ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.59 by root, Thu Jun 5 16:53:11 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.13;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
107=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
108 170
109This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
111 175
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
114 180
115When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
119 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
120=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
121 208
122This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
124 211
125To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
126 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
127=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
128 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
129If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
130seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
131handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
132missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
133 237
134Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
138 243
139Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
140 245
141=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
142 247
146 251
147=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
148 253
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
152 257
153For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
157isn't finished). 262isn't finished).
158 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
159=item read_size => <bytes> 290=item read_size => <bytes>
160 291
161The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
163 295
164=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
165 297
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
168considered empty. 300considered empty.
169 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
307=item linger => <seconds>
308
309If non-zero (default: C<3600>), then the destructor of the
310AnyEvent::Handle object will check whether there is still outstanding
311write data and will install a watcher that will write this data to the
312socket. No errors will be reported (this mostly matches how the operating
313system treats outstanding data at socket close time).
314
315This will not work for partial TLS data that could not be encoded
316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 330
172When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
175 337
176TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
178 342
179For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
181 346
182You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
186 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
187See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 363
189=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
190 365
191Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
195=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
196 407
197This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
198 409
199If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
201 413
202Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
204 416
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 417=back
212 418
213=cut 419=cut
214 420
215sub new { 421sub new {
216 my $class = shift; 422 my $class = shift;
217
218 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
219 424
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
221 488
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 490
224 if ($self->{tls}) { 491 $self->{_activity} =
225 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 502 if $self->{tls};
228
229 $self->{_activity} = AnyEvent->now;
230 $self->_timeout;
231 503
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 505
235 $self 506 $self->start_read
236} 507 if $self->{on_read} || @{ $self->{_queue} };
237 508
238sub _shutdown { 509 $self->_drain_wbuf;
239 my ($self) = @_;
240
241 delete $self->{_tw};
242 delete $self->{_rw};
243 delete $self->{_ww};
244 delete $self->{fh};
245
246 $self->stoptls;
247} 510}
248 511
249sub _error { 512sub _error {
250 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
251
252 $self->_shutdown
253 if $fatal;
254 514
255 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
256 517
257 if ($self->{on_error}) { 518 if ($self->{on_error}) {
258 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
259 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
261 } 524 }
262} 525}
263 526
264=item $fh = $handle->fh 527=item $fh = $handle->fh
265 528
266This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
267 530
268=cut 531=cut
269 532
270sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
271 534
289 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
290} 553}
291 554
292=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
293 556
294Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
295(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
296argument.
297 558
298=cut 559=item $handle->on_wtimeout ($cb)
299 560
300sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
301 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
302} 625}
303 626
304############################################################################# 627#############################################################################
305 628
306=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
307 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
308Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
309 636
310=cut 637=item $handle->timeout_reset
311 638
312sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
313 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
314 662
315 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
316 $self->_timeout; 664 delete $self->{$tw}; &$cb;
317} 665 };
318 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
319# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
320# also check for time-outs 673 # also check for time-outs
321sub _timeout { 674 $cb = sub {
322 my ($self) = @_; 675 my ($self) = @_;
323 676
324 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
325 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
326 679
327 # when would the timeout trigger? 680 # when would the timeout trigger?
328 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
329 682
330 # now or in the past already? 683 # now or in the past already?
331 if ($after <= 0) { 684 if ($after <= 0) {
332 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
333 686
334 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
335 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
336 } else { 689 } else {
337 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
338 } 698 }
339 699
340 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
341 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
342 702
343 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
344 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
345 } 709 }
346
347 Scalar::Util::weaken $self;
348 return unless $self; # ->error could have destroyed $self
349
350 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
351 delete $self->{_tw};
352 $self->_timeout;
353 });
354 } else {
355 delete $self->{_tw};
356 } 710 }
357} 711}
358 712
359############################################################################# 713#############################################################################
360 714
384 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
385 739
386 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
387 741
388 $cb->($self) 742 $cb->($self)
389 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
390} 744}
391 745
392=item $handle->push_write ($data) 746=item $handle->push_write ($data)
393 747
394Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
405 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
406 760
407 my $cb = sub { 761 my $cb = sub {
408 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
409 763
410 if ($len >= 0) { 764 if (defined $len) {
411 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
412 766
413 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
414 768
415 $self->{on_drain}($self) 769 $self->{on_drain}($self)
416 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
417 && $self->{on_drain}; 771 && $self->{on_drain};
418 772
419 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
420 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 $self->_error ($!, 1); 775 $self->_error ($!, 1);
422 } 776 }
423 }; 777 };
424 778
425 # try to write data immediately 779 # try to write data immediately
426 $cb->(); 780 $cb->() unless $self->{autocork};
427 781
428 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
429 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
430 if length $self->{wbuf}; 784 if length $self->{wbuf};
431 }; 785 };
432} 786}
433 787
434our %WH; 788our %WH;
445 799
446 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447 ->($self, @_); 801 ->($self, @_);
448 } 802 }
449 803
450 if ($self->{filter_w}) { 804 if ($self->{tls}) {
451 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
452 } else { 807 } else {
453 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
454 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
455 } 810 }
456} 811}
457 812
458=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
459 814
473=cut 828=cut
474 829
475register_write_type netstring => sub { 830register_write_type netstring => sub {
476 my ($self, $string) = @_; 831 my ($self, $string) = @_;
477 832
478 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
834};
835
836=item packstring => $format, $data
837
838An octet string prefixed with an encoded length. The encoding C<$format>
839uses the same format as a Perl C<pack> format, but must specify a single
840integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
841optional C<!>, C<< < >> or C<< > >> modifier).
842
843=cut
844
845register_write_type packstring => sub {
846 my ($self, $format, $string) = @_;
847
848 pack "$format/a*", $string
479}; 849};
480 850
481=item json => $array_or_hashref 851=item json => $array_or_hashref
482 852
483Encodes the given hash or array reference into a JSON object. Unless you 853Encodes the given hash or array reference into a JSON object. Unless you
508Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
509this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
510 880
511=cut 881=cut
512 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
513register_write_type json => sub { 888register_write_type json => sub {
514 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
515 890
516 require JSON; 891 my $json = $self->{json} ||= json_coder;
517 892
518 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
519 : JSON::encode_json ($ref)
520}; 894};
521 895
896=item storable => $reference
897
898Freezes the given reference using L<Storable> and writes it to the
899handle. Uses the C<nfreeze> format.
900
901=cut
902
903register_write_type storable => sub {
904 my ($self, $ref) = @_;
905
906 require Storable;
907
908 pack "w/a*", Storable::nfreeze ($ref)
909};
910
522=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
523 937
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 939
526This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 962ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 963a queue.
550 964
551In the simple case, you just install an C<on_read> callback and whenever 965In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 966new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 967enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 968leave the data there if you want to accumulate more (e.g. when only a
969partial message has been received so far).
555 970
556In the more complex case, you want to queue multiple callbacks. In this 971In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 972case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 973data arrives (also the first time it is queued) and removes it when it has
559below). 974done its job (see C<push_read>, below).
560 975
561This way you can, for example, push three line-reads, followed by reading 976This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 977a chunk of data, and AnyEvent::Handle will execute them in order.
563 978
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 979Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
577 # handle xml 992 # handle xml
578 }); 993 });
579 }); 994 });
580 }); 995 });
581 996
582Example 2: Implement a client for a protocol that replies either with 997Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 998and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 999bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 1000just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 1001in the callbacks.
587 1002
588 # request one 1003When the first callback is called and sees an "OK" response, it will
1004C<unshift> another line-read. This line-read will be queued I<before> the
100564-byte chunk callback.
1006
1007 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 1008 $handle->push_write ("request 1\015\012");
590 1009
591 # we expect "ERROR" or "OK" as response, so push a line read 1010 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read (line => sub { 1011 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 1012 # if we got an "OK", we have to _prepend_ another line,
600 ... 1019 ...
601 }); 1020 });
602 } 1021 }
603 }); 1022 });
604 1023
605 # request two 1024 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 1025 $handle->push_write ("request 2\015\012");
607 1026
608 # simply read 64 bytes, always 1027 # simply read 64 bytes, always
609 $handle->push_read (chunk => 64, sub { 1028 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 1029 my $response = $_[1];
616=cut 1035=cut
617 1036
618sub _drain_rbuf { 1037sub _drain_rbuf {
619 my ($self) = @_; 1038 my ($self) = @_;
620 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
621 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
622
623 if (
624 defined $self->{rbuf_max}
625 && $self->{rbuf_max} < length $self->{rbuf}
626 ) {
627 return $self->_error (&Errno::ENOSPC, 1);
628 }
629 1043
630 while () { 1044 while () {
631 no strict 'refs'; 1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
632 1049
633 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
634 1051
635 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
1054 # no progress can be made
1055 # (not enough data and no data forthcoming)
1056 $self->_error (Errno::EPIPE, 1), return
637 if ($self->{_eof}) { 1057 if $self->{_eof};
638 # no progress can be made (not enough data and no data forthcoming)
639 return $self->_error (&Errno::EPIPE, 1);
640 }
641 1058
642 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
643 last; 1060 last;
644 } 1061 }
645 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
1063 last unless $len;
1064
646 $self->{on_read}($self); 1065 $self->{on_read}($self);
647 1066
648 if ( 1067 if (
649 $len == length $self->{rbuf} # if no data has been consumed 1068 $len == length $self->{rbuf} # if no data has been consumed
650 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
651 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
652 ) { 1071 ) {
653 # no further data will arrive 1072 # no further data will arrive
654 # so no progress can be made 1073 # so no progress can be made
655 return $self->_error (&Errno::EPIPE, 1) 1074 $self->_error (Errno::EPIPE, 1), return
656 if $self->{_eof}; 1075 if $self->{_eof};
657 1076
658 last; # more data might arrive 1077 last; # more data might arrive
659 } 1078 }
660 } else { 1079 } else {
661 # read side becomes idle 1080 # read side becomes idle
662 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
663 last; 1082 last;
664 } 1083 }
665 } 1084 }
666 1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
667 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
668 if $self->{_eof} && $self->{on_eof}; 1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
1099 }
669 1100
670 # may need to restart read watcher 1101 # may need to restart read watcher
671 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
672 $self->start_read 1103 $self->start_read
673 if $self->{on_read} || @{ $self->{_queue} }; 1104 if $self->{on_read} || @{ $self->{_queue} };
684 1115
685sub on_read { 1116sub on_read {
686 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
687 1118
688 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
689 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
690} 1121}
691 1122
692=item $handle->rbuf 1123=item $handle->rbuf
693 1124
694Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
695 1126
696You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
697you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
698 1132
699NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
700C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
701automatically manage the read buffer. 1135automatically manage the read buffer.
702 1136
743 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
744 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
745 } 1179 }
746 1180
747 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
748 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
749} 1183}
750 1184
751sub unshift_read { 1185sub unshift_read {
752 my $self = shift; 1186 my $self = shift;
753 my $cb = pop; 1187 my $cb = pop;
759 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
760 } 1194 }
761 1195
762 1196
763 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
764 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
765} 1199}
766 1200
767=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
768 1202
769=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
799 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1233 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 1 1234 1
801 } 1235 }
802}; 1236};
803 1237
804# compatibility with older API
805sub push_read_chunk {
806 $_[0]->push_read (chunk => $_[1], $_[2]);
807}
808
809sub unshift_read_chunk {
810 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811}
812
813=item line => [$eol, ]$cb->($handle, $line, $eol) 1238=item line => [$eol, ]$cb->($handle, $line, $eol)
814 1239
815The callback will be called only once a full line (including the end of 1240The callback will be called only once a full line (including the end of
816line marker, C<$eol>) has been read. This line (excluding the end of line 1241line marker, C<$eol>) has been read. This line (excluding the end of line
817marker) will be passed to the callback as second argument (C<$line>), and 1242marker) will be passed to the callback as second argument (C<$line>), and
832=cut 1257=cut
833 1258
834register_read_type line => sub { 1259register_read_type line => sub {
835 my ($self, $cb, $eol) = @_; 1260 my ($self, $cb, $eol) = @_;
836 1261
837 $eol = qr|(\015?\012)| if @_ < 3; 1262 if (@_ < 3) {
838 $eol = quotemeta $eol unless ref $eol; 1263 # this is more than twice as fast as the generic code below
839 $eol = qr|^(.*?)($eol)|s;
840
841 sub { 1264 sub {
842 $_[0]{rbuf} =~ s/$eol// or return; 1265 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
843 1266
844 $cb->($_[0], $1, $2); 1267 $cb->($_[0], $1, $2);
845 1
846 }
847};
848
849# compatibility with older API
850sub push_read_line {
851 my $self = shift;
852 $self->push_read (line => @_);
853}
854
855sub unshift_read_line {
856 my $self = shift;
857 $self->unshift_read (line => @_);
858}
859
860=item netstring => $cb->($handle, $string)
861
862A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863
864Throws an error with C<$!> set to EBADMSG on format violations.
865
866=cut
867
868register_read_type netstring => sub {
869 my ($self, $cb) = @_;
870
871 sub {
872 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873 if ($_[0]{rbuf} =~ /[^0-9]/) {
874 $self->_error (&Errno::EBADMSG);
875 } 1268 1
876 return;
877 } 1269 }
1270 } else {
1271 $eol = quotemeta $eol unless ref $eol;
1272 $eol = qr|^(.*?)($eol)|s;
878 1273
879 my $len = $1; 1274 sub {
1275 $_[0]{rbuf} =~ s/$eol// or return;
880 1276
881 $self->unshift_read (chunk => $len, sub { 1277 $cb->($_[0], $1, $2);
882 my $string = $_[1];
883 $_[0]->unshift_read (chunk => 1, sub {
884 if ($_[1] eq ",") {
885 $cb->($_[0], $string);
886 } else {
887 $self->_error (&Errno::EBADMSG);
888 }
889 }); 1278 1
890 }); 1279 }
891
892 1
893 } 1280 }
894}; 1281};
895 1282
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1283=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1284
949 return 1; 1336 return 1;
950 } 1337 }
951 1338
952 # reject 1339 # reject
953 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
954 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
955 } 1342 }
956 1343
957 # skip 1344 # skip
958 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
959 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
961 1348
962 () 1349 ()
963 } 1350 }
964}; 1351};
965 1352
1353=item netstring => $cb->($handle, $string)
1354
1355A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1356
1357Throws an error with C<$!> set to EBADMSG on format violations.
1358
1359=cut
1360
1361register_read_type netstring => sub {
1362 my ($self, $cb) = @_;
1363
1364 sub {
1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1367 $self->_error (Errno::EBADMSG);
1368 }
1369 return;
1370 }
1371
1372 my $len = $1;
1373
1374 $self->unshift_read (chunk => $len, sub {
1375 my $string = $_[1];
1376 $_[0]->unshift_read (chunk => 1, sub {
1377 if ($_[1] eq ",") {
1378 $cb->($_[0], $string);
1379 } else {
1380 $self->_error (Errno::EBADMSG);
1381 }
1382 });
1383 });
1384
1385 1
1386 }
1387};
1388
1389=item packstring => $format, $cb->($handle, $string)
1390
1391An octet string prefixed with an encoded length. The encoding C<$format>
1392uses the same format as a Perl C<pack> format, but must specify a single
1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1394optional C<!>, C<< < >> or C<< > >> modifier).
1395
1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1398
1399Example: read a block of data prefixed by its length in BER-encoded
1400format (very efficient).
1401
1402 $handle->push_read (packstring => "w", sub {
1403 my ($handle, $data) = @_;
1404 });
1405
1406=cut
1407
1408register_read_type packstring => sub {
1409 my ($self, $cb, $format) = @_;
1410
1411 sub {
1412 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1413 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1414 or return;
1415
1416 $format = length pack $format, $len;
1417
1418 # bypass unshift if we already have the remaining chunk
1419 if ($format + $len <= length $_[0]{rbuf}) {
1420 my $data = substr $_[0]{rbuf}, $format, $len;
1421 substr $_[0]{rbuf}, 0, $format + $len, "";
1422 $cb->($_[0], $data);
1423 } else {
1424 # remove prefix
1425 substr $_[0]{rbuf}, 0, $format, "";
1426
1427 # read remaining chunk
1428 $_[0]->unshift_read (chunk => $len, $cb);
1429 }
1430
1431 1
1432 }
1433};
1434
966=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
967 1436
968Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
969 1439
970If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
971for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972 1442
973This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
980the C<json> write type description, above, for an actual example. 1450the C<json> write type description, above, for an actual example.
981 1451
982=cut 1452=cut
983 1453
984register_read_type json => sub { 1454register_read_type json => sub {
985 my ($self, $cb, $accept, $reject, $skip) = @_; 1455 my ($self, $cb) = @_;
986 1456
987 require JSON; 1457 my $json = $self->{json} ||= json_coder;
988 1458
989 my $data; 1459 my $data;
990 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
991 1461
992 my $json = $self->{json} ||= JSON->new->utf8;
993
994 sub { 1462 sub {
995 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
996 1464
997 if ($ref) { 1465 if ($ref) {
998 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
999 $json->incr_text = ""; 1467 $json->incr_text = "";
1000 $cb->($self, $ref); 1468 $cb->($self, $ref);
1001 1469
1002 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1003 } else { 1481 } else {
1004 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1005 () 1484 ()
1006 } 1485 }
1486 }
1487};
1488
1489=item storable => $cb->($handle, $ref)
1490
1491Deserialises a L<Storable> frozen representation as written by the
1492C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1493data).
1494
1495Raises C<EBADMSG> error if the data could not be decoded.
1496
1497=cut
1498
1499register_read_type storable => sub {
1500 my ($self, $cb) = @_;
1501
1502 require Storable;
1503
1504 sub {
1505 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1506 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1507 or return;
1508
1509 my $format = length pack "w", $len;
1510
1511 # bypass unshift if we already have the remaining chunk
1512 if ($format + $len <= length $_[0]{rbuf}) {
1513 my $data = substr $_[0]{rbuf}, $format, $len;
1514 substr $_[0]{rbuf}, 0, $format + $len, "";
1515 $cb->($_[0], Storable::thaw ($data));
1516 } else {
1517 # remove prefix
1518 substr $_[0]{rbuf}, 0, $format, "";
1519
1520 # read remaining chunk
1521 $_[0]->unshift_read (chunk => $len, sub {
1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1523 $cb->($_[0], $ref);
1524 } else {
1525 $self->_error (Errno::EBADMSG);
1526 }
1527 });
1528 }
1529
1530 1
1007 } 1531 }
1008}; 1532};
1009 1533
1010=back 1534=back
1011 1535
1041Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1042you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1043will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1044there are any read requests in the queue. 1568there are any read requests in the queue.
1045 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1046=cut 1573=cut
1047 1574
1048sub stop_read { 1575sub stop_read {
1049 my ($self) = @_; 1576 my ($self) = @_;
1050 1577
1051 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1052} 1579}
1053 1580
1054sub start_read { 1581sub start_read {
1055 my ($self) = @_; 1582 my ($self) = @_;
1056 1583
1057 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1058 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1059 1586
1060 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1061 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1062 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1063 1590
1064 if ($len > 0) { 1591 if ($len > 0) {
1065 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1066 1593
1067 $self->{filter_r} 1594 if ($self->{tls}) {
1068 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1069 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1070 1601
1071 } elsif (defined $len) { 1602 } elsif (defined $len) {
1072 delete $self->{_rw}; 1603 delete $self->{_rw};
1073 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1074 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1075 1606
1076 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1077 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1078 } 1609 }
1079 }); 1610 };
1080 } 1611 }
1081} 1612}
1082 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1083sub _dotls { 1642sub _dotls {
1084 my ($self) = @_; 1643 my ($self) = @_;
1085 1644
1086 my $buf; 1645 my $tmp;
1087 1646
1088 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1089 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1090 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1091 } 1650 }
1092 }
1093 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1094 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1095 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1096 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1097 } 1687 }
1098 1688
1099 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1100 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1101 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1102 $self->_drain_rbuf unless $self->{_in_drain};
1103 } else {
1104 # let's treat SSL-eof as we treat normal EOF
1105 $self->{_eof} = 1;
1106 $self->_shutdown;
1107 return;
1108 }
1109 }
1110
1111 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1112
1113 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1114 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1115 return $self->_error ($!, 1);
1116 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1117 return $self->_error (&Errno::EIO, 1);
1118 }
1119
1120 # all others are fine for our purposes
1121 }
1122} 1692}
1123 1693
1124=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1125 1695
1126Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1127object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1128C<starttls>. 1698C<starttls>.
1129 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1130The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1131C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1132 1706
1133The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1134used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1135 1711
1136The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1137call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1138might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1139 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1140=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1141 1724
1142sub starttls { 1725sub starttls {
1143 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1144 1727
1145 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1146 1730
1147 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1148 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1149 Net::SSLeay::set_accept_state ($ssl); 1733
1150 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1151 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1152 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1153 } 1756
1154 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1155 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1156 1759
1157 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1158 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1159 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1160 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1161 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1162 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1163 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1164 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1165 1776
1166 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1167 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1169 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1170 1783
1171 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1172 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1173 &_dotls; 1786
1174 }; 1787 &_dotls; # need to trigger the initial handshake
1175 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1176 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1177 &_dotls;
1178 };
1179} 1789}
1180 1790
1181=item $handle->stoptls 1791=item $handle->stoptls
1182 1792
1183Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1184lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1185 1797
1186=cut 1798=cut
1187 1799
1188sub stoptls { 1800sub stoptls {
1189 my ($self) = @_; 1801 my ($self) = @_;
1190 1802
1191 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1192 1805
1193 delete $self->{_rbio}; 1806 &_dotls;
1194 delete $self->{_wbio}; 1807
1195 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1196 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1197 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1198} 1823}
1199 1824
1200sub DESTROY { 1825sub DESTROY {
1201 my $self = shift; 1826 my ($self) = @_;
1202 1827
1203 $self->stoptls; 1828 &_freetls;
1829
1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1831
1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1833 my $fh = delete $self->{fh};
1834 my $wbuf = delete $self->{wbuf};
1835
1836 my @linger;
1837
1838 push @linger, AE::io $fh, 1, sub {
1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1840
1841 if ($len > 0) {
1842 substr $wbuf, 0, $len, "";
1843 } else {
1844 @linger = (); # end
1845 }
1846 };
1847 push @linger, AE::timer $linger, 0, sub {
1848 @linger = ();
1849 };
1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1204} 1888}
1205 1889
1206=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1207 1891
1208This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1209default for TLS mode. 1893for TLS mode.
1210 1894
1211The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1212
1213 Net::SSLeay::load_error_strings;
1214 Net::SSLeay::SSLeay_add_ssl_algorithms;
1215 Net::SSLeay::randomize;
1216
1217 my $CTX = Net::SSLeay::CTX_new;
1218
1219 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1220 1896
1221=cut 1897=cut
1222 1898
1223our $TLS_CTX; 1899our $TLS_CTX;
1224 1900
1225sub TLS_CTX() { 1901sub TLS_CTX() {
1226 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1227 require Net::SSLeay; 1903 require AnyEvent::TLS;
1228 1904
1229 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1230 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1231 Net::SSLeay::randomize ();
1232
1233 $TLS_CTX = Net::SSLeay::CTX_new ();
1234
1235 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1236
1237 $TLS_CTX
1238 } 1906 }
1239} 1907}
1240 1908
1241=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1242 2069
1243=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1244 2071
1245In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1246 2073
1250=over 4 2077=over 4
1251 2078
1252=item * all constructor arguments become object members. 2079=item * all constructor arguments become object members.
1253 2080
1254At least initially, when you pass a C<tls>-argument to the constructor it 2081At least initially, when you pass a C<tls>-argument to the constructor it
1255will end up in C<< $handle->{tls} >>. Those members might be changes or 2082will end up in C<< $handle->{tls} >>. Those members might be changed or
1256mutated later on (for example C<tls> will hold the TLS connection object). 2083mutated later on (for example C<tls> will hold the TLS connection object).
1257 2084
1258=item * other object member names are prefixed with an C<_>. 2085=item * other object member names are prefixed with an C<_>.
1259 2086
1260All object members not explicitly documented (internal use) are prefixed 2087All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines