ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.59 by root, Thu Jun 5 16:53:11 2008 UTC vs.
Revision 1.167 by root, Tue Jul 28 11:02:19 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.13; 16our $VERSION = 4.881;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
107=item on_read => $cb->($handle) 168=item on_read => $cb->($handle)
108 169
109This sets the default read callback, which is called when data arrives 170This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 171and no read request is in the queue (unlike read queue callbacks, this
172callback will only be called when at least one octet of data is in the
173read buffer).
111 174
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
114 179
115When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
119 184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
205
120=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
121 207
122This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
124 210
125To append to the write buffer, use the C<< ->push_write >> method. 211To append to the write buffer, use the C<< ->push_write >> method.
212
213This callback is useful when you don't want to put all of your write data
214into the queue at once, for example, when you want to write the contents
215of some file to the socket you might not want to read the whole file into
216memory and push it into the queue, but instead only read more data from
217the file when the write queue becomes empty.
126 218
127=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
128 220
129If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 225
134Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
138 231
139Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
140 233
141=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
142 235
146 239
147=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
148 241
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
152 245
153For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
157isn't finished). 250isn't finished).
158 251
252=item autocork => <boolean>
253
254When disabled (the default), then C<push_write> will try to immediately
255write the data to the handle, if possible. This avoids having to register
256a write watcher and wait for the next event loop iteration, but can
257be inefficient if you write multiple small chunks (on the wire, this
258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
260
261When enabled, then writes will always be queued till the next event loop
262iteration. This is efficient when you do many small writes per iteration,
263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
265
266=item no_delay => <boolean>
267
268When doing small writes on sockets, your operating system kernel might
269wait a bit for more data before actually sending it out. This is called
270the Nagle algorithm, and usually it is beneficial.
271
272In some situations you want as low a delay as possible, which can be
273accomplishd by setting this option to a true value.
274
275The default is your opertaing system's default behaviour (most likely
276enabled), this option explicitly enables or disables it, if possible.
277
159=item read_size => <bytes> 278=item read_size => <bytes>
160 279
161The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
163 283
164=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
165 285
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
168considered empty. 288considered empty.
169 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
295=item linger => <seconds>
296
297If non-zero (default: C<3600>), then the destructor of the
298AnyEvent::Handle object will check whether there is still outstanding
299write data and will install a watcher that will write this data to the
300socket. No errors will be reported (this mostly matches how the operating
301system treats outstanding data at socket close time).
302
303This will not work for partial TLS data that could not be encoded
304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 318
172When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
175 325
176TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
178 330
179For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
181 334
182You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
186 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
187See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 351
189=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
190 353
191Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
195=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
196 395
197This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
198 397
199If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
201 401
202Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
204 404
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 405=back
212 406
213=cut 407=cut
214 408
215sub new { 409sub new {
216 my $class = shift; 410 my $class = shift;
217
218 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
219 412
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
221 476
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228 478
229 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
230 $self->_timeout; 480 $self->_timeout;
231 481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 488
235 $self 489 $self->start_read
236} 490 if $self->{on_read} || @{ $self->{_queue} };
237 491
492 $self->_drain_wbuf;
493}
494
238sub _shutdown { 495#sub _shutdown {
239 my ($self) = @_; 496# my ($self) = @_;
240 497#
241 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
242 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
243 delete $self->{_ww}; 500#
244 delete $self->{fh}; 501# &_freetls;
245 502#}
246 $self->stoptls;
247}
248 503
249sub _error { 504sub _error {
250 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
251
252 $self->_shutdown
253 if $fatal;
254 506
255 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
256 509
257 if ($self->{on_error}) { 510 if ($self->{on_error}) {
258 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
259 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
261 } 516 }
262} 517}
263 518
264=item $fh = $handle->fh 519=item $fh = $handle->fh
265 520
266This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
267 522
268=cut 523=cut
269 524
270sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
271 526
289 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
290} 545}
291 546
292=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
293 548
294Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
295(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
296argument. 551argument and method.
297 552
298=cut 553=cut
299 554
300sub on_timeout { 555sub on_timeout {
301 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
557}
558
559=item $handle->autocork ($boolean)
560
561Enables or disables the current autocork behaviour (see C<autocork>
562constructor argument). Changes will only take effect on the next write.
563
564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
569
570=item $handle->no_delay ($boolean)
571
572Enables or disables the C<no_delay> setting (see constructor argument of
573the same name for details).
574
575=cut
576
577sub no_delay {
578 $_[0]{no_delay} = $_[1];
579
580 eval {
581 local $SIG{__DIE__};
582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
302} 605}
303 606
304############################################################################# 607#############################################################################
305 608
306=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
319# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
320# also check for time-outs 623# also check for time-outs
321sub _timeout { 624sub _timeout {
322 my ($self) = @_; 625 my ($self) = @_;
323 626
324 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
325 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
326 629
327 # when would the timeout trigger? 630 # when would the timeout trigger?
328 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
329 632
332 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
333 636
334 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
335 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
336 } else { 639 } else {
337 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
338 } 641 }
339 642
340 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
341 return unless $self->{timeout}; 644 return unless $self->{timeout};
342 645
384 my ($self, $cb) = @_; 687 my ($self, $cb) = @_;
385 688
386 $self->{on_drain} = $cb; 689 $self->{on_drain} = $cb;
387 690
388 $cb->($self) 691 $cb->($self)
389 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 692 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
390} 693}
391 694
392=item $handle->push_write ($data) 695=item $handle->push_write ($data)
393 696
394Queues the given scalar to be written. You can push as much data as you 697Queues the given scalar to be written. You can push as much data as you
405 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
406 709
407 my $cb = sub { 710 my $cb = sub {
408 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
409 712
410 if ($len >= 0) { 713 if (defined $len) {
411 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
412 715
413 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
414 717
415 $self->{on_drain}($self) 718 $self->{on_drain}($self)
416 if $self->{low_water_mark} >= length $self->{wbuf} 719 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
417 && $self->{on_drain}; 720 && $self->{on_drain};
418 721
419 delete $self->{_ww} unless length $self->{wbuf}; 722 delete $self->{_ww} unless length $self->{wbuf};
420 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 723 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 $self->_error ($!, 1); 724 $self->_error ($!, 1);
422 } 725 }
423 }; 726 };
424 727
425 # try to write data immediately 728 # try to write data immediately
426 $cb->(); 729 $cb->() unless $self->{autocork};
427 730
428 # if still data left in wbuf, we need to poll 731 # if still data left in wbuf, we need to poll
429 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 732 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
430 if length $self->{wbuf}; 733 if length $self->{wbuf};
431 }; 734 };
445 748
446 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 749 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447 ->($self, @_); 750 ->($self, @_);
448 } 751 }
449 752
450 if ($self->{filter_w}) { 753 if ($self->{tls}) {
451 $self->{filter_w}($self, \$_[0]); 754 $self->{_tls_wbuf} .= $_[0];
755 &_dotls ($self) if $self->{fh};
452 } else { 756 } else {
453 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
454 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
455 } 759 }
456} 760}
457 761
458=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
459 763
473=cut 777=cut
474 778
475register_write_type netstring => sub { 779register_write_type netstring => sub {
476 my ($self, $string) = @_; 780 my ($self, $string) = @_;
477 781
478 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
783};
784
785=item packstring => $format, $data
786
787An octet string prefixed with an encoded length. The encoding C<$format>
788uses the same format as a Perl C<pack> format, but must specify a single
789integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
790optional C<!>, C<< < >> or C<< > >> modifier).
791
792=cut
793
794register_write_type packstring => sub {
795 my ($self, $format, $string) = @_;
796
797 pack "$format/a*", $string
479}; 798};
480 799
481=item json => $array_or_hashref 800=item json => $array_or_hashref
482 801
483Encodes the given hash or array reference into a JSON object. Unless you 802Encodes the given hash or array reference into a JSON object. Unless you
517 836
518 $self->{json} ? $self->{json}->encode ($ref) 837 $self->{json} ? $self->{json}->encode ($ref)
519 : JSON::encode_json ($ref) 838 : JSON::encode_json ($ref)
520}; 839};
521 840
841=item storable => $reference
842
843Freezes the given reference using L<Storable> and writes it to the
844handle. Uses the C<nfreeze> format.
845
846=cut
847
848register_write_type storable => sub {
849 my ($self, $ref) = @_;
850
851 require Storable;
852
853 pack "w/a*", Storable::nfreeze ($ref)
854};
855
522=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
523 882
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 884
526This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 907ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 908a queue.
550 909
551In the simple case, you just install an C<on_read> callback and whenever 910In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 911new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 912enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 913leave the data there if you want to accumulate more (e.g. when only a
914partial message has been received so far).
555 915
556In the more complex case, you want to queue multiple callbacks. In this 916In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 917case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 918data arrives (also the first time it is queued) and removes it when it has
559below). 919done its job (see C<push_read>, below).
560 920
561This way you can, for example, push three line-reads, followed by reading 921This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 922a chunk of data, and AnyEvent::Handle will execute them in order.
563 923
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 924Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
577 # handle xml 937 # handle xml
578 }); 938 });
579 }); 939 });
580 }); 940 });
581 941
582Example 2: Implement a client for a protocol that replies either with 942Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 943and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 944bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 945just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 946in the callbacks.
587 947
588 # request one 948When the first callback is called and sees an "OK" response, it will
949C<unshift> another line-read. This line-read will be queued I<before> the
95064-byte chunk callback.
951
952 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 953 $handle->push_write ("request 1\015\012");
590 954
591 # we expect "ERROR" or "OK" as response, so push a line read 955 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read (line => sub { 956 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 957 # if we got an "OK", we have to _prepend_ another line,
600 ... 964 ...
601 }); 965 });
602 } 966 }
603 }); 967 });
604 968
605 # request two 969 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 970 $handle->push_write ("request 2\015\012");
607 971
608 # simply read 64 bytes, always 972 # simply read 64 bytes, always
609 $handle->push_read (chunk => 64, sub { 973 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 974 my $response = $_[1];
616=cut 980=cut
617 981
618sub _drain_rbuf { 982sub _drain_rbuf {
619 my ($self) = @_; 983 my ($self) = @_;
620 984
985 # avoid recursion
986 return if $self->{_skip_drain_rbuf};
621 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
622 988
623 if ( 989 if (
624 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
625 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
626 ) { 992 ) {
627 return $self->_error (&Errno::ENOSPC, 1); 993 $self->_error (Errno::ENOSPC, 1), return;
628 } 994 }
629 995
630 while () { 996 while () {
631 no strict 'refs'; 997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
632 1001
633 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
634 1003
635 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
1006 # no progress can be made
1007 # (not enough data and no data forthcoming)
1008 $self->_error (Errno::EPIPE, 1), return
637 if ($self->{_eof}) { 1009 if $self->{_eof};
638 # no progress can be made (not enough data and no data forthcoming)
639 return $self->_error (&Errno::EPIPE, 1);
640 }
641 1010
642 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
643 last; 1012 last;
644 } 1013 }
645 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
1015 last unless $len;
1016
646 $self->{on_read}($self); 1017 $self->{on_read}($self);
647 1018
648 if ( 1019 if (
649 $len == length $self->{rbuf} # if no data has been consumed 1020 $len == length $self->{rbuf} # if no data has been consumed
650 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
651 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
652 ) { 1023 ) {
653 # no further data will arrive 1024 # no further data will arrive
654 # so no progress can be made 1025 # so no progress can be made
655 return $self->_error (&Errno::EPIPE, 1) 1026 $self->_error (Errno::EPIPE, 1), return
656 if $self->{_eof}; 1027 if $self->{_eof};
657 1028
658 last; # more data might arrive 1029 last; # more data might arrive
659 } 1030 }
660 } else { 1031 } else {
661 # read side becomes idle 1032 # read side becomes idle
662 delete $self->{_rw}; 1033 delete $self->{_rw} unless $self->{tls};
663 last; 1034 last;
664 } 1035 }
665 } 1036 }
666 1037
1038 if ($self->{_eof}) {
1039 $self->{on_eof}
667 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
668 if $self->{_eof} && $self->{on_eof}; 1041 : $self->_error (0, 1, "Unexpected end-of-file");
1042
1043 return;
1044 }
669 1045
670 # may need to restart read watcher 1046 # may need to restart read watcher
671 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
672 $self->start_read 1048 $self->start_read
673 if $self->{on_read} || @{ $self->{_queue} }; 1049 if $self->{on_read} || @{ $self->{_queue} };
684 1060
685sub on_read { 1061sub on_read {
686 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
687 1063
688 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
689 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
690} 1066}
691 1067
692=item $handle->rbuf 1068=item $handle->rbuf
693 1069
694Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
695 1071
696You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
697you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
698 1077
699NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
700C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
701automatically manage the read buffer. 1080automatically manage the read buffer.
702 1081
743 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
744 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
745 } 1124 }
746 1125
747 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
748 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
749} 1128}
750 1129
751sub unshift_read { 1130sub unshift_read {
752 my $self = shift; 1131 my $self = shift;
753 my $cb = pop; 1132 my $cb = pop;
759 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
760 } 1139 }
761 1140
762 1141
763 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
764 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
765} 1144}
766 1145
767=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
768 1147
769=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
799 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1178 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 1 1179 1
801 } 1180 }
802}; 1181};
803 1182
804# compatibility with older API
805sub push_read_chunk {
806 $_[0]->push_read (chunk => $_[1], $_[2]);
807}
808
809sub unshift_read_chunk {
810 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811}
812
813=item line => [$eol, ]$cb->($handle, $line, $eol) 1183=item line => [$eol, ]$cb->($handle, $line, $eol)
814 1184
815The callback will be called only once a full line (including the end of 1185The callback will be called only once a full line (including the end of
816line marker, C<$eol>) has been read. This line (excluding the end of line 1186line marker, C<$eol>) has been read. This line (excluding the end of line
817marker) will be passed to the callback as second argument (C<$line>), and 1187marker) will be passed to the callback as second argument (C<$line>), and
832=cut 1202=cut
833 1203
834register_read_type line => sub { 1204register_read_type line => sub {
835 my ($self, $cb, $eol) = @_; 1205 my ($self, $cb, $eol) = @_;
836 1206
837 $eol = qr|(\015?\012)| if @_ < 3; 1207 if (@_ < 3) {
838 $eol = quotemeta $eol unless ref $eol; 1208 # this is more than twice as fast as the generic code below
839 $eol = qr|^(.*?)($eol)|s;
840
841 sub { 1209 sub {
842 $_[0]{rbuf} =~ s/$eol// or return; 1210 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
843 1211
844 $cb->($_[0], $1, $2); 1212 $cb->($_[0], $1, $2);
845 1
846 }
847};
848
849# compatibility with older API
850sub push_read_line {
851 my $self = shift;
852 $self->push_read (line => @_);
853}
854
855sub unshift_read_line {
856 my $self = shift;
857 $self->unshift_read (line => @_);
858}
859
860=item netstring => $cb->($handle, $string)
861
862A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863
864Throws an error with C<$!> set to EBADMSG on format violations.
865
866=cut
867
868register_read_type netstring => sub {
869 my ($self, $cb) = @_;
870
871 sub {
872 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873 if ($_[0]{rbuf} =~ /[^0-9]/) {
874 $self->_error (&Errno::EBADMSG);
875 } 1213 1
876 return;
877 } 1214 }
1215 } else {
1216 $eol = quotemeta $eol unless ref $eol;
1217 $eol = qr|^(.*?)($eol)|s;
878 1218
879 my $len = $1; 1219 sub {
1220 $_[0]{rbuf} =~ s/$eol// or return;
880 1221
881 $self->unshift_read (chunk => $len, sub { 1222 $cb->($_[0], $1, $2);
882 my $string = $_[1];
883 $_[0]->unshift_read (chunk => 1, sub {
884 if ($_[1] eq ",") {
885 $cb->($_[0], $string);
886 } else {
887 $self->_error (&Errno::EBADMSG);
888 }
889 }); 1223 1
890 }); 1224 }
891
892 1
893 } 1225 }
894}; 1226};
895 1227
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1228=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1229
949 return 1; 1281 return 1;
950 } 1282 }
951 1283
952 # reject 1284 # reject
953 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
954 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
955 } 1287 }
956 1288
957 # skip 1289 # skip
958 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
959 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
961 1293
962 () 1294 ()
963 } 1295 }
964}; 1296};
965 1297
1298=item netstring => $cb->($handle, $string)
1299
1300A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1301
1302Throws an error with C<$!> set to EBADMSG on format violations.
1303
1304=cut
1305
1306register_read_type netstring => sub {
1307 my ($self, $cb) = @_;
1308
1309 sub {
1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1312 $self->_error (Errno::EBADMSG);
1313 }
1314 return;
1315 }
1316
1317 my $len = $1;
1318
1319 $self->unshift_read (chunk => $len, sub {
1320 my $string = $_[1];
1321 $_[0]->unshift_read (chunk => 1, sub {
1322 if ($_[1] eq ",") {
1323 $cb->($_[0], $string);
1324 } else {
1325 $self->_error (Errno::EBADMSG);
1326 }
1327 });
1328 });
1329
1330 1
1331 }
1332};
1333
1334=item packstring => $format, $cb->($handle, $string)
1335
1336An octet string prefixed with an encoded length. The encoding C<$format>
1337uses the same format as a Perl C<pack> format, but must specify a single
1338integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1339optional C<!>, C<< < >> or C<< > >> modifier).
1340
1341For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342EPP uses a prefix of C<N> (4 octtes).
1343
1344Example: read a block of data prefixed by its length in BER-encoded
1345format (very efficient).
1346
1347 $handle->push_read (packstring => "w", sub {
1348 my ($handle, $data) = @_;
1349 });
1350
1351=cut
1352
1353register_read_type packstring => sub {
1354 my ($self, $cb, $format) = @_;
1355
1356 sub {
1357 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1358 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1359 or return;
1360
1361 $format = length pack $format, $len;
1362
1363 # bypass unshift if we already have the remaining chunk
1364 if ($format + $len <= length $_[0]{rbuf}) {
1365 my $data = substr $_[0]{rbuf}, $format, $len;
1366 substr $_[0]{rbuf}, 0, $format + $len, "";
1367 $cb->($_[0], $data);
1368 } else {
1369 # remove prefix
1370 substr $_[0]{rbuf}, 0, $format, "";
1371
1372 # read remaining chunk
1373 $_[0]->unshift_read (chunk => $len, $cb);
1374 }
1375
1376 1
1377 }
1378};
1379
966=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
967 1381
968Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
969 1384
970If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
971for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972 1387
973This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
980the C<json> write type description, above, for an actual example. 1395the C<json> write type description, above, for an actual example.
981 1396
982=cut 1397=cut
983 1398
984register_read_type json => sub { 1399register_read_type json => sub {
985 my ($self, $cb, $accept, $reject, $skip) = @_; 1400 my ($self, $cb) = @_;
986 1401
987 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
988 1405
989 my $data; 1406 my $data;
990 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
991 1408
992 my $json = $self->{json} ||= JSON->new->utf8;
993
994 sub { 1409 sub {
995 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
996 1411
997 if ($ref) { 1412 if ($ref) {
998 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
999 $json->incr_text = ""; 1414 $json->incr_text = "";
1000 $cb->($self, $ref); 1415 $cb->($self, $ref);
1001 1416
1002 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1003 } else { 1428 } else {
1004 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1005 () 1431 ()
1006 } 1432 }
1433 }
1434};
1435
1436=item storable => $cb->($handle, $ref)
1437
1438Deserialises a L<Storable> frozen representation as written by the
1439C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1440data).
1441
1442Raises C<EBADMSG> error if the data could not be decoded.
1443
1444=cut
1445
1446register_read_type storable => sub {
1447 my ($self, $cb) = @_;
1448
1449 require Storable;
1450
1451 sub {
1452 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1453 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1454 or return;
1455
1456 my $format = length pack "w", $len;
1457
1458 # bypass unshift if we already have the remaining chunk
1459 if ($format + $len <= length $_[0]{rbuf}) {
1460 my $data = substr $_[0]{rbuf}, $format, $len;
1461 substr $_[0]{rbuf}, 0, $format + $len, "";
1462 $cb->($_[0], Storable::thaw ($data));
1463 } else {
1464 # remove prefix
1465 substr $_[0]{rbuf}, 0, $format, "";
1466
1467 # read remaining chunk
1468 $_[0]->unshift_read (chunk => $len, sub {
1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1470 $cb->($_[0], $ref);
1471 } else {
1472 $self->_error (Errno::EBADMSG);
1473 }
1474 });
1475 }
1476
1477 1
1007 } 1478 }
1008}; 1479};
1009 1480
1010=back 1481=back
1011 1482
1041Note that AnyEvent::Handle will automatically C<start_read> for you when 1512Note that AnyEvent::Handle will automatically C<start_read> for you when
1042you change the C<on_read> callback or push/unshift a read callback, and it 1513you change the C<on_read> callback or push/unshift a read callback, and it
1043will automatically C<stop_read> for you when neither C<on_read> is set nor 1514will automatically C<stop_read> for you when neither C<on_read> is set nor
1044there are any read requests in the queue. 1515there are any read requests in the queue.
1045 1516
1517These methods will have no effect when in TLS mode (as TLS doesn't support
1518half-duplex connections).
1519
1046=cut 1520=cut
1047 1521
1048sub stop_read { 1522sub stop_read {
1049 my ($self) = @_; 1523 my ($self) = @_;
1050 1524
1051 delete $self->{_rw}; 1525 delete $self->{_rw} unless $self->{tls};
1052} 1526}
1053 1527
1054sub start_read { 1528sub start_read {
1055 my ($self) = @_; 1529 my ($self) = @_;
1056 1530
1057 unless ($self->{_rw} || $self->{_eof}) { 1531 unless ($self->{_rw} || $self->{_eof}) {
1058 Scalar::Util::weaken $self; 1532 Scalar::Util::weaken $self;
1059 1533
1060 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1534 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1061 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1535 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1062 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1536 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1063 1537
1064 if ($len > 0) { 1538 if ($len > 0) {
1065 $self->{_activity} = AnyEvent->now; 1539 $self->{_activity} = AnyEvent->now;
1066 1540
1067 $self->{filter_r} 1541 if ($self->{tls}) {
1068 ? $self->{filter_r}($self, $rbuf) 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1069 : $self->{_in_drain} || $self->_drain_rbuf; 1543
1544 &_dotls ($self);
1545 } else {
1546 $self->_drain_rbuf;
1547 }
1070 1548
1071 } elsif (defined $len) { 1549 } elsif (defined $len) {
1072 delete $self->{_rw}; 1550 delete $self->{_rw};
1073 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1074 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1075 1553
1076 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1077 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1078 } 1556 }
1079 }); 1557 });
1080 } 1558 }
1081} 1559}
1082 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1083sub _dotls { 1589sub _dotls {
1084 my ($self) = @_; 1590 my ($self) = @_;
1085 1591
1086 my $buf; 1592 my $tmp;
1087 1593
1088 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1089 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1090 substr $self->{_tls_wbuf}, 0, $len, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1091 } 1597 }
1092 }
1093 1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1603 }
1604
1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1606 unless (length $tmp) {
1607 $self->{_on_starttls}
1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1619 }
1620
1621 $self->{_tls_rbuf} .= $tmp;
1622 $self->_drain_rbuf;
1623 $self->{tls} or return; # tls session might have gone away in callback
1624 }
1625
1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1627 return $self->_tls_error ($tmp)
1628 if $tmp != $ERROR_WANT_READ
1629 && ($tmp != $ERROR_SYSCALL || $!);
1630
1094 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1095 $self->{wbuf} .= $buf; 1632 $self->{wbuf} .= $tmp;
1096 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1097 } 1634 }
1098 1635
1099 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1636 $self->{_on_starttls}
1100 if (length $buf) { 1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1101 $self->{rbuf} .= $buf; 1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1102 $self->_drain_rbuf unless $self->{_in_drain};
1103 } else {
1104 # let's treat SSL-eof as we treat normal EOF
1105 $self->{_eof} = 1;
1106 $self->_shutdown;
1107 return;
1108 }
1109 }
1110
1111 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1112
1113 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1114 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1115 return $self->_error ($!, 1);
1116 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1117 return $self->_error (&Errno::EIO, 1);
1118 }
1119
1120 # all others are fine for our purposes
1121 }
1122} 1639}
1123 1640
1124=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1125 1642
1126Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1127object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1128C<starttls>. 1645C<starttls>.
1129 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1130The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1131C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1132 1653
1133The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1134used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1135 1658
1136The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1137call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1138might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1139 1663
1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1667
1140=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1141 1671
1142sub starttls { 1672sub starttls {
1143 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1144 1674
1145 $self->stoptls; 1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1146 1677
1147 if ($ssl eq "accept") { 1678 $self->{tls} = $tls;
1148 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1679 $self->{tls_ctx} = $ctx if @_ > 2;
1149 Net::SSLeay::set_accept_state ($ssl); 1680
1150 } elsif ($ssl eq "connect") { 1681 return unless $self->{fh};
1151 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1682
1152 Net::SSLeay::set_connect_state ($ssl); 1683 require Net::SSLeay;
1684
1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1153 } 1703
1154 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1155 $self->{tls} = $ssl; 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1156 1706
1157 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1158 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1159 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1160 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1161 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1711 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1712 #
1713 # in short: this is a mess.
1714 #
1715 # note that we do not try to keep the length constant between writes as we are required to do.
1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1718 # have identity issues in that area.
1162 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1163 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1164 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1165 1723
1166 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1167 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 1726
1169 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1170 1728
1171 $self->{filter_w} = sub { 1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1172 $_[0]{_tls_wbuf} .= ${$_[1]}; 1730 if $self->{on_starttls};
1173 &_dotls; 1731
1174 }; 1732 &_dotls; # need to trigger the initial handshake
1175 $self->{filter_r} = sub { 1733 $self->start_read; # make sure we actually do read
1176 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1177 &_dotls;
1178 };
1179} 1734}
1180 1735
1181=item $handle->stoptls 1736=item $handle->stoptls
1182 1737
1183Destroys the SSL connection, if any. Partial read or write data will be 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1184lost. 1739sending a close notify to the other side, but since OpenSSL doesn't
1740support non-blocking shut downs, it is not guarenteed that you can re-use
1741the stream afterwards.
1185 1742
1186=cut 1743=cut
1187 1744
1188sub stoptls { 1745sub stoptls {
1189 my ($self) = @_; 1746 my ($self) = @_;
1190 1747
1191 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1748 if ($self->{tls}) {
1749 Net::SSLeay::shutdown ($self->{tls});
1192 1750
1193 delete $self->{_rbio}; 1751 &_dotls;
1194 delete $self->{_wbio}; 1752
1195 delete $self->{_tls_wbuf}; 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1196 delete $self->{filter_r}; 1754# # we, we... have to use openssl :/#d#
1197 delete $self->{filter_w}; 1755# &_freetls;#d#
1756 }
1757}
1758
1759sub _freetls {
1760 my ($self) = @_;
1761
1762 return unless $self->{tls};
1763
1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1766
1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1198} 1768}
1199 1769
1200sub DESTROY { 1770sub DESTROY {
1201 my $self = shift; 1771 my ($self) = @_;
1202 1772
1203 $self->stoptls; 1773 &_freetls;
1774
1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1776
1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1778 my $fh = delete $self->{fh};
1779 my $wbuf = delete $self->{wbuf};
1780
1781 my @linger;
1782
1783 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1784 my $len = syswrite $fh, $wbuf, length $wbuf;
1785
1786 if ($len > 0) {
1787 substr $wbuf, 0, $len, "";
1788 } else {
1789 @linger = (); # end
1790 }
1791 });
1792 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1793 @linger = ();
1794 });
1795 }
1796}
1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. Any method you will call on the handle object after
1803destroying it in this way will be silently ignored (and it will return the
1804empty list).
1805
1806Normally, you can just "forget" any references to an AnyEvent::Handle
1807object and it will simply shut down. This works in fatal error and EOF
1808callbacks, as well as code outside. It does I<NOT> work in a read or write
1809callback, so when you want to destroy the AnyEvent::Handle object from
1810within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1811that case.
1812
1813Destroying the handle object in this way has the advantage that callbacks
1814will be removed as well, so if those are the only reference holders (as
1815is common), then one doesn't need to do anything special to break any
1816reference cycles.
1817
1818The handle might still linger in the background and write out remaining
1819data, as specified by the C<linger> option, however.
1820
1821=cut
1822
1823sub destroy {
1824 my ($self) = @_;
1825
1826 $self->DESTROY;
1827 %$self = ();
1828 bless $self, "AnyEvent::Handle::destroyed";
1829}
1830
1831sub AnyEvent::Handle::destroyed::AUTOLOAD {
1832 #nop
1204} 1833}
1205 1834
1206=item AnyEvent::Handle::TLS_CTX 1835=item AnyEvent::Handle::TLS_CTX
1207 1836
1208This function creates and returns the Net::SSLeay::CTX object used by 1837This function creates and returns the AnyEvent::TLS object used by default
1209default for TLS mode. 1838for TLS mode.
1210 1839
1211The context is created like this: 1840The context is created by calling L<AnyEvent::TLS> without any arguments.
1212
1213 Net::SSLeay::load_error_strings;
1214 Net::SSLeay::SSLeay_add_ssl_algorithms;
1215 Net::SSLeay::randomize;
1216
1217 my $CTX = Net::SSLeay::CTX_new;
1218
1219 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1220 1841
1221=cut 1842=cut
1222 1843
1223our $TLS_CTX; 1844our $TLS_CTX;
1224 1845
1225sub TLS_CTX() { 1846sub TLS_CTX() {
1226 $TLS_CTX || do { 1847 $TLS_CTX ||= do {
1227 require Net::SSLeay; 1848 require AnyEvent::TLS;
1228 1849
1229 Net::SSLeay::load_error_strings (); 1850 new AnyEvent::TLS
1230 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1231 Net::SSLeay::randomize ();
1232
1233 $TLS_CTX = Net::SSLeay::CTX_new ();
1234
1235 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1236
1237 $TLS_CTX
1238 } 1851 }
1239} 1852}
1240 1853
1241=back 1854=back
1855
1856
1857=head1 NONFREQUENTLY ASKED QUESTIONS
1858
1859=over 4
1860
1861=item I C<undef> the AnyEvent::Handle reference inside my callback and
1862still get further invocations!
1863
1864That's because AnyEvent::Handle keeps a reference to itself when handling
1865read or write callbacks.
1866
1867It is only safe to "forget" the reference inside EOF or error callbacks,
1868from within all other callbacks, you need to explicitly call the C<<
1869->destroy >> method.
1870
1871=item I get different callback invocations in TLS mode/Why can't I pause
1872reading?
1873
1874Unlike, say, TCP, TLS connections do not consist of two independent
1875communication channels, one for each direction. Or put differently. The
1876read and write directions are not independent of each other: you cannot
1877write data unless you are also prepared to read, and vice versa.
1878
1879This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1880callback invocations when you are not expecting any read data - the reason
1881is that AnyEvent::Handle always reads in TLS mode.
1882
1883During the connection, you have to make sure that you always have a
1884non-empty read-queue, or an C<on_read> watcher. At the end of the
1885connection (or when you no longer want to use it) you can call the
1886C<destroy> method.
1887
1888=item How do I read data until the other side closes the connection?
1889
1890If you just want to read your data into a perl scalar, the easiest way
1891to achieve this is by setting an C<on_read> callback that does nothing,
1892clearing the C<on_eof> callback and in the C<on_error> callback, the data
1893will be in C<$_[0]{rbuf}>:
1894
1895 $handle->on_read (sub { });
1896 $handle->on_eof (undef);
1897 $handle->on_error (sub {
1898 my $data = delete $_[0]{rbuf};
1899 });
1900
1901The reason to use C<on_error> is that TCP connections, due to latencies
1902and packets loss, might get closed quite violently with an error, when in
1903fact, all data has been received.
1904
1905It is usually better to use acknowledgements when transferring data,
1906to make sure the other side hasn't just died and you got the data
1907intact. This is also one reason why so many internet protocols have an
1908explicit QUIT command.
1909
1910=item I don't want to destroy the handle too early - how do I wait until
1911all data has been written?
1912
1913After writing your last bits of data, set the C<on_drain> callback
1914and destroy the handle in there - with the default setting of
1915C<low_water_mark> this will be called precisely when all data has been
1916written to the socket:
1917
1918 $handle->push_write (...);
1919 $handle->on_drain (sub {
1920 warn "all data submitted to the kernel\n";
1921 undef $handle;
1922 });
1923
1924If you just want to queue some data and then signal EOF to the other side,
1925consider using C<< ->push_shutdown >> instead.
1926
1927=item I want to contact a TLS/SSL server, I don't care about security.
1928
1929If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1930simply connect to it and then create the AnyEvent::Handle with the C<tls>
1931parameter:
1932
1933 tcp_connect $host, $port, sub {
1934 my ($fh) = @_;
1935
1936 my $handle = new AnyEvent::Handle
1937 fh => $fh,
1938 tls => "connect",
1939 on_error => sub { ... };
1940
1941 $handle->push_write (...);
1942 };
1943
1944=item I want to contact a TLS/SSL server, I do care about security.
1945
1946Then you should additionally enable certificate verification, including
1947peername verification, if the protocol you use supports it (see
1948L<AnyEvent::TLS>, C<verify_peername>).
1949
1950E.g. for HTTPS:
1951
1952 tcp_connect $host, $port, sub {
1953 my ($fh) = @_;
1954
1955 my $handle = new AnyEvent::Handle
1956 fh => $fh,
1957 peername => $host,
1958 tls => "connect",
1959 tls_ctx => { verify => 1, verify_peername => "https" },
1960 ...
1961
1962Note that you must specify the hostname you connected to (or whatever
1963"peername" the protocol needs) as the C<peername> argument, otherwise no
1964peername verification will be done.
1965
1966The above will use the system-dependent default set of trusted CA
1967certificates. If you want to check against a specific CA, add the
1968C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1969
1970 tls_ctx => {
1971 verify => 1,
1972 verify_peername => "https",
1973 ca_file => "my-ca-cert.pem",
1974 },
1975
1976=item I want to create a TLS/SSL server, how do I do that?
1977
1978Well, you first need to get a server certificate and key. You have
1979three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1980self-signed certificate (cheap. check the search engine of your choice,
1981there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1982nice program for that purpose).
1983
1984Then create a file with your private key (in PEM format, see
1985L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1986file should then look like this:
1987
1988 -----BEGIN RSA PRIVATE KEY-----
1989 ...header data
1990 ... lots of base64'y-stuff
1991 -----END RSA PRIVATE KEY-----
1992
1993 -----BEGIN CERTIFICATE-----
1994 ... lots of base64'y-stuff
1995 -----END CERTIFICATE-----
1996
1997The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1998specify this file as C<cert_file>:
1999
2000 tcp_server undef, $port, sub {
2001 my ($fh) = @_;
2002
2003 my $handle = new AnyEvent::Handle
2004 fh => $fh,
2005 tls => "accept",
2006 tls_ctx => { cert_file => "my-server-keycert.pem" },
2007 ...
2008
2009When you have intermediate CA certificates that your clients might not
2010know about, just append them to the C<cert_file>.
2011
2012=back
2013
1242 2014
1243=head1 SUBCLASSING AnyEvent::Handle 2015=head1 SUBCLASSING AnyEvent::Handle
1244 2016
1245In many cases, you might want to subclass AnyEvent::Handle. 2017In many cases, you might want to subclass AnyEvent::Handle.
1246 2018
1250=over 4 2022=over 4
1251 2023
1252=item * all constructor arguments become object members. 2024=item * all constructor arguments become object members.
1253 2025
1254At least initially, when you pass a C<tls>-argument to the constructor it 2026At least initially, when you pass a C<tls>-argument to the constructor it
1255will end up in C<< $handle->{tls} >>. Those members might be changes or 2027will end up in C<< $handle->{tls} >>. Those members might be changed or
1256mutated later on (for example C<tls> will hold the TLS connection object). 2028mutated later on (for example C<tls> will hold the TLS connection object).
1257 2029
1258=item * other object member names are prefixed with an C<_>. 2030=item * other object member names are prefixed with an C<_>.
1259 2031
1260All object members not explicitly documented (internal use) are prefixed 2032All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines