ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.62 by root, Fri Jun 6 10:49:20 2008 UTC vs.
Revision 1.175 by root, Sat Aug 8 22:20:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.14; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
121 184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
126 210
127To append to the write buffer, use the C<< ->push_write >> method. 211To append to the write buffer, use the C<< ->push_write >> method.
212
213This callback is useful when you don't want to put all of your write data
214into the queue at once, for example, when you want to write the contents
215of some file to the socket you might not want to read the whole file into
216memory and push it into the queue, but instead only read more data from
217the file when the write queue becomes empty.
128 218
129=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
130 220
131If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
132seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
133handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
134missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
135 225
136Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
140 231
141Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
142 233
143=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
144 235
148 239
149=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
150 241
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
154 245
155For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
159isn't finished). 250isn't finished).
160 251
252=item autocork => <boolean>
253
254When disabled (the default), then C<push_write> will try to immediately
255write the data to the handle, if possible. This avoids having to register
256a write watcher and wait for the next event loop iteration, but can
257be inefficient if you write multiple small chunks (on the wire, this
258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
260
261When enabled, then writes will always be queued till the next event loop
262iteration. This is efficient when you do many small writes per iteration,
263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
265
266=item no_delay => <boolean>
267
268When doing small writes on sockets, your operating system kernel might
269wait a bit for more data before actually sending it out. This is called
270the Nagle algorithm, and usually it is beneficial.
271
272In some situations you want as low a delay as possible, which can be
273accomplishd by setting this option to a true value.
274
275The default is your opertaing system's default behaviour (most likely
276enabled), this option explicitly enables or disables it, if possible.
277
161=item read_size => <bytes> 278=item read_size => <bytes>
162 279
163The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
165 283
166=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
167 285
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
170considered empty. 288considered empty.
171 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
172=item linger => <seconds> 295=item linger => <seconds>
173 296
174If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 301system treats outstanding data at socket close time).
179 302
180This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
182 316
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 318
185When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
188 325
189TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
191 330
192For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
194 334
195You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
199 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
200See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 351
202=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
203 353
204Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
208=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
209 395
210This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
211 397
212If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
214 401
215Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
217 404
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 405=back
225 406
226=cut 407=cut
227 408
228sub new { 409sub new {
229 my $class = shift; 410 my $class = shift;
230
231 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
232 412
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
234 476
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 478
237 if ($self->{tls}) {
238 require Net::SSLeay;
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240 }
241
242 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AE::now;
243 $self->_timeout; 480 $self->_timeout;
244 481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 488
247 $self 489 $self->start_read
248} 490 if $self->{on_read} || @{ $self->{_queue} };
249 491
492 $self->_drain_wbuf;
493}
494
250sub _shutdown { 495#sub _shutdown {
251 my ($self) = @_; 496# my ($self) = @_;
252 497#
253 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
254 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
255 delete $self->{_ww}; 500#
256 delete $self->{fh}; 501# &_freetls;
257 502#}
258 $self->stoptls;
259}
260 503
261sub _error { 504sub _error {
262 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 506
267 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
268 509
269 if ($self->{on_error}) { 510 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
271 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 516 }
274} 517}
275 518
276=item $fh = $handle->fh 519=item $fh = $handle->fh
277 520
278This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 522
280=cut 523=cut
281 524
282sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
283 526
301 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
302} 545}
303 546
304=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
305 548
306Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
308argument. 551argument and method.
309 552
310=cut 553=cut
311 554
312sub on_timeout { 555sub on_timeout {
313 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
314} 557}
315 558
559=item $handle->autocork ($boolean)
560
561Enables or disables the current autocork behaviour (see C<autocork>
562constructor argument). Changes will only take effect on the next write.
563
564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
569
570=item $handle->no_delay ($boolean)
571
572Enables or disables the C<no_delay> setting (see constructor argument of
573the same name for details).
574
575=cut
576
577sub no_delay {
578 $_[0]{no_delay} = $_[1];
579
580 eval {
581 local $SIG{__DIE__};
582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
615}
616
316############################################################################# 617#############################################################################
317 618
318=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
319 620
320Configures (or disables) the inactivity timeout. 621Configures (or disables) the inactivity timeout.
323 624
324sub timeout { 625sub timeout {
325 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
326 627
327 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
328 $self->_timeout; 630 $self->_timeout;
329} 631}
330 632
331# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
332# also check for time-outs 634# also check for time-outs
333sub _timeout { 635sub _timeout {
334 my ($self) = @_; 636 my ($self) = @_;
335 637
336 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 639 my $NOW = AE::now;
338 640
339 # when would the timeout trigger? 641 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
341 643
342 # now or in the past already? 644 # now or in the past already?
344 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
345 647
346 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
347 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
348 } else { 650 } else {
349 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
350 } 652 }
351 653
352 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
353 return unless $self->{timeout}; 655 return unless $self->{timeout};
354 656
357 } 659 }
358 660
359 Scalar::Util::weaken $self; 661 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self 662 return unless $self; # ->error could have destroyed $self
361 663
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 664 $self->{_tw} ||= AE::timer $after, 0, sub {
363 delete $self->{_tw}; 665 delete $self->{_tw};
364 $self->_timeout; 666 $self->_timeout;
365 }); 667 };
366 } else { 668 } else {
367 delete $self->{_tw}; 669 delete $self->{_tw};
368 } 670 }
369} 671}
370 672
396 my ($self, $cb) = @_; 698 my ($self, $cb) = @_;
397 699
398 $self->{on_drain} = $cb; 700 $self->{on_drain} = $cb;
399 701
400 $cb->($self) 702 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 703 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 704}
403 705
404=item $handle->push_write ($data) 706=item $handle->push_write ($data)
405 707
406Queues the given scalar to be written. You can push as much data as you 708Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
418 720
419 my $cb = sub { 721 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
421 723
422 if ($len >= 0) { 724 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
424 726
425 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AE::now;
426 728
427 $self->{on_drain}($self) 729 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 731 && $self->{on_drain};
430 732
431 delete $self->{_ww} unless length $self->{wbuf}; 733 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 734 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 735 $self->_error ($!, 1);
434 } 736 }
435 }; 737 };
436 738
437 # try to write data immediately 739 # try to write data immediately
438 $cb->(); 740 $cb->() unless $self->{autocork};
439 741
440 # if still data left in wbuf, we need to poll 742 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 743 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 744 if length $self->{wbuf};
443 }; 745 };
444} 746}
445 747
446our %WH; 748our %WH;
457 759
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 760 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 761 ->($self, @_);
460 } 762 }
461 763
462 if ($self->{filter_w}) { 764 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 765 $self->{_tls_wbuf} .= $_[0];
766 &_dotls ($self) if $self->{fh};
464 } else { 767 } else {
465 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
467 } 770 }
468} 771}
469 772
470=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
471 774
485=cut 788=cut
486 789
487register_write_type netstring => sub { 790register_write_type netstring => sub {
488 my ($self, $string) = @_; 791 my ($self, $string) = @_;
489 792
490 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
491}; 794};
492 795
493=item packstring => $format, $data 796=item packstring => $format, $data
494 797
495An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 803=cut
501 804
502register_write_type packstring => sub { 805register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 806 my ($self, $format, $string) = @_;
504 807
505 pack "$format/a", $string 808 pack "$format/a*", $string
506}; 809};
507 810
508=item json => $array_or_hashref 811=item json => $array_or_hashref
509 812
510Encodes the given hash or array reference into a JSON object. Unless you 813Encodes the given hash or array reference into a JSON object. Unless you
544 847
545 $self->{json} ? $self->{json}->encode ($ref) 848 $self->{json} ? $self->{json}->encode ($ref)
546 : JSON::encode_json ($ref) 849 : JSON::encode_json ($ref)
547}; 850};
548 851
852=item storable => $reference
853
854Freezes the given reference using L<Storable> and writes it to the
855handle. Uses the C<nfreeze> format.
856
857=cut
858
859register_write_type storable => sub {
860 my ($self, $ref) = @_;
861
862 require Storable;
863
864 pack "w/a*", Storable::nfreeze ($ref)
865};
866
549=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
550 893
551=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
552 895
553This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
554Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
575ways, the "simple" way, using only C<on_read> and the "complex" way, using 918ways, the "simple" way, using only C<on_read> and the "complex" way, using
576a queue. 919a queue.
577 920
578In the simple case, you just install an C<on_read> callback and whenever 921In the simple case, you just install an C<on_read> callback and whenever
579new data arrives, it will be called. You can then remove some data (if 922new data arrives, it will be called. You can then remove some data (if
580enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 923enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
581or not. 924leave the data there if you want to accumulate more (e.g. when only a
925partial message has been received so far).
582 926
583In the more complex case, you want to queue multiple callbacks. In this 927In the more complex case, you want to queue multiple callbacks. In this
584case, AnyEvent::Handle will call the first queued callback each time new 928case, AnyEvent::Handle will call the first queued callback each time new
585data arrives (also the first time it is queued) and removes it when it has 929data arrives (also the first time it is queued) and removes it when it has
586done its job (see C<push_read>, below). 930done its job (see C<push_read>, below).
604 # handle xml 948 # handle xml
605 }); 949 });
606 }); 950 });
607 }); 951 });
608 952
609Example 2: Implement a client for a protocol that replies either with 953Example 2: Implement a client for a protocol that replies either with "OK"
610"OK" and another line or "ERROR" for one request, and 64 bytes for the 954and another line or "ERROR" for the first request that is sent, and 64
611second request. Due tot he availability of a full queue, we can just 955bytes for the second request. Due to the availability of a queue, we can
612pipeline sending both requests and manipulate the queue as necessary in 956just pipeline sending both requests and manipulate the queue as necessary
613the callbacks: 957in the callbacks.
614 958
615 # request one 959When the first callback is called and sees an "OK" response, it will
960C<unshift> another line-read. This line-read will be queued I<before> the
96164-byte chunk callback.
962
963 # request one, returns either "OK + extra line" or "ERROR"
616 $handle->push_write ("request 1\015\012"); 964 $handle->push_write ("request 1\015\012");
617 965
618 # we expect "ERROR" or "OK" as response, so push a line read 966 # we expect "ERROR" or "OK" as response, so push a line read
619 $handle->push_read (line => sub { 967 $handle->push_read (line => sub {
620 # if we got an "OK", we have to _prepend_ another line, 968 # if we got an "OK", we have to _prepend_ another line,
627 ... 975 ...
628 }); 976 });
629 } 977 }
630 }); 978 });
631 979
632 # request two 980 # request two, simply returns 64 octets
633 $handle->push_write ("request 2\015\012"); 981 $handle->push_write ("request 2\015\012");
634 982
635 # simply read 64 bytes, always 983 # simply read 64 bytes, always
636 $handle->push_read (chunk => 64, sub { 984 $handle->push_read (chunk => 64, sub {
637 my $response = $_[1]; 985 my $response = $_[1];
643=cut 991=cut
644 992
645sub _drain_rbuf { 993sub _drain_rbuf {
646 my ($self) = @_; 994 my ($self) = @_;
647 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
648 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
649
650 if (
651 defined $self->{rbuf_max}
652 && $self->{rbuf_max} < length $self->{rbuf}
653 ) {
654 return $self->_error (&Errno::ENOSPC, 1);
655 }
656 999
657 while () { 1000 while () {
658 no strict 'refs'; 1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
659 1005
660 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
661 1007
662 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
663 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
664 if ($self->{_eof}) { 1010 # no progress can be made
665 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
666 $self->_error (&Errno::EPIPE, 1), last; 1012 $self->_error (Errno::EPIPE, 1), return
667 } 1013 if $self->{_eof};
668 1014
669 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
670 last; 1016 last;
671 } 1017 }
672 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
679 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
680 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
681 ) { 1027 ) {
682 # no further data will arrive 1028 # no further data will arrive
683 # so no progress can be made 1029 # so no progress can be made
684 $self->_error (&Errno::EPIPE, 1), last 1030 $self->_error (Errno::EPIPE, 1), return
685 if $self->{_eof}; 1031 if $self->{_eof};
686 1032
687 last; # more data might arrive 1033 last; # more data might arrive
688 } 1034 }
689 } else { 1035 } else {
690 # read side becomes idle 1036 # read side becomes idle
691 delete $self->{_rw}; 1037 delete $self->{_rw} unless $self->{tls};
692 last; 1038 last;
693 } 1039 }
694 } 1040 }
695 1041
1042 if ($self->{_eof}) {
1043 $self->{on_eof}
696 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
697 if $self->{_eof} && $self->{on_eof}; 1045 : $self->_error (0, 1, "Unexpected end-of-file");
1046
1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
1055 }
698 1056
699 # may need to restart read watcher 1057 # may need to restart read watcher
700 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
701 $self->start_read 1059 $self->start_read
702 if $self->{on_read} || @{ $self->{_queue} }; 1060 if $self->{on_read} || @{ $self->{_queue} };
713 1071
714sub on_read { 1072sub on_read {
715 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
716 1074
717 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
718 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
719} 1077}
720 1078
721=item $handle->rbuf 1079=item $handle->rbuf
722 1080
723Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
724 1082
725You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
726you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
727 1088
728NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
729C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
730automatically manage the read buffer. 1091automatically manage the read buffer.
731 1092
772 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
773 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
774 } 1135 }
775 1136
776 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
777 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
778} 1139}
779 1140
780sub unshift_read { 1141sub unshift_read {
781 my $self = shift; 1142 my $self = shift;
782 my $cb = pop; 1143 my $cb = pop;
788 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
789 } 1150 }
790 1151
791 1152
792 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
793 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
794} 1155}
795 1156
796=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
797 1158
798=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
828 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1189 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
829 1 1190 1
830 } 1191 }
831}; 1192};
832 1193
833# compatibility with older API
834sub push_read_chunk {
835 $_[0]->push_read (chunk => $_[1], $_[2]);
836}
837
838sub unshift_read_chunk {
839 $_[0]->unshift_read (chunk => $_[1], $_[2]);
840}
841
842=item line => [$eol, ]$cb->($handle, $line, $eol) 1194=item line => [$eol, ]$cb->($handle, $line, $eol)
843 1195
844The callback will be called only once a full line (including the end of 1196The callback will be called only once a full line (including the end of
845line marker, C<$eol>) has been read. This line (excluding the end of line 1197line marker, C<$eol>) has been read. This line (excluding the end of line
846marker) will be passed to the callback as second argument (C<$line>), and 1198marker) will be passed to the callback as second argument (C<$line>), and
861=cut 1213=cut
862 1214
863register_read_type line => sub { 1215register_read_type line => sub {
864 my ($self, $cb, $eol) = @_; 1216 my ($self, $cb, $eol) = @_;
865 1217
866 $eol = qr|(\015?\012)| if @_ < 3; 1218 if (@_ < 3) {
1219 # this is more than twice as fast as the generic code below
1220 sub {
1221 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1222
1223 $cb->($_[0], $1, $2);
1224 1
1225 }
1226 } else {
867 $eol = quotemeta $eol unless ref $eol; 1227 $eol = quotemeta $eol unless ref $eol;
868 $eol = qr|^(.*?)($eol)|s; 1228 $eol = qr|^(.*?)($eol)|s;
869 1229
870 sub { 1230 sub {
871 $_[0]{rbuf} =~ s/$eol// or return; 1231 $_[0]{rbuf} =~ s/$eol// or return;
872 1232
873 $cb->($_[0], $1, $2); 1233 $cb->($_[0], $1, $2);
1234 1
874 1 1235 }
875 } 1236 }
876}; 1237};
877
878# compatibility with older API
879sub push_read_line {
880 my $self = shift;
881 $self->push_read (line => @_);
882}
883
884sub unshift_read_line {
885 my $self = shift;
886 $self->unshift_read (line => @_);
887}
888 1238
889=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1239=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
890 1240
891Makes a regex match against the regex object C<$accept> and returns 1241Makes a regex match against the regex object C<$accept> and returns
892everything up to and including the match. 1242everything up to and including the match.
942 return 1; 1292 return 1;
943 } 1293 }
944 1294
945 # reject 1295 # reject
946 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
947 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
948 } 1298 }
949 1299
950 # skip 1300 # skip
951 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
952 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
968 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
969 1319
970 sub { 1320 sub {
971 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
972 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
973 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
974 } 1324 }
975 return; 1325 return;
976 } 1326 }
977 1327
978 my $len = $1; 1328 my $len = $1;
981 my $string = $_[1]; 1331 my $string = $_[1];
982 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
983 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
984 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
985 } else { 1335 } else {
986 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
987 } 1337 }
988 }); 1338 });
989 }); 1339 });
990 1340
991 1 1341 1
997An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
998uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
999integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1000optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1001 1351
1002DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1003 1354
1004Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1005format (very efficient). 1356format (very efficient).
1006 1357
1007 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1013register_read_type packstring => sub { 1364register_read_type packstring => sub {
1014 my ($self, $cb, $format) = @_; 1365 my ($self, $cb, $format) = @_;
1015 1366
1016 sub { 1367 sub {
1017 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1368 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1018 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1369 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1019 or return; 1370 or return;
1020 1371
1372 $format = length pack $format, $len;
1373
1374 # bypass unshift if we already have the remaining chunk
1375 if ($format + $len <= length $_[0]{rbuf}) {
1376 my $data = substr $_[0]{rbuf}, $format, $len;
1377 substr $_[0]{rbuf}, 0, $format + $len, "";
1378 $cb->($_[0], $data);
1379 } else {
1021 # remove prefix 1380 # remove prefix
1022 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1381 substr $_[0]{rbuf}, 0, $format, "";
1023 1382
1024 # read rest 1383 # read remaining chunk
1025 $_[0]->unshift_read (chunk => $len, $cb); 1384 $_[0]->unshift_read (chunk => $len, $cb);
1385 }
1026 1386
1027 1 1387 1
1028 } 1388 }
1029}; 1389};
1030 1390
1031=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1032 1392
1033Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1034 1395
1035If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1036for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1037 1398
1038This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1045the C<json> write type description, above, for an actual example. 1406the C<json> write type description, above, for an actual example.
1046 1407
1047=cut 1408=cut
1048 1409
1049register_read_type json => sub { 1410register_read_type json => sub {
1050 my ($self, $cb, $accept, $reject, $skip) = @_; 1411 my ($self, $cb) = @_;
1051 1412
1052 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1053 1416
1054 my $data; 1417 my $data;
1055 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1056 1419
1057 my $json = $self->{json} ||= JSON->new->utf8;
1058
1059 sub { 1420 sub {
1060 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1061 1422
1062 if ($ref) { 1423 if ($ref) {
1063 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1064 $json->incr_text = ""; 1425 $json->incr_text = "";
1065 $cb->($self, $ref); 1426 $cb->($self, $ref);
1066 1427
1067 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1068 } else { 1439 } else {
1069 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1070 () 1442 ()
1071 } 1443 }
1444 }
1445};
1446
1447=item storable => $cb->($handle, $ref)
1448
1449Deserialises a L<Storable> frozen representation as written by the
1450C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1451data).
1452
1453Raises C<EBADMSG> error if the data could not be decoded.
1454
1455=cut
1456
1457register_read_type storable => sub {
1458 my ($self, $cb) = @_;
1459
1460 require Storable;
1461
1462 sub {
1463 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1464 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1465 or return;
1466
1467 my $format = length pack "w", $len;
1468
1469 # bypass unshift if we already have the remaining chunk
1470 if ($format + $len <= length $_[0]{rbuf}) {
1471 my $data = substr $_[0]{rbuf}, $format, $len;
1472 substr $_[0]{rbuf}, 0, $format + $len, "";
1473 $cb->($_[0], Storable::thaw ($data));
1474 } else {
1475 # remove prefix
1476 substr $_[0]{rbuf}, 0, $format, "";
1477
1478 # read remaining chunk
1479 $_[0]->unshift_read (chunk => $len, sub {
1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1481 $cb->($_[0], $ref);
1482 } else {
1483 $self->_error (Errno::EBADMSG);
1484 }
1485 });
1486 }
1487
1488 1
1072 } 1489 }
1073}; 1490};
1074 1491
1075=back 1492=back
1076 1493
1106Note that AnyEvent::Handle will automatically C<start_read> for you when 1523Note that AnyEvent::Handle will automatically C<start_read> for you when
1107you change the C<on_read> callback or push/unshift a read callback, and it 1524you change the C<on_read> callback or push/unshift a read callback, and it
1108will automatically C<stop_read> for you when neither C<on_read> is set nor 1525will automatically C<stop_read> for you when neither C<on_read> is set nor
1109there are any read requests in the queue. 1526there are any read requests in the queue.
1110 1527
1528These methods will have no effect when in TLS mode (as TLS doesn't support
1529half-duplex connections).
1530
1111=cut 1531=cut
1112 1532
1113sub stop_read { 1533sub stop_read {
1114 my ($self) = @_; 1534 my ($self) = @_;
1115 1535
1116 delete $self->{_rw}; 1536 delete $self->{_rw} unless $self->{tls};
1117} 1537}
1118 1538
1119sub start_read { 1539sub start_read {
1120 my ($self) = @_; 1540 my ($self) = @_;
1121 1541
1122 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1123 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1124 1544
1125 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1126 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1127 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1128 1548
1129 if ($len > 0) { 1549 if ($len > 0) {
1130 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AE::now;
1131 1551
1132 $self->{filter_r} 1552 if ($self->{tls}) {
1133 ? $self->{filter_r}($self, $rbuf) 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1134 : $self->{_in_drain} || $self->_drain_rbuf; 1554
1555 &_dotls ($self);
1556 } else {
1557 $self->_drain_rbuf;
1558 }
1135 1559
1136 } elsif (defined $len) { 1560 } elsif (defined $len) {
1137 delete $self->{_rw}; 1561 delete $self->{_rw};
1138 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1139 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1140 1564
1141 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1142 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1143 } 1567 }
1144 }); 1568 };
1145 } 1569 }
1146} 1570}
1147 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1148sub _dotls { 1600sub _dotls {
1149 my ($self) = @_; 1601 my ($self) = @_;
1150 1602
1151 my $buf; 1603 my $tmp;
1152 1604
1153 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1154 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1155 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1156 } 1608 }
1157 }
1158 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617 unless (length $tmp) {
1618 $self->{_on_starttls}
1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1630 }
1631
1632 $self->{_tls_rbuf} .= $tmp;
1633 $self->_drain_rbuf;
1634 $self->{tls} or return; # tls session might have gone away in callback
1635 }
1636
1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 return $self->_tls_error ($tmp)
1639 if $tmp != $ERROR_WANT_READ
1640 && ($tmp != $ERROR_SYSCALL || $!);
1641
1159 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1160 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1161 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1162 } 1645 }
1163 1646
1164 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1647 $self->{_on_starttls}
1165 if (length $buf) { 1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1166 $self->{rbuf} .= $buf; 1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1167 $self->_drain_rbuf unless $self->{_in_drain};
1168 } else {
1169 # let's treat SSL-eof as we treat normal EOF
1170 $self->{_eof} = 1;
1171 $self->_shutdown;
1172 return;
1173 }
1174 }
1175
1176 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1177
1178 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1179 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1180 return $self->_error ($!, 1);
1181 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1182 return $self->_error (&Errno::EIO, 1);
1183 }
1184
1185 # all others are fine for our purposes
1186 }
1187} 1650}
1188 1651
1189=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1190 1653
1191Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1192object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1193C<starttls>. 1656C<starttls>.
1194 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1195The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1196C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1197 1664
1198The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1199used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1200 1669
1201The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1202call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1203might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1204 1674
1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1678
1205=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1206 1682
1207sub starttls { 1683sub starttls {
1208 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1209 1685
1210 $self->stoptls; 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1211 1688
1212 if ($ssl eq "accept") { 1689 $self->{tls} = $tls;
1213 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1690 $self->{tls_ctx} = $ctx if @_ > 2;
1214 Net::SSLeay::set_accept_state ($ssl); 1691
1215 } elsif ($ssl eq "connect") { 1692 return unless $self->{fh};
1216 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1693
1217 Net::SSLeay::set_connect_state ($ssl); 1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1218 } 1714
1219 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1220 $self->{tls} = $ssl; 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1221 1717
1222 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1223 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1224 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1225 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1226 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1722 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1723 #
1724 # in short: this is a mess.
1725 #
1726 # note that we do not try to keep the length constant between writes as we are required to do.
1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729 # have identity issues in that area.
1227 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1228 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1229 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1230 1734
1231 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1232 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1233 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1234 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1235 1741
1236 $self->{filter_w} = sub { 1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1237 $_[0]{_tls_wbuf} .= ${$_[1]}; 1743 if $self->{on_starttls};
1238 &_dotls; 1744
1239 }; 1745 &_dotls; # need to trigger the initial handshake
1240 $self->{filter_r} = sub { 1746 $self->start_read; # make sure we actually do read
1241 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1242 &_dotls;
1243 };
1244} 1747}
1245 1748
1246=item $handle->stoptls 1749=item $handle->stoptls
1247 1750
1248Destroys the SSL connection, if any. Partial read or write data will be 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1249lost. 1752sending a close notify to the other side, but since OpenSSL doesn't
1753support non-blocking shut downs, it is not guarenteed that you can re-use
1754the stream afterwards.
1250 1755
1251=cut 1756=cut
1252 1757
1253sub stoptls { 1758sub stoptls {
1254 my ($self) = @_; 1759 my ($self) = @_;
1255 1760
1256 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1761 if ($self->{tls}) {
1762 Net::SSLeay::shutdown ($self->{tls});
1257 1763
1258 delete $self->{_rbio}; 1764 &_dotls;
1259 delete $self->{_wbio}; 1765
1260 delete $self->{_tls_wbuf}; 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1261 delete $self->{filter_r}; 1767# # we, we... have to use openssl :/#d#
1262 delete $self->{filter_w}; 1768# &_freetls;#d#
1769 }
1770}
1771
1772sub _freetls {
1773 my ($self) = @_;
1774
1775 return unless $self->{tls};
1776
1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1779
1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1263} 1781}
1264 1782
1265sub DESTROY { 1783sub DESTROY {
1266 my $self = shift; 1784 my ($self) = @_;
1267 1785
1268 $self->stoptls; 1786 &_freetls;
1269 1787
1270 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1271 1789
1272 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1273 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1274 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1275 1793
1276 my @linger; 1794 my @linger;
1277 1795
1278 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1796 push @linger, AE::io $fh, 1, sub {
1279 my $len = syswrite $fh, $wbuf, length $wbuf; 1797 my $len = syswrite $fh, $wbuf, length $wbuf;
1280 1798
1281 if ($len > 0) { 1799 if ($len > 0) {
1282 substr $wbuf, 0, $len, ""; 1800 substr $wbuf, 0, $len, "";
1283 } else { 1801 } else {
1284 @linger = (); # end 1802 @linger = (); # end
1285 } 1803 }
1286 }); 1804 };
1287 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1805 push @linger, AE::timer $linger, 0, sub {
1288 @linger = (); 1806 @linger = ();
1289 }); 1807 };
1290 } 1808 }
1809}
1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1291} 1846}
1292 1847
1293=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1294 1849
1295This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1296default for TLS mode. 1851for TLS mode.
1297 1852
1298The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1299
1300 Net::SSLeay::load_error_strings;
1301 Net::SSLeay::SSLeay_add_ssl_algorithms;
1302 Net::SSLeay::randomize;
1303
1304 my $CTX = Net::SSLeay::CTX_new;
1305
1306 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1307 1854
1308=cut 1855=cut
1309 1856
1310our $TLS_CTX; 1857our $TLS_CTX;
1311 1858
1312sub TLS_CTX() { 1859sub TLS_CTX() {
1313 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1314 require Net::SSLeay; 1861 require AnyEvent::TLS;
1315 1862
1316 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1317 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1318 Net::SSLeay::randomize ();
1319
1320 $TLS_CTX = Net::SSLeay::CTX_new ();
1321
1322 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1323
1324 $TLS_CTX
1325 } 1864 }
1326} 1865}
1327 1866
1328=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1329 2027
1330=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1331 2029
1332In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1333 2031
1337=over 4 2035=over 4
1338 2036
1339=item * all constructor arguments become object members. 2037=item * all constructor arguments become object members.
1340 2038
1341At least initially, when you pass a C<tls>-argument to the constructor it 2039At least initially, when you pass a C<tls>-argument to the constructor it
1342will end up in C<< $handle->{tls} >>. Those members might be changes or 2040will end up in C<< $handle->{tls} >>. Those members might be changed or
1343mutated later on (for example C<tls> will hold the TLS connection object). 2041mutated later on (for example C<tls> will hold the TLS connection object).
1344 2042
1345=item * other object member names are prefixed with an C<_>. 2043=item * other object member names are prefixed with an C<_>.
1346 2044
1347All object members not explicitly documented (internal use) are prefixed 2045All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines