ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.62 by root, Fri Jun 6 10:49:20 2008 UTC vs.
Revision 1.177 by root, Sun Aug 9 00:24:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.14;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
121 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
126 211
127To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
128 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
129=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
130 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
131If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 237
136Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
140 243
141Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
142 245
143=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
144 247
148 251
149=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
150 253
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
154 257
155For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
159isn't finished). 262isn't finished).
160 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
161=item read_size => <bytes> 290=item read_size => <bytes>
162 291
163The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
165 295
166=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
167 297
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
170considered empty. 300considered empty.
171 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
172=item linger => <seconds> 307=item linger => <seconds>
173 308
174If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 313system treats outstanding data at socket close time).
179 314
180This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
182 328
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 330
185When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
188 337
189TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
191 342
192For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
194 346
195You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
199 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
200See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 363
202=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
203 365
204Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
208=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
209 407
210This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
211 409
212If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
214 413
215Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
217 416
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 417=back
225 418
226=cut 419=cut
227 420
228sub new { 421sub new {
229 my $class = shift; 422 my $class = shift;
230
231 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
232 424
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
234 488
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 490
237 if ($self->{tls}) { 491 $self->{_activity} =
238 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 502 if $self->{tls};
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244 503
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 505
247 $self 506 $self->start_read
248} 507 if $self->{on_read} || @{ $self->{_queue} };
249 508
509 $self->_drain_wbuf;
510}
511
250sub _shutdown { 512#sub _shutdown {
251 my ($self) = @_; 513# my ($self) = @_;
252 514#
253 delete $self->{_tw}; 515# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
254 delete $self->{_rw}; 516# $self->{_eof} = 1; # tell starttls et. al to stop trying
255 delete $self->{_ww}; 517#
256 delete $self->{fh}; 518# &_freetls;
257 519#}
258 $self->stoptls;
259}
260 520
261sub _error { 521sub _error {
262 my ($self, $errno, $fatal) = @_; 522 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 523
267 $! = $errno; 524 $! = $errno;
525 $message ||= "$!";
268 526
269 if ($self->{on_error}) { 527 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 528 $self->{on_error}($self, $fatal, $message);
271 } else { 529 $self->destroy if $fatal;
530 } elsif ($self->{fh}) {
531 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 532 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 533 }
274} 534}
275 535
276=item $fh = $handle->fh 536=item $fh = $handle->fh
277 537
278This method returns the file handle of the L<AnyEvent::Handle> object. 538This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 539
280=cut 540=cut
281 541
282sub fh { $_[0]{fh} } 542sub fh { $_[0]{fh} }
283 543
301 $_[0]{on_eof} = $_[1]; 561 $_[0]{on_eof} = $_[1];
302} 562}
303 563
304=item $handle->on_timeout ($cb) 564=item $handle->on_timeout ($cb)
305 565
306Replace the current C<on_timeout> callback, or disables the callback 566=item $handle->on_rtimeout ($cb)
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309 567
310=cut 568=item $handle->on_wtimeout ($cb)
311 569
312sub on_timeout { 570Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
571callback, or disables the callback (but not the timeout) if C<$cb> =
572C<undef>. See the C<timeout> constructor argument and method.
573
574=cut
575
576# see below
577
578=item $handle->autocork ($boolean)
579
580Enables or disables the current autocork behaviour (see C<autocork>
581constructor argument). Changes will only take effect on the next write.
582
583=cut
584
585sub autocork {
586 $_[0]{autocork} = $_[1];
587}
588
589=item $handle->no_delay ($boolean)
590
591Enables or disables the C<no_delay> setting (see constructor argument of
592the same name for details).
593
594=cut
595
596sub no_delay {
597 $_[0]{no_delay} = $_[1];
598
599 eval {
600 local $SIG{__DIE__};
601 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602 if $_[0]{fh};
603 };
604}
605
606=item $handle->on_starttls ($cb)
607
608Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609
610=cut
611
612sub on_starttls {
613 $_[0]{on_starttls} = $_[1];
614}
615
616=item $handle->on_stoptls ($cb)
617
618Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619
620=cut
621
622sub on_starttls {
313 $_[0]{on_timeout} = $_[1]; 623 $_[0]{on_stoptls} = $_[1];
624}
625
626=item $handle->rbuf_max ($max_octets)
627
628Configures the C<rbuf_max> setting (C<undef> disables it).
629
630=cut
631
632sub rbuf_max {
633 $_[0]{rbuf_max} = $_[1];
314} 634}
315 635
316############################################################################# 636#############################################################################
317 637
318=item $handle->timeout ($seconds) 638=item $handle->timeout ($seconds)
319 639
640=item $handle->rtimeout ($seconds)
641
642=item $handle->wtimeout ($seconds)
643
320Configures (or disables) the inactivity timeout. 644Configures (or disables) the inactivity timeout.
321 645
322=cut 646=item $handle->timeout_reset
323 647
324sub timeout { 648=item $handle->rtimeout_reset
649
650=item $handle->wtimeout_reset
651
652Reset the activity timeout, as if data was received or sent.
653
654These methods are cheap to call.
655
656=cut
657
658for my $dir ("", "r", "w") {
659 my $timeout = "${dir}timeout";
660 my $tw = "_${dir}tw";
661 my $on_timeout = "on_${dir}timeout";
662 my $activity = "_${dir}activity";
663 my $cb;
664
665 *$on_timeout = sub {
666 $_[0]{$on_timeout} = $_[1];
667 };
668
669 *$timeout = sub {
325 my ($self, $timeout) = @_; 670 my ($self, $new_value) = @_;
326 671
327 $self->{timeout} = $timeout; 672 $self->{$timeout} = $new_value;
328 $self->_timeout; 673 delete $self->{$tw}; &$cb;
329} 674 };
330 675
676 *{"${dir}timeout_reset"} = sub {
677 $_[0]{$activity} = AE::now;
678 };
679
680 # main workhorse:
331# reset the timeout watcher, as neccessary 681 # reset the timeout watcher, as neccessary
332# also check for time-outs 682 # also check for time-outs
333sub _timeout { 683 $cb = sub {
334 my ($self) = @_; 684 my ($self) = @_;
335 685
336 if ($self->{timeout}) { 686 if ($self->{$timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 687 my $NOW = AE::now;
338 688
339 # when would the timeout trigger? 689 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 690 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
341 691
342 # now or in the past already? 692 # now or in the past already?
343 if ($after <= 0) { 693 if ($after <= 0) {
344 $self->{_activity} = $NOW; 694 $self->{$activity} = $NOW;
345 695
346 if ($self->{on_timeout}) { 696 if ($self->{$on_timeout}) {
347 $self->{on_timeout}($self); 697 $self->{$on_timeout}($self);
348 } else { 698 } else {
349 $self->_error (&Errno::ETIMEDOUT); 699 $self->_error (Errno::ETIMEDOUT);
700 }
701
702 # callback could have changed timeout value, optimise
703 return unless $self->{$timeout};
704
705 # calculate new after
706 $after = $self->{$timeout};
350 } 707 }
351 708
352 # callback could have changed timeout value, optimise 709 Scalar::Util::weaken $self;
353 return unless $self->{timeout}; 710 return unless $self; # ->error could have destroyed $self
354 711
355 # calculate new after 712 $self->{$tw} ||= AE::timer $after, 0, sub {
356 $after = $self->{timeout}; 713 delete $self->{$tw};
714 $cb->($self);
715 };
716 } else {
717 delete $self->{$tw};
357 } 718 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 } 719 }
369} 720}
370 721
371############################################################################# 722#############################################################################
372 723
396 my ($self, $cb) = @_; 747 my ($self, $cb) = @_;
397 748
398 $self->{on_drain} = $cb; 749 $self->{on_drain} = $cb;
399 750
400 $cb->($self) 751 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 752 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 753}
403 754
404=item $handle->push_write ($data) 755=item $handle->push_write ($data)
405 756
406Queues the given scalar to be written. You can push as much data as you 757Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 768 Scalar::Util::weaken $self;
418 769
419 my $cb = sub { 770 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 771 my $len = syswrite $self->{fh}, $self->{wbuf};
421 772
422 if ($len >= 0) { 773 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 774 substr $self->{wbuf}, 0, $len, "";
424 775
425 $self->{_activity} = AnyEvent->now; 776 $self->{_activity} = $self->{_wactivity} = AE::now;
426 777
427 $self->{on_drain}($self) 778 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 779 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 780 && $self->{on_drain};
430 781
431 delete $self->{_ww} unless length $self->{wbuf}; 782 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 783 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 784 $self->_error ($!, 1);
434 } 785 }
435 }; 786 };
436 787
437 # try to write data immediately 788 # try to write data immediately
438 $cb->(); 789 $cb->() unless $self->{autocork};
439 790
440 # if still data left in wbuf, we need to poll 791 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 792 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 793 if length $self->{wbuf};
443 }; 794 };
444} 795}
445 796
446our %WH; 797our %WH;
457 808
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 809 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 810 ->($self, @_);
460 } 811 }
461 812
462 if ($self->{filter_w}) { 813 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 814 $self->{_tls_wbuf} .= $_[0];
815 &_dotls ($self) if $self->{fh};
464 } else { 816 } else {
465 $self->{wbuf} .= $_[0]; 817 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 818 $self->_drain_wbuf if $self->{fh};
467 } 819 }
468} 820}
469 821
470=item $handle->push_write (type => @args) 822=item $handle->push_write (type => @args)
471 823
485=cut 837=cut
486 838
487register_write_type netstring => sub { 839register_write_type netstring => sub {
488 my ($self, $string) = @_; 840 my ($self, $string) = @_;
489 841
490 sprintf "%d:%s,", (length $string), $string 842 (length $string) . ":$string,"
491}; 843};
492 844
493=item packstring => $format, $data 845=item packstring => $format, $data
494 846
495An octet string prefixed with an encoded length. The encoding C<$format> 847An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 852=cut
501 853
502register_write_type packstring => sub { 854register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 855 my ($self, $format, $string) = @_;
504 856
505 pack "$format/a", $string 857 pack "$format/a*", $string
506}; 858};
507 859
508=item json => $array_or_hashref 860=item json => $array_or_hashref
509 861
510Encodes the given hash or array reference into a JSON object. Unless you 862Encodes the given hash or array reference into a JSON object. Unless you
544 896
545 $self->{json} ? $self->{json}->encode ($ref) 897 $self->{json} ? $self->{json}->encode ($ref)
546 : JSON::encode_json ($ref) 898 : JSON::encode_json ($ref)
547}; 899};
548 900
901=item storable => $reference
902
903Freezes the given reference using L<Storable> and writes it to the
904handle. Uses the C<nfreeze> format.
905
906=cut
907
908register_write_type storable => sub {
909 my ($self, $ref) = @_;
910
911 require Storable;
912
913 pack "w/a*", Storable::nfreeze ($ref)
914};
915
549=back 916=back
917
918=item $handle->push_shutdown
919
920Sometimes you know you want to close the socket after writing your data
921before it was actually written. One way to do that is to replace your
922C<on_drain> handler by a callback that shuts down the socket (and set
923C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924replaces the C<on_drain> callback with:
925
926 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927
928This simply shuts down the write side and signals an EOF condition to the
929the peer.
930
931You can rely on the normal read queue and C<on_eof> handling
932afterwards. This is the cleanest way to close a connection.
933
934=cut
935
936sub push_shutdown {
937 my ($self) = @_;
938
939 delete $self->{low_water_mark};
940 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941}
550 942
551=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 943=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
552 944
553This function (not method) lets you add your own types to C<push_write>. 945This function (not method) lets you add your own types to C<push_write>.
554Whenever the given C<type> is used, C<push_write> will invoke the code 946Whenever the given C<type> is used, C<push_write> will invoke the code
575ways, the "simple" way, using only C<on_read> and the "complex" way, using 967ways, the "simple" way, using only C<on_read> and the "complex" way, using
576a queue. 968a queue.
577 969
578In the simple case, you just install an C<on_read> callback and whenever 970In the simple case, you just install an C<on_read> callback and whenever
579new data arrives, it will be called. You can then remove some data (if 971new data arrives, it will be called. You can then remove some data (if
580enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 972enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
581or not. 973leave the data there if you want to accumulate more (e.g. when only a
974partial message has been received so far).
582 975
583In the more complex case, you want to queue multiple callbacks. In this 976In the more complex case, you want to queue multiple callbacks. In this
584case, AnyEvent::Handle will call the first queued callback each time new 977case, AnyEvent::Handle will call the first queued callback each time new
585data arrives (also the first time it is queued) and removes it when it has 978data arrives (also the first time it is queued) and removes it when it has
586done its job (see C<push_read>, below). 979done its job (see C<push_read>, below).
604 # handle xml 997 # handle xml
605 }); 998 });
606 }); 999 });
607 }); 1000 });
608 1001
609Example 2: Implement a client for a protocol that replies either with 1002Example 2: Implement a client for a protocol that replies either with "OK"
610"OK" and another line or "ERROR" for one request, and 64 bytes for the 1003and another line or "ERROR" for the first request that is sent, and 64
611second request. Due tot he availability of a full queue, we can just 1004bytes for the second request. Due to the availability of a queue, we can
612pipeline sending both requests and manipulate the queue as necessary in 1005just pipeline sending both requests and manipulate the queue as necessary
613the callbacks: 1006in the callbacks.
614 1007
615 # request one 1008When the first callback is called and sees an "OK" response, it will
1009C<unshift> another line-read. This line-read will be queued I<before> the
101064-byte chunk callback.
1011
1012 # request one, returns either "OK + extra line" or "ERROR"
616 $handle->push_write ("request 1\015\012"); 1013 $handle->push_write ("request 1\015\012");
617 1014
618 # we expect "ERROR" or "OK" as response, so push a line read 1015 # we expect "ERROR" or "OK" as response, so push a line read
619 $handle->push_read (line => sub { 1016 $handle->push_read (line => sub {
620 # if we got an "OK", we have to _prepend_ another line, 1017 # if we got an "OK", we have to _prepend_ another line,
627 ... 1024 ...
628 }); 1025 });
629 } 1026 }
630 }); 1027 });
631 1028
632 # request two 1029 # request two, simply returns 64 octets
633 $handle->push_write ("request 2\015\012"); 1030 $handle->push_write ("request 2\015\012");
634 1031
635 # simply read 64 bytes, always 1032 # simply read 64 bytes, always
636 $handle->push_read (chunk => 64, sub { 1033 $handle->push_read (chunk => 64, sub {
637 my $response = $_[1]; 1034 my $response = $_[1];
643=cut 1040=cut
644 1041
645sub _drain_rbuf { 1042sub _drain_rbuf {
646 my ($self) = @_; 1043 my ($self) = @_;
647 1044
1045 # avoid recursion
1046 return if $self->{_skip_drain_rbuf};
648 local $self->{_in_drain} = 1; 1047 local $self->{_skip_drain_rbuf} = 1;
649
650 if (
651 defined $self->{rbuf_max}
652 && $self->{rbuf_max} < length $self->{rbuf}
653 ) {
654 return $self->_error (&Errno::ENOSPC, 1);
655 }
656 1048
657 while () { 1049 while () {
658 no strict 'refs'; 1050 # we need to use a separate tls read buffer, as we must not receive data while
1051 # we are draining the buffer, and this can only happen with TLS.
1052 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053 if exists $self->{_tls_rbuf};
659 1054
660 my $len = length $self->{rbuf}; 1055 my $len = length $self->{rbuf};
661 1056
662 if (my $cb = shift @{ $self->{_queue} }) { 1057 if (my $cb = shift @{ $self->{_queue} }) {
663 unless ($cb->($self)) { 1058 unless ($cb->($self)) {
664 if ($self->{_eof}) { 1059 # no progress can be made
665 # no progress can be made (not enough data and no data forthcoming) 1060 # (not enough data and no data forthcoming)
666 $self->_error (&Errno::EPIPE, 1), last; 1061 $self->_error (Errno::EPIPE, 1), return
667 } 1062 if $self->{_eof};
668 1063
669 unshift @{ $self->{_queue} }, $cb; 1064 unshift @{ $self->{_queue} }, $cb;
670 last; 1065 last;
671 } 1066 }
672 } elsif ($self->{on_read}) { 1067 } elsif ($self->{on_read}) {
679 && !@{ $self->{_queue} } # and the queue is still empty 1074 && !@{ $self->{_queue} } # and the queue is still empty
680 && $self->{on_read} # but we still have on_read 1075 && $self->{on_read} # but we still have on_read
681 ) { 1076 ) {
682 # no further data will arrive 1077 # no further data will arrive
683 # so no progress can be made 1078 # so no progress can be made
684 $self->_error (&Errno::EPIPE, 1), last 1079 $self->_error (Errno::EPIPE, 1), return
685 if $self->{_eof}; 1080 if $self->{_eof};
686 1081
687 last; # more data might arrive 1082 last; # more data might arrive
688 } 1083 }
689 } else { 1084 } else {
690 # read side becomes idle 1085 # read side becomes idle
691 delete $self->{_rw}; 1086 delete $self->{_rw} unless $self->{tls};
692 last; 1087 last;
693 } 1088 }
694 } 1089 }
695 1090
1091 if ($self->{_eof}) {
1092 $self->{on_eof}
696 $self->{on_eof}($self) 1093 ? $self->{on_eof}($self)
697 if $self->{_eof} && $self->{on_eof}; 1094 : $self->_error (0, 1, "Unexpected end-of-file");
1095
1096 return;
1097 }
1098
1099 if (
1100 defined $self->{rbuf_max}
1101 && $self->{rbuf_max} < length $self->{rbuf}
1102 ) {
1103 $self->_error (Errno::ENOSPC, 1), return;
1104 }
698 1105
699 # may need to restart read watcher 1106 # may need to restart read watcher
700 unless ($self->{_rw}) { 1107 unless ($self->{_rw}) {
701 $self->start_read 1108 $self->start_read
702 if $self->{on_read} || @{ $self->{_queue} }; 1109 if $self->{on_read} || @{ $self->{_queue} };
713 1120
714sub on_read { 1121sub on_read {
715 my ($self, $cb) = @_; 1122 my ($self, $cb) = @_;
716 1123
717 $self->{on_read} = $cb; 1124 $self->{on_read} = $cb;
718 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1125 $self->_drain_rbuf if $cb;
719} 1126}
720 1127
721=item $handle->rbuf 1128=item $handle->rbuf
722 1129
723Returns the read buffer (as a modifiable lvalue). 1130Returns the read buffer (as a modifiable lvalue).
724 1131
725You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1132You can access the read buffer directly as the C<< ->{rbuf} >>
726you want. 1133member, if you want. However, the only operation allowed on the
1134read buffer (apart from looking at it) is removing data from its
1135beginning. Otherwise modifying or appending to it is not allowed and will
1136lead to hard-to-track-down bugs.
727 1137
728NOTE: The read buffer should only be used or modified if the C<on_read>, 1138NOTE: The read buffer should only be used or modified if the C<on_read>,
729C<push_read> or C<unshift_read> methods are used. The other read methods 1139C<push_read> or C<unshift_read> methods are used. The other read methods
730automatically manage the read buffer. 1140automatically manage the read buffer.
731 1141
772 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1182 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
773 ->($self, $cb, @_); 1183 ->($self, $cb, @_);
774 } 1184 }
775 1185
776 push @{ $self->{_queue} }, $cb; 1186 push @{ $self->{_queue} }, $cb;
777 $self->_drain_rbuf unless $self->{_in_drain}; 1187 $self->_drain_rbuf;
778} 1188}
779 1189
780sub unshift_read { 1190sub unshift_read {
781 my $self = shift; 1191 my $self = shift;
782 my $cb = pop; 1192 my $cb = pop;
788 ->($self, $cb, @_); 1198 ->($self, $cb, @_);
789 } 1199 }
790 1200
791 1201
792 unshift @{ $self->{_queue} }, $cb; 1202 unshift @{ $self->{_queue} }, $cb;
793 $self->_drain_rbuf unless $self->{_in_drain}; 1203 $self->_drain_rbuf;
794} 1204}
795 1205
796=item $handle->push_read (type => @args, $cb) 1206=item $handle->push_read (type => @args, $cb)
797 1207
798=item $handle->unshift_read (type => @args, $cb) 1208=item $handle->unshift_read (type => @args, $cb)
828 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1238 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
829 1 1239 1
830 } 1240 }
831}; 1241};
832 1242
833# compatibility with older API
834sub push_read_chunk {
835 $_[0]->push_read (chunk => $_[1], $_[2]);
836}
837
838sub unshift_read_chunk {
839 $_[0]->unshift_read (chunk => $_[1], $_[2]);
840}
841
842=item line => [$eol, ]$cb->($handle, $line, $eol) 1243=item line => [$eol, ]$cb->($handle, $line, $eol)
843 1244
844The callback will be called only once a full line (including the end of 1245The callback will be called only once a full line (including the end of
845line marker, C<$eol>) has been read. This line (excluding the end of line 1246line marker, C<$eol>) has been read. This line (excluding the end of line
846marker) will be passed to the callback as second argument (C<$line>), and 1247marker) will be passed to the callback as second argument (C<$line>), and
861=cut 1262=cut
862 1263
863register_read_type line => sub { 1264register_read_type line => sub {
864 my ($self, $cb, $eol) = @_; 1265 my ($self, $cb, $eol) = @_;
865 1266
866 $eol = qr|(\015?\012)| if @_ < 3; 1267 if (@_ < 3) {
1268 # this is more than twice as fast as the generic code below
1269 sub {
1270 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1271
1272 $cb->($_[0], $1, $2);
1273 1
1274 }
1275 } else {
867 $eol = quotemeta $eol unless ref $eol; 1276 $eol = quotemeta $eol unless ref $eol;
868 $eol = qr|^(.*?)($eol)|s; 1277 $eol = qr|^(.*?)($eol)|s;
869 1278
870 sub { 1279 sub {
871 $_[0]{rbuf} =~ s/$eol// or return; 1280 $_[0]{rbuf} =~ s/$eol// or return;
872 1281
873 $cb->($_[0], $1, $2); 1282 $cb->($_[0], $1, $2);
1283 1
874 1 1284 }
875 } 1285 }
876}; 1286};
877
878# compatibility with older API
879sub push_read_line {
880 my $self = shift;
881 $self->push_read (line => @_);
882}
883
884sub unshift_read_line {
885 my $self = shift;
886 $self->unshift_read (line => @_);
887}
888 1287
889=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1288=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
890 1289
891Makes a regex match against the regex object C<$accept> and returns 1290Makes a regex match against the regex object C<$accept> and returns
892everything up to and including the match. 1291everything up to and including the match.
942 return 1; 1341 return 1;
943 } 1342 }
944 1343
945 # reject 1344 # reject
946 if ($reject && $$rbuf =~ $reject) { 1345 if ($reject && $$rbuf =~ $reject) {
947 $self->_error (&Errno::EBADMSG); 1346 $self->_error (Errno::EBADMSG);
948 } 1347 }
949 1348
950 # skip 1349 # skip
951 if ($skip && $$rbuf =~ $skip) { 1350 if ($skip && $$rbuf =~ $skip) {
952 $data .= substr $$rbuf, 0, $+[0], ""; 1351 $data .= substr $$rbuf, 0, $+[0], "";
968 my ($self, $cb) = @_; 1367 my ($self, $cb) = @_;
969 1368
970 sub { 1369 sub {
971 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1370 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
972 if ($_[0]{rbuf} =~ /[^0-9]/) { 1371 if ($_[0]{rbuf} =~ /[^0-9]/) {
973 $self->_error (&Errno::EBADMSG); 1372 $self->_error (Errno::EBADMSG);
974 } 1373 }
975 return; 1374 return;
976 } 1375 }
977 1376
978 my $len = $1; 1377 my $len = $1;
981 my $string = $_[1]; 1380 my $string = $_[1];
982 $_[0]->unshift_read (chunk => 1, sub { 1381 $_[0]->unshift_read (chunk => 1, sub {
983 if ($_[1] eq ",") { 1382 if ($_[1] eq ",") {
984 $cb->($_[0], $string); 1383 $cb->($_[0], $string);
985 } else { 1384 } else {
986 $self->_error (&Errno::EBADMSG); 1385 $self->_error (Errno::EBADMSG);
987 } 1386 }
988 }); 1387 });
989 }); 1388 });
990 1389
991 1 1390 1
997An octet string prefixed with an encoded length. The encoding C<$format> 1396An octet string prefixed with an encoded length. The encoding C<$format>
998uses the same format as a Perl C<pack> format, but must specify a single 1397uses the same format as a Perl C<pack> format, but must specify a single
999integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1398integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1000optional C<!>, C<< < >> or C<< > >> modifier). 1399optional C<!>, C<< < >> or C<< > >> modifier).
1001 1400
1002DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1401For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402EPP uses a prefix of C<N> (4 octtes).
1003 1403
1004Example: read a block of data prefixed by its length in BER-encoded 1404Example: read a block of data prefixed by its length in BER-encoded
1005format (very efficient). 1405format (very efficient).
1006 1406
1007 $handle->push_read (packstring => "w", sub { 1407 $handle->push_read (packstring => "w", sub {
1013register_read_type packstring => sub { 1413register_read_type packstring => sub {
1014 my ($self, $cb, $format) = @_; 1414 my ($self, $cb, $format) = @_;
1015 1415
1016 sub { 1416 sub {
1017 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1417 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1018 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1418 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1019 or return; 1419 or return;
1020 1420
1421 $format = length pack $format, $len;
1422
1423 # bypass unshift if we already have the remaining chunk
1424 if ($format + $len <= length $_[0]{rbuf}) {
1425 my $data = substr $_[0]{rbuf}, $format, $len;
1426 substr $_[0]{rbuf}, 0, $format + $len, "";
1427 $cb->($_[0], $data);
1428 } else {
1021 # remove prefix 1429 # remove prefix
1022 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1430 substr $_[0]{rbuf}, 0, $format, "";
1023 1431
1024 # read rest 1432 # read remaining chunk
1025 $_[0]->unshift_read (chunk => $len, $cb); 1433 $_[0]->unshift_read (chunk => $len, $cb);
1434 }
1026 1435
1027 1 1436 1
1028 } 1437 }
1029}; 1438};
1030 1439
1031=item json => $cb->($handle, $hash_or_arrayref) 1440=item json => $cb->($handle, $hash_or_arrayref)
1032 1441
1033Reads a JSON object or array, decodes it and passes it to the callback. 1442Reads a JSON object or array, decodes it and passes it to the
1443callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1034 1444
1035If a C<json> object was passed to the constructor, then that will be used 1445If a C<json> object was passed to the constructor, then that will be used
1036for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1446for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1037 1447
1038This read type uses the incremental parser available with JSON version 1448This read type uses the incremental parser available with JSON version
1045the C<json> write type description, above, for an actual example. 1455the C<json> write type description, above, for an actual example.
1046 1456
1047=cut 1457=cut
1048 1458
1049register_read_type json => sub { 1459register_read_type json => sub {
1050 my ($self, $cb, $accept, $reject, $skip) = @_; 1460 my ($self, $cb) = @_;
1051 1461
1052 require JSON; 1462 my $json = $self->{json} ||=
1463 eval { require JSON::XS; JSON::XS->new->utf8 }
1464 || do { require JSON; JSON->new->utf8 };
1053 1465
1054 my $data; 1466 my $data;
1055 my $rbuf = \$self->{rbuf}; 1467 my $rbuf = \$self->{rbuf};
1056 1468
1057 my $json = $self->{json} ||= JSON->new->utf8;
1058
1059 sub { 1469 sub {
1060 my $ref = $json->incr_parse ($self->{rbuf}); 1470 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1061 1471
1062 if ($ref) { 1472 if ($ref) {
1063 $self->{rbuf} = $json->incr_text; 1473 $self->{rbuf} = $json->incr_text;
1064 $json->incr_text = ""; 1474 $json->incr_text = "";
1065 $cb->($self, $ref); 1475 $cb->($self, $ref);
1066 1476
1067 1 1477 1
1478 } elsif ($@) {
1479 # error case
1480 $json->incr_skip;
1481
1482 $self->{rbuf} = $json->incr_text;
1483 $json->incr_text = "";
1484
1485 $self->_error (Errno::EBADMSG);
1486
1487 ()
1068 } else { 1488 } else {
1069 $self->{rbuf} = ""; 1489 $self->{rbuf} = "";
1490
1070 () 1491 ()
1071 } 1492 }
1493 }
1494};
1495
1496=item storable => $cb->($handle, $ref)
1497
1498Deserialises a L<Storable> frozen representation as written by the
1499C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1500data).
1501
1502Raises C<EBADMSG> error if the data could not be decoded.
1503
1504=cut
1505
1506register_read_type storable => sub {
1507 my ($self, $cb) = @_;
1508
1509 require Storable;
1510
1511 sub {
1512 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1513 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1514 or return;
1515
1516 my $format = length pack "w", $len;
1517
1518 # bypass unshift if we already have the remaining chunk
1519 if ($format + $len <= length $_[0]{rbuf}) {
1520 my $data = substr $_[0]{rbuf}, $format, $len;
1521 substr $_[0]{rbuf}, 0, $format + $len, "";
1522 $cb->($_[0], Storable::thaw ($data));
1523 } else {
1524 # remove prefix
1525 substr $_[0]{rbuf}, 0, $format, "";
1526
1527 # read remaining chunk
1528 $_[0]->unshift_read (chunk => $len, sub {
1529 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1530 $cb->($_[0], $ref);
1531 } else {
1532 $self->_error (Errno::EBADMSG);
1533 }
1534 });
1535 }
1536
1537 1
1072 } 1538 }
1073}; 1539};
1074 1540
1075=back 1541=back
1076 1542
1106Note that AnyEvent::Handle will automatically C<start_read> for you when 1572Note that AnyEvent::Handle will automatically C<start_read> for you when
1107you change the C<on_read> callback or push/unshift a read callback, and it 1573you change the C<on_read> callback or push/unshift a read callback, and it
1108will automatically C<stop_read> for you when neither C<on_read> is set nor 1574will automatically C<stop_read> for you when neither C<on_read> is set nor
1109there are any read requests in the queue. 1575there are any read requests in the queue.
1110 1576
1577These methods will have no effect when in TLS mode (as TLS doesn't support
1578half-duplex connections).
1579
1111=cut 1580=cut
1112 1581
1113sub stop_read { 1582sub stop_read {
1114 my ($self) = @_; 1583 my ($self) = @_;
1115 1584
1116 delete $self->{_rw}; 1585 delete $self->{_rw} unless $self->{tls};
1117} 1586}
1118 1587
1119sub start_read { 1588sub start_read {
1120 my ($self) = @_; 1589 my ($self) = @_;
1121 1590
1122 unless ($self->{_rw} || $self->{_eof}) { 1591 unless ($self->{_rw} || $self->{_eof}) {
1123 Scalar::Util::weaken $self; 1592 Scalar::Util::weaken $self;
1124 1593
1125 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1594 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1126 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1595 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1127 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1596 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1128 1597
1129 if ($len > 0) { 1598 if ($len > 0) {
1130 $self->{_activity} = AnyEvent->now; 1599 $self->{_activity} = $self->{_ractivity} = AE::now;
1131 1600
1132 $self->{filter_r} 1601 if ($self->{tls}) {
1133 ? $self->{filter_r}($self, $rbuf) 1602 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1134 : $self->{_in_drain} || $self->_drain_rbuf; 1603
1604 &_dotls ($self);
1605 } else {
1606 $self->_drain_rbuf;
1607 }
1135 1608
1136 } elsif (defined $len) { 1609 } elsif (defined $len) {
1137 delete $self->{_rw}; 1610 delete $self->{_rw};
1138 $self->{_eof} = 1; 1611 $self->{_eof} = 1;
1139 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1140 1613
1141 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1614 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1142 return $self->_error ($!, 1); 1615 return $self->_error ($!, 1);
1143 } 1616 }
1144 }); 1617 };
1145 } 1618 }
1146} 1619}
1147 1620
1621our $ERROR_SYSCALL;
1622our $ERROR_WANT_READ;
1623
1624sub _tls_error {
1625 my ($self, $err) = @_;
1626
1627 return $self->_error ($!, 1)
1628 if $err == Net::SSLeay::ERROR_SYSCALL ();
1629
1630 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631
1632 # reduce error string to look less scary
1633 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634
1635 if ($self->{_on_starttls}) {
1636 (delete $self->{_on_starttls})->($self, undef, $err);
1637 &_freetls;
1638 } else {
1639 &_freetls;
1640 $self->_error (Errno::EPROTO, 1, $err);
1641 }
1642}
1643
1644# poll the write BIO and send the data if applicable
1645# also decode read data if possible
1646# this is basiclaly our TLS state machine
1647# more efficient implementations are possible with openssl,
1648# but not with the buggy and incomplete Net::SSLeay.
1148sub _dotls { 1649sub _dotls {
1149 my ($self) = @_; 1650 my ($self) = @_;
1150 1651
1151 my $buf; 1652 my $tmp;
1152 1653
1153 if (length $self->{_tls_wbuf}) { 1654 if (length $self->{_tls_wbuf}) {
1154 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1655 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1155 substr $self->{_tls_wbuf}, 0, $len, ""; 1656 substr $self->{_tls_wbuf}, 0, $tmp, "";
1156 } 1657 }
1157 }
1158 1658
1659 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660 return $self->_tls_error ($tmp)
1661 if $tmp != $ERROR_WANT_READ
1662 && ($tmp != $ERROR_SYSCALL || $!);
1663 }
1664
1665 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666 unless (length $tmp) {
1667 $self->{_on_starttls}
1668 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 &_freetls;
1670
1671 if ($self->{on_stoptls}) {
1672 $self->{on_stoptls}($self);
1673 return;
1674 } else {
1675 # let's treat SSL-eof as we treat normal EOF
1676 delete $self->{_rw};
1677 $self->{_eof} = 1;
1678 }
1679 }
1680
1681 $self->{_tls_rbuf} .= $tmp;
1682 $self->_drain_rbuf;
1683 $self->{tls} or return; # tls session might have gone away in callback
1684 }
1685
1686 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 return $self->_tls_error ($tmp)
1688 if $tmp != $ERROR_WANT_READ
1689 && ($tmp != $ERROR_SYSCALL || $!);
1690
1159 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1691 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1160 $self->{wbuf} .= $buf; 1692 $self->{wbuf} .= $tmp;
1161 $self->_drain_wbuf; 1693 $self->_drain_wbuf;
1162 } 1694 }
1163 1695
1164 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1696 $self->{_on_starttls}
1165 if (length $buf) { 1697 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1166 $self->{rbuf} .= $buf; 1698 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1167 $self->_drain_rbuf unless $self->{_in_drain};
1168 } else {
1169 # let's treat SSL-eof as we treat normal EOF
1170 $self->{_eof} = 1;
1171 $self->_shutdown;
1172 return;
1173 }
1174 }
1175
1176 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1177
1178 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1179 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1180 return $self->_error ($!, 1);
1181 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1182 return $self->_error (&Errno::EIO, 1);
1183 }
1184
1185 # all others are fine for our purposes
1186 }
1187} 1699}
1188 1700
1189=item $handle->starttls ($tls[, $tls_ctx]) 1701=item $handle->starttls ($tls[, $tls_ctx])
1190 1702
1191Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1703Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1192object is created, you can also do that at a later time by calling 1704object is created, you can also do that at a later time by calling
1193C<starttls>. 1705C<starttls>.
1194 1706
1707Starting TLS is currently an asynchronous operation - when you push some
1708write data and then call C<< ->starttls >> then TLS negotiation will start
1709immediately, after which the queued write data is then sent.
1710
1195The first argument is the same as the C<tls> constructor argument (either 1711The first argument is the same as the C<tls> constructor argument (either
1196C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1712C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1197 1713
1198The second argument is the optional C<Net::SSLeay::CTX> object that is 1714The second argument is the optional C<AnyEvent::TLS> object that is used
1199used when AnyEvent::Handle has to create its own TLS connection object. 1715when AnyEvent::Handle has to create its own TLS connection object, or
1716a hash reference with C<< key => value >> pairs that will be used to
1717construct a new context.
1200 1718
1201The TLS connection object will end up in C<< $handle->{tls} >> after this 1719The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1202call and can be used or changed to your liking. Note that the handshake 1720context in C<< $handle->{tls_ctx} >> after this call and can be used or
1203might have already started when this function returns. 1721changed to your liking. Note that the handshake might have already started
1722when this function returns.
1204 1723
1724Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725handshakes on the same stream. Best do not attempt to use the stream after
1726stopping TLS.
1727
1205=cut 1728=cut
1729
1730our %TLS_CACHE; #TODO not yet documented, should we?
1206 1731
1207sub starttls { 1732sub starttls {
1208 my ($self, $ssl, $ctx) = @_; 1733 my ($self, $tls, $ctx) = @_;
1209 1734
1210 $self->stoptls; 1735 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736 if $self->{tls};
1211 1737
1212 if ($ssl eq "accept") { 1738 $self->{tls} = $tls;
1213 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1739 $self->{tls_ctx} = $ctx if @_ > 2;
1214 Net::SSLeay::set_accept_state ($ssl); 1740
1215 } elsif ($ssl eq "connect") { 1741 return unless $self->{fh};
1216 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1742
1217 Net::SSLeay::set_connect_state ($ssl); 1743 require Net::SSLeay;
1744
1745 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747
1748 $tls = $self->{tls};
1749 $ctx = $self->{tls_ctx};
1750
1751 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752
1753 if ("HASH" eq ref $ctx) {
1754 require AnyEvent::TLS;
1755
1756 if ($ctx->{cache}) {
1757 my $key = $ctx+0;
1758 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759 } else {
1760 $ctx = new AnyEvent::TLS %$ctx;
1761 }
1762 }
1218 } 1763
1219 1764 $self->{tls_ctx} = $ctx || TLS_CTX ();
1220 $self->{tls} = $ssl; 1765 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1221 1766
1222 # basically, this is deep magic (because SSL_read should have the same issues) 1767 # basically, this is deep magic (because SSL_read should have the same issues)
1223 # but the openssl maintainers basically said: "trust us, it just works". 1768 # but the openssl maintainers basically said: "trust us, it just works".
1224 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1769 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1225 # and mismaintained ssleay-module doesn't even offer them). 1770 # and mismaintained ssleay-module doesn't even offer them).
1226 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1771 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 #
1773 # in short: this is a mess.
1774 #
1775 # note that we do not try to keep the length constant between writes as we are required to do.
1776 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778 # have identity issues in that area.
1227 Net::SSLeay::CTX_set_mode ($self->{tls}, 1779# Net::SSLeay::CTX_set_mode ($ssl,
1228 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1780# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1229 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1781# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1230 1783
1231 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1784 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1232 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1785 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1233 1786
1787 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788
1234 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1789 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1235 1790
1236 $self->{filter_w} = sub { 1791 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1237 $_[0]{_tls_wbuf} .= ${$_[1]}; 1792 if $self->{on_starttls};
1238 &_dotls; 1793
1239 }; 1794 &_dotls; # need to trigger the initial handshake
1240 $self->{filter_r} = sub { 1795 $self->start_read; # make sure we actually do read
1241 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1242 &_dotls;
1243 };
1244} 1796}
1245 1797
1246=item $handle->stoptls 1798=item $handle->stoptls
1247 1799
1248Destroys the SSL connection, if any. Partial read or write data will be 1800Shuts down the SSL connection - this makes a proper EOF handshake by
1249lost. 1801sending a close notify to the other side, but since OpenSSL doesn't
1802support non-blocking shut downs, it is not guarenteed that you can re-use
1803the stream afterwards.
1250 1804
1251=cut 1805=cut
1252 1806
1253sub stoptls { 1807sub stoptls {
1254 my ($self) = @_; 1808 my ($self) = @_;
1255 1809
1256 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1810 if ($self->{tls}) {
1811 Net::SSLeay::shutdown ($self->{tls});
1257 1812
1258 delete $self->{_rbio}; 1813 &_dotls;
1259 delete $self->{_wbio}; 1814
1260 delete $self->{_tls_wbuf}; 1815# # we don't give a shit. no, we do, but we can't. no...#d#
1261 delete $self->{filter_r}; 1816# # we, we... have to use openssl :/#d#
1262 delete $self->{filter_w}; 1817# &_freetls;#d#
1818 }
1819}
1820
1821sub _freetls {
1822 my ($self) = @_;
1823
1824 return unless $self->{tls};
1825
1826 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 if $self->{tls} > 0;
1828
1829 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1263} 1830}
1264 1831
1265sub DESTROY { 1832sub DESTROY {
1266 my $self = shift; 1833 my ($self) = @_;
1267 1834
1268 $self->stoptls; 1835 &_freetls;
1269 1836
1270 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1837 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1271 1838
1272 if ($linger && length $self->{wbuf}) { 1839 if ($linger && length $self->{wbuf} && $self->{fh}) {
1273 my $fh = delete $self->{fh}; 1840 my $fh = delete $self->{fh};
1274 my $wbuf = delete $self->{wbuf}; 1841 my $wbuf = delete $self->{wbuf};
1275 1842
1276 my @linger; 1843 my @linger;
1277 1844
1278 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1845 push @linger, AE::io $fh, 1, sub {
1279 my $len = syswrite $fh, $wbuf, length $wbuf; 1846 my $len = syswrite $fh, $wbuf, length $wbuf;
1280 1847
1281 if ($len > 0) { 1848 if ($len > 0) {
1282 substr $wbuf, 0, $len, ""; 1849 substr $wbuf, 0, $len, "";
1283 } else { 1850 } else {
1284 @linger = (); # end 1851 @linger = (); # end
1285 } 1852 }
1286 }); 1853 };
1287 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1854 push @linger, AE::timer $linger, 0, sub {
1288 @linger = (); 1855 @linger = ();
1289 }); 1856 };
1290 } 1857 }
1858}
1859
1860=item $handle->destroy
1861
1862Shuts down the handle object as much as possible - this call ensures that
1863no further callbacks will be invoked and as many resources as possible
1864will be freed. Any method you will call on the handle object after
1865destroying it in this way will be silently ignored (and it will return the
1866empty list).
1867
1868Normally, you can just "forget" any references to an AnyEvent::Handle
1869object and it will simply shut down. This works in fatal error and EOF
1870callbacks, as well as code outside. It does I<NOT> work in a read or write
1871callback, so when you want to destroy the AnyEvent::Handle object from
1872within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873that case.
1874
1875Destroying the handle object in this way has the advantage that callbacks
1876will be removed as well, so if those are the only reference holders (as
1877is common), then one doesn't need to do anything special to break any
1878reference cycles.
1879
1880The handle might still linger in the background and write out remaining
1881data, as specified by the C<linger> option, however.
1882
1883=cut
1884
1885sub destroy {
1886 my ($self) = @_;
1887
1888 $self->DESTROY;
1889 %$self = ();
1890 bless $self, "AnyEvent::Handle::destroyed";
1891}
1892
1893sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894 #nop
1291} 1895}
1292 1896
1293=item AnyEvent::Handle::TLS_CTX 1897=item AnyEvent::Handle::TLS_CTX
1294 1898
1295This function creates and returns the Net::SSLeay::CTX object used by 1899This function creates and returns the AnyEvent::TLS object used by default
1296default for TLS mode. 1900for TLS mode.
1297 1901
1298The context is created like this: 1902The context is created by calling L<AnyEvent::TLS> without any arguments.
1299
1300 Net::SSLeay::load_error_strings;
1301 Net::SSLeay::SSLeay_add_ssl_algorithms;
1302 Net::SSLeay::randomize;
1303
1304 my $CTX = Net::SSLeay::CTX_new;
1305
1306 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1307 1903
1308=cut 1904=cut
1309 1905
1310our $TLS_CTX; 1906our $TLS_CTX;
1311 1907
1312sub TLS_CTX() { 1908sub TLS_CTX() {
1313 $TLS_CTX || do { 1909 $TLS_CTX ||= do {
1314 require Net::SSLeay; 1910 require AnyEvent::TLS;
1315 1911
1316 Net::SSLeay::load_error_strings (); 1912 new AnyEvent::TLS
1317 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1318 Net::SSLeay::randomize ();
1319
1320 $TLS_CTX = Net::SSLeay::CTX_new ();
1321
1322 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1323
1324 $TLS_CTX
1325 } 1913 }
1326} 1914}
1327 1915
1328=back 1916=back
1917
1918
1919=head1 NONFREQUENTLY ASKED QUESTIONS
1920
1921=over 4
1922
1923=item I C<undef> the AnyEvent::Handle reference inside my callback and
1924still get further invocations!
1925
1926That's because AnyEvent::Handle keeps a reference to itself when handling
1927read or write callbacks.
1928
1929It is only safe to "forget" the reference inside EOF or error callbacks,
1930from within all other callbacks, you need to explicitly call the C<<
1931->destroy >> method.
1932
1933=item I get different callback invocations in TLS mode/Why can't I pause
1934reading?
1935
1936Unlike, say, TCP, TLS connections do not consist of two independent
1937communication channels, one for each direction. Or put differently. The
1938read and write directions are not independent of each other: you cannot
1939write data unless you are also prepared to read, and vice versa.
1940
1941This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942callback invocations when you are not expecting any read data - the reason
1943is that AnyEvent::Handle always reads in TLS mode.
1944
1945During the connection, you have to make sure that you always have a
1946non-empty read-queue, or an C<on_read> watcher. At the end of the
1947connection (or when you no longer want to use it) you can call the
1948C<destroy> method.
1949
1950=item How do I read data until the other side closes the connection?
1951
1952If you just want to read your data into a perl scalar, the easiest way
1953to achieve this is by setting an C<on_read> callback that does nothing,
1954clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955will be in C<$_[0]{rbuf}>:
1956
1957 $handle->on_read (sub { });
1958 $handle->on_eof (undef);
1959 $handle->on_error (sub {
1960 my $data = delete $_[0]{rbuf};
1961 });
1962
1963The reason to use C<on_error> is that TCP connections, due to latencies
1964and packets loss, might get closed quite violently with an error, when in
1965fact, all data has been received.
1966
1967It is usually better to use acknowledgements when transferring data,
1968to make sure the other side hasn't just died and you got the data
1969intact. This is also one reason why so many internet protocols have an
1970explicit QUIT command.
1971
1972=item I don't want to destroy the handle too early - how do I wait until
1973all data has been written?
1974
1975After writing your last bits of data, set the C<on_drain> callback
1976and destroy the handle in there - with the default setting of
1977C<low_water_mark> this will be called precisely when all data has been
1978written to the socket:
1979
1980 $handle->push_write (...);
1981 $handle->on_drain (sub {
1982 warn "all data submitted to the kernel\n";
1983 undef $handle;
1984 });
1985
1986If you just want to queue some data and then signal EOF to the other side,
1987consider using C<< ->push_shutdown >> instead.
1988
1989=item I want to contact a TLS/SSL server, I don't care about security.
1990
1991If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993parameter:
1994
1995 tcp_connect $host, $port, sub {
1996 my ($fh) = @_;
1997
1998 my $handle = new AnyEvent::Handle
1999 fh => $fh,
2000 tls => "connect",
2001 on_error => sub { ... };
2002
2003 $handle->push_write (...);
2004 };
2005
2006=item I want to contact a TLS/SSL server, I do care about security.
2007
2008Then you should additionally enable certificate verification, including
2009peername verification, if the protocol you use supports it (see
2010L<AnyEvent::TLS>, C<verify_peername>).
2011
2012E.g. for HTTPS:
2013
2014 tcp_connect $host, $port, sub {
2015 my ($fh) = @_;
2016
2017 my $handle = new AnyEvent::Handle
2018 fh => $fh,
2019 peername => $host,
2020 tls => "connect",
2021 tls_ctx => { verify => 1, verify_peername => "https" },
2022 ...
2023
2024Note that you must specify the hostname you connected to (or whatever
2025"peername" the protocol needs) as the C<peername> argument, otherwise no
2026peername verification will be done.
2027
2028The above will use the system-dependent default set of trusted CA
2029certificates. If you want to check against a specific CA, add the
2030C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031
2032 tls_ctx => {
2033 verify => 1,
2034 verify_peername => "https",
2035 ca_file => "my-ca-cert.pem",
2036 },
2037
2038=item I want to create a TLS/SSL server, how do I do that?
2039
2040Well, you first need to get a server certificate and key. You have
2041three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042self-signed certificate (cheap. check the search engine of your choice,
2043there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044nice program for that purpose).
2045
2046Then create a file with your private key (in PEM format, see
2047L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048file should then look like this:
2049
2050 -----BEGIN RSA PRIVATE KEY-----
2051 ...header data
2052 ... lots of base64'y-stuff
2053 -----END RSA PRIVATE KEY-----
2054
2055 -----BEGIN CERTIFICATE-----
2056 ... lots of base64'y-stuff
2057 -----END CERTIFICATE-----
2058
2059The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060specify this file as C<cert_file>:
2061
2062 tcp_server undef, $port, sub {
2063 my ($fh) = @_;
2064
2065 my $handle = new AnyEvent::Handle
2066 fh => $fh,
2067 tls => "accept",
2068 tls_ctx => { cert_file => "my-server-keycert.pem" },
2069 ...
2070
2071When you have intermediate CA certificates that your clients might not
2072know about, just append them to the C<cert_file>.
2073
2074=back
2075
1329 2076
1330=head1 SUBCLASSING AnyEvent::Handle 2077=head1 SUBCLASSING AnyEvent::Handle
1331 2078
1332In many cases, you might want to subclass AnyEvent::Handle. 2079In many cases, you might want to subclass AnyEvent::Handle.
1333 2080
1337=over 4 2084=over 4
1338 2085
1339=item * all constructor arguments become object members. 2086=item * all constructor arguments become object members.
1340 2087
1341At least initially, when you pass a C<tls>-argument to the constructor it 2088At least initially, when you pass a C<tls>-argument to the constructor it
1342will end up in C<< $handle->{tls} >>. Those members might be changes or 2089will end up in C<< $handle->{tls} >>. Those members might be changed or
1343mutated later on (for example C<tls> will hold the TLS connection object). 2090mutated later on (for example C<tls> will hold the TLS connection object).
1344 2091
1345=item * other object member names are prefixed with an C<_>. 2092=item * other object member names are prefixed with an C<_>.
1346 2093
1347All object members not explicitly documented (internal use) are prefixed 2094All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines