SSLeay::ERROR_SYSCALL ();
1455
1456 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1457
1458 # reduce error string to look less scary
1459 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1460
1461 if ($self->{_on_starttls}) {
1462 (delete $self->{_on_starttls})->($self, undef, $err);
1463 &_freetls;
1464 } else {
1465 &_freetls;
1466 $self->_error (Errno::EPROTO, 1, $err);
1467 }
1468}
1469
1470# poll the write BIO and send the data if applicable
1471# also decode read data if possible
1472# this is basiclaly our TLS state machine
1473# more efficient implementations are possible with openssl,
1474# but not with the buggy and incomplete Net::SSLeay.
1081sub _dotls { 1475sub _dotls {
1082 my ($self) = @_; 1476 my ($self) = @_;
1083 1477
1478 my $tmp;
1479
1084 if (length $self->{_tls_wbuf}) { 1480 if (length $self->{_tls_wbuf}) {
1085 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1481 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1086 substr $self->{_tls_wbuf}, 0, $len, ""; 1482 substr $self->{_tls_wbuf}, 0, $tmp, "";
1087 } 1483 }
1088 }
1089 1484
1485 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1486 return $self->_tls_error ($tmp)
1487 if $tmp != $ERROR_WANT_READ
1488 && ($tmp != $ERROR_SYSCALL || $!);
1489 }
1490
1491 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1492 unless (length $tmp) {
1493 $self->{_on_starttls}
1494 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1495 &_freetls;
1496
1497 if ($self->{on_stoptls}) {
1498 $self->{on_stoptls}($self);
1499 return;
1500 } else {
1501 # let's treat SSL-eof as we treat normal EOF
1502 delete $self->{_rw};
1503 $self->{_eof} = 1;
1504 }
1505 }
1506
1507 $self->{_tls_rbuf} .= $tmp;
1508 $self->_drain_rbuf unless $self->{_in_drain};
1509 $self->{tls} or return; # tls session might have gone away in callback
1510 }
1511
1512 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1513 return $self->_tls_error ($tmp)
1514 if $tmp != $ERROR_WANT_READ
1515 && ($tmp != $ERROR_SYSCALL || $!);
1516
1090 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1517 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1091 $self->{wbuf} .= $buf; 1518 $self->{wbuf} .= $tmp;
1092 $self->_drain_wbuf; 1519 $self->_drain_wbuf;
1093 } 1520 }
1094 1521
1095 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1522 $self->{_on_starttls}
1096 $self->{rbuf} .= $buf; 1523 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1097 $self->_drain_rbuf; 1524 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1098 }
1099
1100 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1101
1102 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1103 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1104 $self->error;
1105 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1106 $! = &Errno::EIO;
1107 $self->error;
1108 }
1109
1110 # all others are fine for our purposes
1111 }
1112} 1525}
1113 1526
1114=item $handle->starttls ($tls[, $tls_ctx]) 1527=item $handle->starttls ($tls[, $tls_ctx])
1115 1528
1116Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1529Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1117object is created, you can also do that at a later time by calling 1530object is created, you can also do that at a later time by calling
1118C<starttls>. 1531C<starttls>.
1119 1532
1533Starting TLS is currently an asynchronous operation - when you push some
1534write data and then call C<< ->starttls >> then TLS negotiation will start
1535immediately, after which the queued write data is then sent.
1536
1120The first argument is the same as the C<tls> constructor argument (either 1537The first argument is the same as the C<tls> constructor argument (either
1121C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1538C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1122 1539
1123The second argument is the optional C<Net::SSLeay::CTX> object that is 1540The second argument is the optional C<AnyEvent::TLS> object that is used
1124used when AnyEvent::Handle has to create its own TLS connection object. 1541when AnyEvent::Handle has to create its own TLS connection object, or
1542a hash reference with C<< key => value >> pairs that will be used to
1543construct a new context.
1125 1544
1126The TLS connection object will end up in C<< $handle->{tls} >> after this 1545The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1127call and can be used or changed to your liking. Note that the handshake 1546context in C<< $handle->{tls_ctx} >> after this call and can be used or
1128might have already started when this function returns. 1547changed to your liking. Note that the handshake might have already started
1548when this function returns.
1129 1549
1130=cut 1550If it an error to start a TLS handshake more than once per
1551AnyEvent::Handle object (this is due to bugs in OpenSSL).
1131 1552
1132# TODO: maybe document... 1553=cut
1554
1555our %TLS_CACHE; #TODO not yet documented, should we?
1556
1133sub starttls { 1557sub starttls {
1134 my ($self, $ssl, $ctx) = @_; 1558 my ($self, $ssl, $ctx) = @_;
1135 1559
1136 $self->stoptls; 1560 require Net::SSLeay;
1137 1561
1138 if ($ssl eq "accept") { 1562 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1139 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1563 if $self->{tls};
1140 Net::SSLeay::set_accept_state ($ssl); 1564
1141 } elsif ($ssl eq "connect") { 1565 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1142 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1566 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1143 Net::SSLeay::set_connect_state ($ssl); 1567
1568 $ctx ||= $self->{tls_ctx};
1569
1570 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1571
1572 if ("HASH" eq ref $ctx) {
1573 require AnyEvent::TLS;
1574
1575 if ($ctx->{cache}) {
1576 my $key = $ctx+0;
1577 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1578 } else {
1579 $ctx = new AnyEvent::TLS %$ctx;
1580 }
1581 }
1144 } 1582
1145 1583 $self->{tls_ctx} = $ctx || TLS_CTX ();
1146 $self->{tls} = $ssl; 1584 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1147 1585
1148 # basically, this is deep magic (because SSL_read should have the same issues) 1586 # basically, this is deep magic (because SSL_read should have the same issues)
1149 # but the openssl maintainers basically said: "trust us, it just works". 1587 # but the openssl maintainers basically said: "trust us, it just works".
1150 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1588 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1151 # and mismaintained ssleay-module doesn't even offer them). 1589 # and mismaintained ssleay-module doesn't even offer them).
1152 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1590 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1591 #
1592 # in short: this is a mess.
1593 #
1594 # note that we do not try to keep the length constant between writes as we are required to do.
1595 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1596 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1597 # have identity issues in that area.
1153 Net::SSLeay::CTX_set_mode ($self->{tls}, 1598# Net::SSLeay::CTX_set_mode ($ssl,
1154 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1599# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1155 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1600# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1601 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1156 1602
1157 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1603 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1158 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1604 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1159 1605
1160 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1606 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1161 1607
1162 $self->{filter_w} = sub { 1608 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1163 $_[0]{_tls_wbuf} .= ${$_[1]}; 1609 if $self->{on_starttls};
1164 &_dotls; 1610
1165 }; 1611 &_dotls; # need to trigger the initial handshake
1166 $self->{filter_r} = sub { 1612 $self->start_read; # make sure we actually do read
1167 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1168 &_dotls;
1169 };
1170} 1613}
1171 1614
1172=item $handle->stoptls 1615=item $handle->stoptls
1173 1616
1174Destroys the SSL connection, if any. Partial read or write data will be 1617Shuts down the SSL connection - this makes a proper EOF handshake by
1175lost. 1618sending a close notify to the other side, but since OpenSSL doesn't
1619support non-blocking shut downs, it is not possible to re-use the stream
1620afterwards.
1176 1621
1177=cut 1622=cut
1178 1623
1179sub stoptls { 1624sub stoptls {
1180 my ($self) = @_; 1625 my ($self) = @_;
1181 1626
1182 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1627 if ($self->{tls}) {
1628 Net::SSLeay::shutdown ($self->{tls});
1183 1629
1184 delete $self->{_rbio}; 1630 &_dotls;
1185 delete $self->{_wbio}; 1631
1186 delete $self->{_tls_wbuf}; 1632# # we don't give a shit. no, we do, but we can't. no...#d#
1187 delete $self->{filter_r}; 1633# # we, we... have to use openssl :/#d#
1188 delete $self->{filter_w}; 1634# &_freetls;#d#
1635 }
1636}
1637
1638sub _freetls {
1639 my ($self) = @_;
1640
1641 return unless $self->{tls};
1642
1643 $self->{tls_ctx}->_put_session (delete $self->{tls});
1644
1645 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1189} 1646}
1190 1647
1191sub DESTROY { 1648sub DESTROY {
1192 my $self = shift; 1649 my ($self) = @_;
1193 1650
1194 $self->stoptls; 1651 &_freetls;
1652
1653 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1654
1655 if ($linger && length $self->{wbuf} && $self->{fh}) {
1656 my $fh = delete $self->{fh};
1657 my $wbuf = delete $self->{wbuf};
1658
1659 my @linger;
1660
1661 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1662 my $len = syswrite $fh, $wbuf, length $wbuf;
1663
1664 if ($len > 0) {
1665 substr $wbuf, 0, $len, "";
1666 } else {
1667 @linger = (); # end
1668 }
1669 });
1670 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1671 @linger = ();
1672 });
1673 }
1674}
1675
1676=item $handle->destroy
1677
1678Shuts down the handle object as much as possible - this call ensures that
1679no further callbacks will be invoked and as many resources as possible
1680will be freed. You must not call any methods on the object afterwards.
1681
1682Normally, you can just "forget" any references to an AnyEvent::Handle
1683object and it will simply shut down. This works in fatal error and EOF
1684callbacks, as well as code outside. It does I<NOT> work in a read or write
1685callback, so when you want to destroy the AnyEvent::Handle object from
1686within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1687that case.
1688
1689Destroying the handle object in this way has the advantage that callbacks
1690will be removed as well, so if those are the only reference holders (as
1691is common), then one doesn't need to do anything special to break any
1692reference cycles.
1693
1694The handle might still linger in the background and write out remaining
1695data, as specified by the C<linger> option, however.
1696
1697=cut
1698
1699sub destroy {
1700 my ($self) = @_;
1701
1702 $self->DESTROY;
1703 %$self = ();
1195} 1704}
1196 1705
1197=item AnyEvent::Handle::TLS_CTX 1706=item AnyEvent::Handle::TLS_CTX
1198 1707
1199This function creates and returns the Net::SSLeay::CTX object used by 1708This function creates and returns the AnyEvent::TLS object used by default
1200default for TLS mode. 1709for TLS mode.
1201 1710
1202The context is created like this: 1711The context is created by calling L<AnyEvent::TLS> without any arguments.
1203
1204 Net::SSLeay::load_error_strings;
1205 Net::SSLeay::SSLeay_add_ssl_algorithms;
1206 Net::SSLeay::randomize;
1207
1208 my $CTX = Net::SSLeay::CTX_new;
1209
1210 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1211 1712
1212=cut 1713=cut
1213 1714
1214our $TLS_CTX; 1715our $TLS_CTX;
1215 1716
1216sub TLS_CTX() { 1717sub TLS_CTX() {
1217 $TLS_CTX || do { 1718 $TLS_CTX ||= do {
1218 require Net::SSLeay; 1719 require AnyEvent::TLS;
1219 1720
1220 Net::SSLeay::load_error_strings (); 1721 new AnyEvent::TLS
1221 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1222 Net::SSLeay::randomize ();
1223
1224 $TLS_CTX = Net::SSLeay::CTX_new ();
1225
1226 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1227
1228 $TLS_CTX
1229 } 1722 }
1230} 1723}
1231 1724
1232=back 1725=back
1726
1727
1728=head1 NONFREQUENTLY ASKED QUESTIONS
1729
1730=over 4
1731
1732=item I C<undef> the AnyEvent::Handle reference inside my callback and
1733still get further invocations!
1734
1735That's because AnyEvent::Handle keeps a reference to itself when handling
1736read or write callbacks.
1737
1738It is only safe to "forget" the reference inside EOF or error callbacks,
1739from within all other callbacks, you need to explicitly call the C<<
1740->destroy >> method.
1741
1742=item I get different callback invocations in TLS mode/Why can't I pause
1743reading?
1744
1745Unlike, say, TCP, TLS connections do not consist of two independent
1746communication channels, one for each direction. Or put differently. The
1747read and write directions are not independent of each other: you cannot
1748write data unless you are also prepared to read, and vice versa.
1749
1750This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1751callback invocations when you are not expecting any read data - the reason
1752is that AnyEvent::Handle always reads in TLS mode.
1753
1754During the connection, you have to make sure that you always have a
1755non-empty read-queue, or an C<on_read> watcher. At the end of the
1756connection (or when you no longer want to use it) you can call the
1757C<destroy> method.
1758
1759=item How do I read data until the other side closes the connection?
1760
1761If you just want to read your data into a perl scalar, the easiest way
1762to achieve this is by setting an C<on_read> callback that does nothing,
1763clearing the C<on_eof> callback and in the C<on_error> callback, the data
1764will be in C<$_[0]{rbuf}>:
1765
1766 $handle->on_read (sub { });
1767 $handle->on_eof (undef);
1768 $handle->on_error (sub {
1769 my $data = delete $_[0]{rbuf};
1770 });
1771
1772The reason to use C<on_error> is that TCP connections, due to latencies
1773and packets loss, might get closed quite violently with an error, when in
1774fact, all data has been received.
1775
1776It is usually better to use acknowledgements when transferring data,
1777to make sure the other side hasn't just died and you got the data
1778intact. This is also one reason why so many internet protocols have an
1779explicit QUIT command.
1780
1781=item I don't want to destroy the handle too early - how do I wait until
1782all data has been written?
1783
1784After writing your last bits of data, set the C<on_drain> callback
1785and destroy the handle in there - with the default setting of
1786C<low_water_mark> this will be called precisely when all data has been
1787written to the socket:
1788
1789 $handle->push_write (...);
1790 $handle->on_drain (sub {
1791 warn "all data submitted to the kernel\n";
1792 undef $handle;
1793 });
1794
1795If you just want to queue some data and then signal EOF to the other side,
1796consider using C<< ->push_shutdown >> instead.
1797
1798=item I want to contact a TLS/SSL server, I don't care about security.
1799
1800If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1801simply connect to it and then create the AnyEvent::Handle with the C<tls>
1802parameter:
1803
1804 tcp_connect $host, $port, sub {
1805 my ($fh) = @_;
1806
1807 my $handle = new AnyEvent::Handle
1808 fh => $fh,
1809 tls => "connect",
1810 on_error => sub { ... };
1811
1812 $handle->push_write (...);
1813 };
1814
1815=item I want to contact a TLS/SSL server, I do care about security.
1816
1817Then you should additionally enable certificate verification, including
1818peername verification, if the protocol you use supports it (see
1819L<AnyEvent::TLS>, C<verify_peername>).
1820
1821E.g. for HTTPS:
1822
1823 tcp_connect $host, $port, sub {
1824 my ($fh) = @_;
1825
1826 my $handle = new AnyEvent::Handle
1827 fh => $fh,
1828 peername => $host,
1829 tls => "connect",
1830 tls_ctx => { verify => 1, verify_peername => "https" },
1831 ...
1832
1833Note that you must specify the hostname you connected to (or whatever
1834"peername" the protocol needs) as the C<peername> argument, otherwise no
1835peername verification will be done.
1836
1837The above will use the system-dependent default set of trusted CA
1838certificates. If you want to check against a specific CA, add the
1839C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1840
1841 tls_ctx => {
1842 verify => 1,
1843 verify_peername => "https",
1844 ca_file => "my-ca-cert.pem",
1845 },
1846
1847=item I want to create a TLS/SSL server, how do I do that?
1848
1849Well, you first need to get a server certificate and key. You have
1850three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1851self-signed certificate (cheap. check the search engine of your choice,
1852there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1853nice program for that purpose).
1854
1855Then create a file with your private key (in PEM format, see
1856L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1857file should then look like this:
1858
1859 -----BEGIN RSA PRIVATE KEY-----
1860 ...header data
1861 ... lots of base64'y-stuff
1862 -----END RSA PRIVATE KEY-----
1863
1864 -----BEGIN CERTIFICATE-----
1865 ... lots of base64'y-stuff
1866 -----END CERTIFICATE-----
1867
1868The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1869specify this file as C<cert_file>:
1870
1871 tcp_server undef, $port, sub {
1872 my ($fh) = @_;
1873
1874 my $handle = new AnyEvent::Handle
1875 fh => $fh,
1876 tls => "accept",
1877 tls_ctx => { cert_file => "my-server-keycert.pem" },
1878 ...
1879
1880When you have intermediate CA certificates that your clients might not
1881know about, just append them to the C<cert_file>.
1882
1883=back
1884
1233 1885
1234=head1 SUBCLASSING AnyEvent::Handle 1886=head1 SUBCLASSING AnyEvent::Handle
1235 1887
1236In many cases, you might want to subclass AnyEvent::Handle. 1888In many cases, you might want to subclass AnyEvent::Handle.
1237 1889
1241=over 4 1893=over 4
1242 1894
1243=item * all constructor arguments become object members. 1895=item * all constructor arguments become object members.
1244 1896
1245At least initially, when you pass a C<tls>-argument to the constructor it 1897At least initially, when you pass a C<tls>-argument to the constructor it
1246will end up in C<< $handle->{tls} >>. Those members might be changes or 1898will end up in C<< $handle->{tls} >>. Those members might be changed or
1247mutated later on (for example C<tls> will hold the TLS connection object). 1899mutated later on (for example C<tls> will hold the TLS connection object).
1248 1900
1249=item * other object member names are prefixed with an C<_>. 1901=item * other object member names are prefixed with an C<_>.
1250 1902
1251All object members not explicitly documented (internal use) are prefixed 1903All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines