ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.99 by root, Thu Oct 23 02:41:00 2008 UTC vs.
Revision 1.172 by root, Wed Aug 5 20:50:27 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.901;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 108timeout is to be used).
91down.
92 109
93While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 111
97If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
100=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
101 137
102This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 140connect or a read error.
105 141
106Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
111 154
112Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 159
117On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
119 163
120While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
122C<croak>. 166C<croak>.
123 167
127and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
129read buffer). 173read buffer).
130 174
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
133 179
134When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 305help.
239 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 318
242When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
245 325
246TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 329to add the dependency yourself.
253mode. 333mode.
254 334
255You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
259 349
260See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 351
262=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
263 353
264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
265(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
267 393
268=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
269 395
270This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
271 397
280 406
281=cut 407=cut
282 408
283sub new { 409sub new {
284 my $class = shift; 410 my $class = shift;
285
286 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
287 412
288 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
289 476
290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 483
292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293 if $self->{tls}; 485 if $self->{tls};
294 486
295 $self->{_activity} = AnyEvent->now;
296 $self->_timeout;
297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 488
301 $self->start_read 489 $self->start_read
302 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
303 491
304 $self 492 $self->_drain_wbuf;
305} 493}
306 494
307sub _shutdown { 495#sub _shutdown {
308 my ($self) = @_; 496# my ($self) = @_;
309 497#
310 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
311 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
312 delete $self->{_ww}; 500#
313 delete $self->{fh};
314
315 &_freetls; 501# &_freetls;
316 502#}
317 delete $self->{on_read};
318 delete $self->{_queue};
319}
320 503
321sub _error { 504sub _error {
322 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
323
324 $self->_shutdown
325 if $fatal;
326 506
327 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
328 509
329 if ($self->{on_error}) { 510 if ($self->{on_error}) {
330 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
331 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
332 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
333 } 516 }
334} 517}
335 518
336=item $fh = $handle->fh 519=item $fh = $handle->fh
337 520
374} 557}
375 558
376=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
377 560
378Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument). 562constructor argument). Changes will only take effect on the next write.
380 563
381=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
382 569
383=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
384 571
385Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details). 573the same name for details).
390sub no_delay { 577sub no_delay {
391 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
392 579
393 eval { 580 eval {
394 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
396 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
397} 615}
398 616
399############################################################################# 617#############################################################################
400 618
401=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
414# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
415# also check for time-outs 633# also check for time-outs
416sub _timeout { 634sub _timeout {
417 my ($self) = @_; 635 my ($self) = @_;
418 636
419 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
420 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
421 639
422 # when would the timeout trigger? 640 # when would the timeout trigger?
423 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
424 642
427 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
428 646
429 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
430 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
431 } else { 649 } else {
432 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
433 } 651 }
434 652
435 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
436 return unless $self->{timeout}; 654 return unless $self->{timeout};
437 655
500 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
501 719
502 my $cb = sub { 720 my $cb = sub {
503 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
504 722
505 if ($len >= 0) { 723 if (defined $len) {
506 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
507 725
508 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
509 727
510 $self->{on_drain}($self) 728 $self->{on_drain}($self)
542 ->($self, @_); 760 ->($self, @_);
543 } 761 }
544 762
545 if ($self->{tls}) { 763 if ($self->{tls}) {
546 $self->{_tls_wbuf} .= $_[0]; 764 $self->{_tls_wbuf} .= $_[0];
547 765 &_dotls ($self) if $self->{fh};
548 &_dotls ($self);
549 } else { 766 } else {
550 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
551 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
552 } 769 }
553} 770}
554 771
555=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
556 773
645 862
646 pack "w/a*", Storable::nfreeze ($ref) 863 pack "w/a*", Storable::nfreeze ($ref)
647}; 864};
648 865
649=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
650 892
651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
652 894
653This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
654Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
748=cut 990=cut
749 991
750sub _drain_rbuf { 992sub _drain_rbuf {
751 my ($self) = @_; 993 my ($self) = @_;
752 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
753 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
754
755 if (
756 defined $self->{rbuf_max}
757 && $self->{rbuf_max} < length $self->{rbuf}
758 ) {
759 $self->_error (&Errno::ENOSPC, 1), return;
760 }
761 998
762 while () { 999 while () {
1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
1004
763 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
764 1006
765 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
766 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
767 if ($self->{_eof}) { 1009 # no progress can be made
768 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
769 $self->_error (&Errno::EPIPE, 1), return; 1011 $self->_error (Errno::EPIPE, 1), return
770 } 1012 if $self->{_eof};
771 1013
772 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
773 last; 1015 last;
774 } 1016 }
775 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
782 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
783 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
784 ) { 1026 ) {
785 # no further data will arrive 1027 # no further data will arrive
786 # so no progress can be made 1028 # so no progress can be made
787 $self->_error (&Errno::EPIPE, 1), return 1029 $self->_error (Errno::EPIPE, 1), return
788 if $self->{_eof}; 1030 if $self->{_eof};
789 1031
790 last; # more data might arrive 1032 last; # more data might arrive
791 } 1033 }
792 } else { 1034 } else {
795 last; 1037 last;
796 } 1038 }
797 } 1039 }
798 1040
799 if ($self->{_eof}) { 1041 if ($self->{_eof}) {
800 if ($self->{on_eof}) { 1042 $self->{on_eof}
801 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
802 } else { 1044 : $self->_error (0, 1, "Unexpected end-of-file");
803 $self->_error (0, 1); 1045
804 } 1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
805 } 1054 }
806 1055
807 # may need to restart read watcher 1056 # may need to restart read watcher
808 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
809 $self->start_read 1058 $self->start_read
821 1070
822sub on_read { 1071sub on_read {
823 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
824 1073
825 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
827} 1076}
828 1077
829=item $handle->rbuf 1078=item $handle->rbuf
830 1079
831Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
832 1081
833You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
834you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
835 1087
836NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
837C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
838automatically manage the read buffer. 1090automatically manage the read buffer.
839 1091
880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
881 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
882 } 1134 }
883 1135
884 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
885 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
886} 1138}
887 1139
888sub unshift_read { 1140sub unshift_read {
889 my $self = shift; 1141 my $self = shift;
890 my $cb = pop; 1142 my $cb = pop;
896 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
897 } 1149 }
898 1150
899 1151
900 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
901 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
902} 1154}
903 1155
904=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
905 1157
906=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
1039 return 1; 1291 return 1;
1040 } 1292 }
1041 1293
1042 # reject 1294 # reject
1043 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
1044 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
1045 } 1297 }
1046 1298
1047 # skip 1299 # skip
1048 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
1049 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
1065 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
1066 1318
1067 sub { 1319 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
1071 } 1323 }
1072 return; 1324 return;
1073 } 1325 }
1074 1326
1075 my $len = $1; 1327 my $len = $1;
1078 my $string = $_[1]; 1330 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
1081 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
1082 } else { 1334 } else {
1083 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
1084 } 1336 }
1085 }); 1337 });
1086 }); 1338 });
1087 1339
1088 1 1340 1
1135 } 1387 }
1136}; 1388};
1137 1389
1138=item json => $cb->($handle, $hash_or_arrayref) 1390=item json => $cb->($handle, $hash_or_arrayref)
1139 1391
1140Reads a JSON object or array, decodes it and passes it to the callback. 1392Reads a JSON object or array, decodes it and passes it to the
1393callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1141 1394
1142If a C<json> object was passed to the constructor, then that will be used 1395If a C<json> object was passed to the constructor, then that will be used
1143for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1396for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1144 1397
1145This read type uses the incremental parser available with JSON version 1398This read type uses the incremental parser available with JSON version
1154=cut 1407=cut
1155 1408
1156register_read_type json => sub { 1409register_read_type json => sub {
1157 my ($self, $cb) = @_; 1410 my ($self, $cb) = @_;
1158 1411
1159 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1160 1415
1161 my $data; 1416 my $data;
1162 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1163 1418
1164 my $json = $self->{json} ||= JSON->new->utf8;
1165
1166 sub { 1419 sub {
1167 my $ref = $json->incr_parse ($self->{rbuf}); 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1168 1421
1169 if ($ref) { 1422 if ($ref) {
1170 $self->{rbuf} = $json->incr_text; 1423 $self->{rbuf} = $json->incr_text;
1171 $json->incr_text = ""; 1424 $json->incr_text = "";
1172 $cb->($self, $ref); 1425 $cb->($self, $ref);
1173 1426
1174 1 1427 1
1428 } elsif ($@) {
1429 # error case
1430 $json->incr_skip;
1431
1432 $self->{rbuf} = $json->incr_text;
1433 $json->incr_text = "";
1434
1435 $self->_error (Errno::EBADMSG);
1436
1437 ()
1175 } else { 1438 } else {
1176 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1440
1177 () 1441 ()
1178 } 1442 }
1179 } 1443 }
1180}; 1444};
1181 1445
1213 # read remaining chunk 1477 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub { 1478 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref); 1480 $cb->($_[0], $ref);
1217 } else { 1481 } else {
1218 $self->_error (&Errno::EBADMSG); 1482 $self->_error (Errno::EBADMSG);
1219 } 1483 }
1220 }); 1484 });
1221 } 1485 }
1222 1486
1223 1 1487 1
1287 if ($self->{tls}) { 1551 if ($self->{tls}) {
1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1289 1553
1290 &_dotls ($self); 1554 &_dotls ($self);
1291 } else { 1555 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain}; 1556 $self->_drain_rbuf;
1293 } 1557 }
1294 1558
1295 } elsif (defined $len) { 1559 } elsif (defined $len) {
1296 delete $self->{_rw}; 1560 delete $self->{_rw};
1297 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1298 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1299 1563
1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1301 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1302 } 1566 }
1303 }); 1567 });
1304 } 1568 }
1305} 1569}
1306 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1307# poll the write BIO and send the data if applicable 1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1308sub _dotls { 1599sub _dotls {
1309 my ($self) = @_; 1600 my ($self) = @_;
1310 1601
1311 my $tmp; 1602 my $tmp;
1312 1603
1313 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1315 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1316 } 1607 }
1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1317 } 1613 }
1318 1614
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) { 1616 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF 1617 $self->{_on_starttls}
1322 delete $self->{_rw}; 1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1323 $self->{_eof} = 1;
1324 &_freetls; 1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1325 } 1629 }
1326 1630
1327 $self->{rbuf} .= $tmp; 1631 $self->{_tls_rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain}; 1632 $self->_drain_rbuf;
1329 $self->{tls} or return; # tls session might have gone away in callback 1633 $self->{tls} or return; # tls session might have gone away in callback
1330 } 1634 }
1331 1635
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1); 1637 return $self->_tls_error ($tmp)
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1638 if $tmp != $ERROR_WANT_READ
1338 return $self->_error (&Errno::EIO, 1); 1639 && ($tmp != $ERROR_SYSCALL || $!);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343 1640
1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345 $self->{wbuf} .= $tmp; 1642 $self->{wbuf} .= $tmp;
1346 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1347 } 1644 }
1645
1646 $self->{_on_starttls}
1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1348} 1649}
1349 1650
1350=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1351 1652
1352Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1353object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1354C<starttls>. 1655C<starttls>.
1355 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1356The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1357C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1358 1663
1359The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1360used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1361 1668
1362The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1363call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1364might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1365 1673
1366If it an error to start a TLS handshake more than once per 1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1367AnyEvent::Handle object (this is due to bugs in OpenSSL). 1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1368 1677
1369=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1370 1681
1371sub starttls { 1682sub starttls {
1372 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1684
1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1687
1688 $self->{tls} = $tls;
1689 $self->{tls_ctx} = $ctx if @_ > 2;
1690
1691 return unless $self->{fh};
1373 1692
1374 require Net::SSLeay; 1693 require Net::SSLeay;
1375 1694
1376 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1377 if $self->{tls}; 1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1378 1713
1379 if ($ssl eq "accept") { 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1381 Net::SSLeay::set_accept_state ($ssl);
1382 } elsif ($ssl eq "connect") {
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1384 Net::SSLeay::set_connect_state ($ssl);
1385 }
1386
1387 $self->{tls} = $ssl;
1388 1716
1389 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1390 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1392 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1396 # 1724 #
1397 # note that we do not try to keep the length constant between writes as we are required to do. 1725 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area. 1728 # have identity issues in that area.
1401 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1404 1733
1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1407 1736
1737 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1738
1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1739 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1740
1741 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1742 if $self->{on_starttls};
1409 1743
1410 &_dotls; # need to trigger the initial handshake 1744 &_dotls; # need to trigger the initial handshake
1411 $self->start_read; # make sure we actually do read 1745 $self->start_read; # make sure we actually do read
1412} 1746}
1413 1747
1414=item $handle->stoptls 1748=item $handle->stoptls
1415 1749
1416Shuts down the SSL connection - this makes a proper EOF handshake by 1750Shuts down the SSL connection - this makes a proper EOF handshake by
1417sending a close notify to the other side, but since OpenSSL doesn't 1751sending a close notify to the other side, but since OpenSSL doesn't
1418support non-blocking shut downs, it is not possible to re-use the stream 1752support non-blocking shut downs, it is not guarenteed that you can re-use
1419afterwards. 1753the stream afterwards.
1420 1754
1421=cut 1755=cut
1422 1756
1423sub stoptls { 1757sub stoptls {
1424 my ($self) = @_; 1758 my ($self) = @_;
1426 if ($self->{tls}) { 1760 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls}); 1761 Net::SSLeay::shutdown ($self->{tls});
1428 1762
1429 &_dotls; 1763 &_dotls;
1430 1764
1431 # we don't give a shit. no, we do, but we can't. no... 1765# # we don't give a shit. no, we do, but we can't. no...#d#
1432 # we, we... have to use openssl :/ 1766# # we, we... have to use openssl :/#d#
1433 &_freetls; 1767# &_freetls;#d#
1434 } 1768 }
1435} 1769}
1436 1770
1437sub _freetls { 1771sub _freetls {
1438 my ($self) = @_; 1772 my ($self) = @_;
1439 1773
1440 return unless $self->{tls}; 1774 return unless $self->{tls};
1441 1775
1442 Net::SSLeay::free (delete $self->{tls}); 1776 $self->{tls_ctx}->_put_session (delete $self->{tls})
1777 if $self->{tls} > 0;
1443 1778
1444 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1779 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1445} 1780}
1446 1781
1447sub DESTROY { 1782sub DESTROY {
1448 my $self = shift; 1783 my ($self) = @_;
1449 1784
1450 &_freetls; 1785 &_freetls;
1451 1786
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1787 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453 1788
1454 if ($linger && length $self->{wbuf}) { 1789 if ($linger && length $self->{wbuf} && $self->{fh}) {
1455 my $fh = delete $self->{fh}; 1790 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf}; 1791 my $wbuf = delete $self->{wbuf};
1457 1792
1458 my @linger; 1793 my @linger;
1459 1794
1472 } 1807 }
1473} 1808}
1474 1809
1475=item $handle->destroy 1810=item $handle->destroy
1476 1811
1477Shut's down the handle object as much as possible - this call ensures that 1812Shuts down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much 1813no further callbacks will be invoked and as many resources as possible
1479as possible. You must not call any methods on the object afterwards. 1814will be freed. Any method you will call on the handle object after
1815destroying it in this way will be silently ignored (and it will return the
1816empty list).
1817
1818Normally, you can just "forget" any references to an AnyEvent::Handle
1819object and it will simply shut down. This works in fatal error and EOF
1820callbacks, as well as code outside. It does I<NOT> work in a read or write
1821callback, so when you want to destroy the AnyEvent::Handle object from
1822within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1823that case.
1824
1825Destroying the handle object in this way has the advantage that callbacks
1826will be removed as well, so if those are the only reference holders (as
1827is common), then one doesn't need to do anything special to break any
1828reference cycles.
1480 1829
1481The handle might still linger in the background and write out remaining 1830The handle might still linger in the background and write out remaining
1482data, as specified by the C<linger> option, however. 1831data, as specified by the C<linger> option, however.
1483 1832
1484=cut 1833=cut
1486sub destroy { 1835sub destroy {
1487 my ($self) = @_; 1836 my ($self) = @_;
1488 1837
1489 $self->DESTROY; 1838 $self->DESTROY;
1490 %$self = (); 1839 %$self = ();
1840 bless $self, "AnyEvent::Handle::destroyed";
1841}
1842
1843sub AnyEvent::Handle::destroyed::AUTOLOAD {
1844 #nop
1491} 1845}
1492 1846
1493=item AnyEvent::Handle::TLS_CTX 1847=item AnyEvent::Handle::TLS_CTX
1494 1848
1495This function creates and returns the Net::SSLeay::CTX object used by 1849This function creates and returns the AnyEvent::TLS object used by default
1496default for TLS mode. 1850for TLS mode.
1497 1851
1498The context is created like this: 1852The context is created by calling L<AnyEvent::TLS> without any arguments.
1499
1500 Net::SSLeay::load_error_strings;
1501 Net::SSLeay::SSLeay_add_ssl_algorithms;
1502 Net::SSLeay::randomize;
1503
1504 my $CTX = Net::SSLeay::CTX_new;
1505
1506 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1507 1853
1508=cut 1854=cut
1509 1855
1510our $TLS_CTX; 1856our $TLS_CTX;
1511 1857
1512sub TLS_CTX() { 1858sub TLS_CTX() {
1513 $TLS_CTX || do { 1859 $TLS_CTX ||= do {
1514 require Net::SSLeay; 1860 require AnyEvent::TLS;
1515 1861
1516 Net::SSLeay::load_error_strings (); 1862 new AnyEvent::TLS
1517 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1518 Net::SSLeay::randomize ();
1519
1520 $TLS_CTX = Net::SSLeay::CTX_new ();
1521
1522 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1523
1524 $TLS_CTX
1525 } 1863 }
1526} 1864}
1527 1865
1528=back 1866=back
1529 1867
1530 1868
1531=head1 NONFREQUENTLY ASKED QUESTIONS 1869=head1 NONFREQUENTLY ASKED QUESTIONS
1532 1870
1533=over 4 1871=over 4
1872
1873=item I C<undef> the AnyEvent::Handle reference inside my callback and
1874still get further invocations!
1875
1876That's because AnyEvent::Handle keeps a reference to itself when handling
1877read or write callbacks.
1878
1879It is only safe to "forget" the reference inside EOF or error callbacks,
1880from within all other callbacks, you need to explicitly call the C<<
1881->destroy >> method.
1882
1883=item I get different callback invocations in TLS mode/Why can't I pause
1884reading?
1885
1886Unlike, say, TCP, TLS connections do not consist of two independent
1887communication channels, one for each direction. Or put differently. The
1888read and write directions are not independent of each other: you cannot
1889write data unless you are also prepared to read, and vice versa.
1890
1891This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1892callback invocations when you are not expecting any read data - the reason
1893is that AnyEvent::Handle always reads in TLS mode.
1894
1895During the connection, you have to make sure that you always have a
1896non-empty read-queue, or an C<on_read> watcher. At the end of the
1897connection (or when you no longer want to use it) you can call the
1898C<destroy> method.
1534 1899
1535=item How do I read data until the other side closes the connection? 1900=item How do I read data until the other side closes the connection?
1536 1901
1537If you just want to read your data into a perl scalar, the easiest way 1902If you just want to read your data into a perl scalar, the easiest way
1538to achieve this is by setting an C<on_read> callback that does nothing, 1903to achieve this is by setting an C<on_read> callback that does nothing,
1541 1906
1542 $handle->on_read (sub { }); 1907 $handle->on_read (sub { });
1543 $handle->on_eof (undef); 1908 $handle->on_eof (undef);
1544 $handle->on_error (sub { 1909 $handle->on_error (sub {
1545 my $data = delete $_[0]{rbuf}; 1910 my $data = delete $_[0]{rbuf};
1546 undef $handle;
1547 }); 1911 });
1548 1912
1549The reason to use C<on_error> is that TCP connections, due to latencies 1913The reason to use C<on_error> is that TCP connections, due to latencies
1550and packets loss, might get closed quite violently with an error, when in 1914and packets loss, might get closed quite violently with an error, when in
1551fact, all data has been received. 1915fact, all data has been received.
1552 1916
1553It is usually better to use acknowledgements when transfering data, 1917It is usually better to use acknowledgements when transferring data,
1554to make sure the other side hasn't just died and you got the data 1918to make sure the other side hasn't just died and you got the data
1555intact. This is also one reason why so many internet protocols have an 1919intact. This is also one reason why so many internet protocols have an
1556explicit QUIT command. 1920explicit QUIT command.
1557
1558 1921
1559=item I don't want to destroy the handle too early - how do I wait until 1922=item I don't want to destroy the handle too early - how do I wait until
1560all data has been written? 1923all data has been written?
1561 1924
1562After writing your last bits of data, set the C<on_drain> callback 1925After writing your last bits of data, set the C<on_drain> callback
1568 $handle->on_drain (sub { 1931 $handle->on_drain (sub {
1569 warn "all data submitted to the kernel\n"; 1932 warn "all data submitted to the kernel\n";
1570 undef $handle; 1933 undef $handle;
1571 }); 1934 });
1572 1935
1573=item I get different callback invocations in TLS mode/Why can't I pause 1936If you just want to queue some data and then signal EOF to the other side,
1574reading? 1937consider using C<< ->push_shutdown >> instead.
1575 1938
1576Unlike, say, TCP, TLS conenctions do not consist of two independent 1939=item I want to contact a TLS/SSL server, I don't care about security.
1577communication channels, one for each direction. Or put differently. the
1578read and write directions are not independent of each other: you cannot
1579write data unless you are also prepared to read, and vice versa.
1580 1940
1581This can mean than, in TLS mode, you might get C<on_error> or C<on_eof> 1941If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1582callback invocations when you are not expecting any read data - the reason 1942simply connect to it and then create the AnyEvent::Handle with the C<tls>
1583is that AnyEvent::Handle always reads in TLS mode. 1943parameter:
1584 1944
1585During the connection, you have to make sure that you always have a 1945 tcp_connect $host, $port, sub {
1586non-empty read-queue, or an C<on_read> watcher. At the end of the 1946 my ($fh) = @_;
1587connection (or when you no longer want to use it) you can call the 1947
1588C<destroy> method. 1948 my $handle = new AnyEvent::Handle
1949 fh => $fh,
1950 tls => "connect",
1951 on_error => sub { ... };
1952
1953 $handle->push_write (...);
1954 };
1955
1956=item I want to contact a TLS/SSL server, I do care about security.
1957
1958Then you should additionally enable certificate verification, including
1959peername verification, if the protocol you use supports it (see
1960L<AnyEvent::TLS>, C<verify_peername>).
1961
1962E.g. for HTTPS:
1963
1964 tcp_connect $host, $port, sub {
1965 my ($fh) = @_;
1966
1967 my $handle = new AnyEvent::Handle
1968 fh => $fh,
1969 peername => $host,
1970 tls => "connect",
1971 tls_ctx => { verify => 1, verify_peername => "https" },
1972 ...
1973
1974Note that you must specify the hostname you connected to (or whatever
1975"peername" the protocol needs) as the C<peername> argument, otherwise no
1976peername verification will be done.
1977
1978The above will use the system-dependent default set of trusted CA
1979certificates. If you want to check against a specific CA, add the
1980C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1981
1982 tls_ctx => {
1983 verify => 1,
1984 verify_peername => "https",
1985 ca_file => "my-ca-cert.pem",
1986 },
1987
1988=item I want to create a TLS/SSL server, how do I do that?
1989
1990Well, you first need to get a server certificate and key. You have
1991three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1992self-signed certificate (cheap. check the search engine of your choice,
1993there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1994nice program for that purpose).
1995
1996Then create a file with your private key (in PEM format, see
1997L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1998file should then look like this:
1999
2000 -----BEGIN RSA PRIVATE KEY-----
2001 ...header data
2002 ... lots of base64'y-stuff
2003 -----END RSA PRIVATE KEY-----
2004
2005 -----BEGIN CERTIFICATE-----
2006 ... lots of base64'y-stuff
2007 -----END CERTIFICATE-----
2008
2009The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2010specify this file as C<cert_file>:
2011
2012 tcp_server undef, $port, sub {
2013 my ($fh) = @_;
2014
2015 my $handle = new AnyEvent::Handle
2016 fh => $fh,
2017 tls => "accept",
2018 tls_ctx => { cert_file => "my-server-keycert.pem" },
2019 ...
2020
2021When you have intermediate CA certificates that your clients might not
2022know about, just append them to the C<cert_file>.
1589 2023
1590=back 2024=back
1591 2025
1592 2026
1593=head1 SUBCLASSING AnyEvent::Handle 2027=head1 SUBCLASSING AnyEvent::Handle

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines