ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.232; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>.
53 41
54The L<AnyEvent::Intro> tutorial contains some well-documented 42The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 43AnyEvent::Handle examples.
56 44
57In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
60 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
61All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
62argument. 53argument.
63 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
64=head1 METHODS 67=head1 METHODS
65 68
66=over 4 69=over 4
67 70
68=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 72
70The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
71 74
72=over 4 75=over 4
73 76
74=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 78
76The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 80NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 82that mode.
81 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
82=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
83 102
84Set the callback to be called when an end-of-file condition is detected, 103This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
86connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
87 108
88For sockets, this just means that the other side has stopped sending data, 109The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 111timeout is to be used).
91down.
92 112
93While not mandatory, it is I<highly> recommended to set an eof callback, 113=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 114
97If an EOF condition has been detected but no C<on_eof> callback has been 115This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
100=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
101 140
102This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 143connect or a read error.
105 144
106Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 146fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 147destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 148examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
111 157
112Non-fatal errors can be retried by simply returning, but it is recommended 158Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 159to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 160when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 162
117On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
119 166
120While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
122C<croak>. 169C<croak>.
123 170
127and no read request is in the queue (unlike read queue callbacks, this 174and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 175callback will only be called when at least one octet of data is in the
129read buffer). 176read buffer).
130 177
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
133 182
134When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
138 208
139=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
140 210
141This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 219memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 220the file when the write queue becomes empty.
151 221
152=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
153 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
154If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 239
159Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
163 245
164Zero (the default) disables this timeout. 246Zero (the default) disables this timeout.
165 247
166=item on_timeout => $cb->($handle) 248=item on_timeout => $cb->($handle)
167 249
171 253
172=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
173 255
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
177 259
178For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
182isn't finished). 264isn't finished).
183 265
184=item autocork => <boolean> 266=item autocork => <boolean>
185 267
186When disabled (the default), then C<push_write> will try to immediately 268When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 269write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 270a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 271be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
191 274
192When enabled, then writes will always be queued till the next event loop 275When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 276iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
195 279
196=item no_delay => <boolean> 280=item no_delay => <boolean>
197 281
198When doing small writes on sockets, your operating system kernel might 282When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 283wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 284the Nagle algorithm, and usually it is beneficial.
201 285
202In some situations you want as low a delay as possible, which cna be 286In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 287accomplishd by setting this option to a true value.
204 288
205The default is your opertaing system's default behaviour, this option 289The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 290enabled), this option explicitly enables or disables it, if possible.
207 291
208=item read_size => <bytes> 292=item read_size => <bytes>
209 293
210The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
212 297
213=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
214 299
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
217considered empty. 302considered empty.
218 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
219=item linger => <seconds> 309=item linger => <seconds>
220 310
221If non-zero (default: C<3600>), then the destructor of the 311If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 312AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 313write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 314socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 315system treats outstanding data at socket close time).
226 316
227This will not work for partial TLS data that could not yet been 317This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
229 330
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 332
232When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
233will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
235 339
236TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
238 344
239For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
240connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
241 348
242You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
246 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
247See the C<starttls> method if you need to start TLS negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
248 365
249=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
250 367
251Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
255=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
256 409
257This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
258 411
259If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
261 415
262Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
264 418
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
271=back 419=back
272 420
273=cut 421=cut
274 422
275sub new { 423sub new {
276 my $class = shift; 424 my $class = shift;
277
278 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
279 426
280 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
281 490
282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
283 492
284 if ($self->{tls}) { 493 $self->{_activity} =
285 require Net::SSLeay; 494 $self->{_ractivity} =
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
288
289 $self->{_activity} = AnyEvent->now; 495 $self->{_wactivity} = AE::now;
290 $self->_timeout;
291 496
292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
294 502
503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
504 if $self->{tls};
505
506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
507
295 $self->start_read 508 $self->start_read
296 if $self->{on_read}; 509 if $self->{on_read} || @{ $self->{_queue} };
297 510
298 $self 511 $self->_drain_wbuf;
299} 512}
300 513
301sub _shutdown { 514#sub _shutdown {
302 my ($self) = @_; 515# my ($self) = @_;
303 516#
304 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
305 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
306 delete $self->{_ww}; 519#
307 delete $self->{fh}; 520# &_freetls;
308 521#}
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313}
314 522
315sub _error { 523sub _error {
316 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
317
318 $self->_shutdown
319 if $fatal;
320 525
321 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
322 528
323 if ($self->{on_error}) { 529 if ($self->{on_error}) {
324 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
325 } else { 531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
326 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
327 } 535 }
328} 536}
329 537
330=item $fh = $handle->fh 538=item $fh = $handle->fh
331 539
332This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
333 541
334=cut 542=cut
335 543
336sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
337 545
355 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
356} 564}
357 565
358=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
359 567
360Replace the current C<on_timeout> callback, or disables the callback 568=item $handle->on_rtimeout ($cb)
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363 569
364=cut 570=item $handle->on_wtimeout ($cb)
365 571
366sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
367 $_[0]{on_timeout} = $_[1]; 573callback, or disables the callback (but not the timeout) if C<$cb> =
368} 574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
369 579
370=item $handle->autocork ($boolean) 580=item $handle->autocork ($boolean)
371 581
372Enables or disables the current autocork behaviour (see C<autocork> 582Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument). 583constructor argument). Changes will only take effect on the next write.
374 584
375=cut 585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
376 590
377=item $handle->no_delay ($boolean) 591=item $handle->no_delay ($boolean)
378 592
379Enables or disables the C<no_delay> setting (see constructor argument of 593Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details). 594the same name for details).
384sub no_delay { 598sub no_delay {
385 $_[0]{no_delay} = $_[1]; 599 $_[0]{no_delay} = $_[1];
386 600
387 eval { 601 eval {
388 local $SIG{__DIE__}; 602 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
390 }; 605 };
391} 606}
392 607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
636}
637
393############################################################################# 638#############################################################################
394 639
395=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
396 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
397Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
398 647
399=cut 648=item $handle->timeout_reset
400 649
401sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
402 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
403 673
404 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
405 $self->_timeout; 675 delete $self->{$tw}; &$cb;
406} 676 };
407 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
408# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
409# also check for time-outs 684 # also check for time-outs
410sub _timeout { 685 $cb = sub {
411 my ($self) = @_; 686 my ($self) = @_;
412 687
413 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
414 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
415 690
416 # when would the timeout trigger? 691 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
418 693
419 # now or in the past already? 694 # now or in the past already?
420 if ($after <= 0) { 695 if ($after <= 0) {
421 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
422 697
423 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
424 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
425 } else { 700 } else {
426 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
427 } 709 }
428 710
429 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
430 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
431 713
432 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
433 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
434 } 720 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 } 721 }
446} 722}
447 723
448############################################################################# 724#############################################################################
449 725
473 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
474 750
475 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
476 752
477 $cb->($self) 753 $cb->($self)
478 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
479} 755}
480 756
481=item $handle->push_write ($data) 757=item $handle->push_write ($data)
482 758
483Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
494 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
495 771
496 my $cb = sub { 772 my $cb = sub {
497 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
498 774
499 if ($len >= 0) { 775 if (defined $len) {
500 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
501 777
502 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
503 779
504 $self->{on_drain}($self) 780 $self->{on_drain}($self)
505 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
506 && $self->{on_drain}; 782 && $self->{on_drain};
507 783
508 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
510 $self->_error ($!, 1); 786 $self->_error ($!, 1);
513 789
514 # try to write data immediately 790 # try to write data immediately
515 $cb->() unless $self->{autocork}; 791 $cb->() unless $self->{autocork};
516 792
517 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
519 if length $self->{wbuf}; 795 if length $self->{wbuf};
520 }; 796 };
521} 797}
522 798
523our %WH; 799our %WH;
534 810
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_); 812 ->($self, @_);
537 } 813 }
538 814
539 if ($self->{filter_w}) { 815 if ($self->{tls}) {
540 $self->{filter_w}($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
541 } else { 818 } else {
542 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
544 } 821 }
545} 822}
546 823
547=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
548 825
562=cut 839=cut
563 840
564register_write_type netstring => sub { 841register_write_type netstring => sub {
565 my ($self, $string) = @_; 842 my ($self, $string) = @_;
566 843
567 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
568}; 845};
569 846
570=item packstring => $format, $data 847=item packstring => $format, $data
571 848
572An octet string prefixed with an encoded length. The encoding C<$format> 849An octet string prefixed with an encoded length. The encoding C<$format>
637 914
638 pack "w/a*", Storable::nfreeze ($ref) 915 pack "w/a*", Storable::nfreeze ($ref)
639}; 916};
640 917
641=back 918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
642 944
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644 946
645This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
740=cut 1042=cut
741 1043
742sub _drain_rbuf { 1044sub _drain_rbuf {
743 my ($self) = @_; 1045 my ($self) = @_;
744 1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
745 local $self->{_in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753 1050
754 while () { 1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
755 my $len = length $self->{rbuf}; 1057 my $len = length $self->{rbuf};
756 1058
757 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
758 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
759 if ($self->{_eof}) { 1061 # no progress can be made
760 # no progress can be made (not enough data and no data forthcoming) 1062 # (not enough data and no data forthcoming)
761 $self->_error (&Errno::EPIPE, 1), return; 1063 $self->_error (Errno::EPIPE, 1), return
762 } 1064 if $self->{_eof};
763 1065
764 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
765 last; 1067 last;
766 } 1068 }
767 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
774 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
775 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
776 ) { 1078 ) {
777 # no further data will arrive 1079 # no further data will arrive
778 # so no progress can be made 1080 # so no progress can be made
779 $self->_error (&Errno::EPIPE, 1), return 1081 $self->_error (Errno::EPIPE, 1), return
780 if $self->{_eof}; 1082 if $self->{_eof};
781 1083
782 last; # more data might arrive 1084 last; # more data might arrive
783 } 1085 }
784 } else { 1086 } else {
785 # read side becomes idle 1087 # read side becomes idle
786 delete $self->{_rw}; 1088 delete $self->{_rw} unless $self->{tls};
787 last; 1089 last;
788 } 1090 }
789 } 1091 }
790 1092
791 if ($self->{_eof}) { 1093 if ($self->{_eof}) {
792 if ($self->{on_eof}) { 1094 $self->{on_eof}
793 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
794 } else { 1096 : $self->_error (0, 1, "Unexpected end-of-file");
795 $self->_error (0, 1); 1097
796 } 1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
797 } 1106 }
798 1107
799 # may need to restart read watcher 1108 # may need to restart read watcher
800 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
801 $self->start_read 1110 $self->start_read
813 1122
814sub on_read { 1123sub on_read {
815 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
816 1125
817 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1127 $self->_drain_rbuf if $cb;
819} 1128}
820 1129
821=item $handle->rbuf 1130=item $handle->rbuf
822 1131
823Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
824 1133
825You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
826you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
827 1139
828NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
829C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
830automatically manage the read buffer. 1142automatically manage the read buffer.
831 1143
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1184 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_); 1185 ->($self, $cb, @_);
874 } 1186 }
875 1187
876 push @{ $self->{_queue} }, $cb; 1188 push @{ $self->{_queue} }, $cb;
877 $self->_drain_rbuf unless $self->{_in_drain}; 1189 $self->_drain_rbuf;
878} 1190}
879 1191
880sub unshift_read { 1192sub unshift_read {
881 my $self = shift; 1193 my $self = shift;
882 my $cb = pop; 1194 my $cb = pop;
888 ->($self, $cb, @_); 1200 ->($self, $cb, @_);
889 } 1201 }
890 1202
891 1203
892 unshift @{ $self->{_queue} }, $cb; 1204 unshift @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain}; 1205 $self->_drain_rbuf;
894} 1206}
895 1207
896=item $handle->push_read (type => @args, $cb) 1208=item $handle->push_read (type => @args, $cb)
897 1209
898=item $handle->unshift_read (type => @args, $cb) 1210=item $handle->unshift_read (type => @args, $cb)
1031 return 1; 1343 return 1;
1032 } 1344 }
1033 1345
1034 # reject 1346 # reject
1035 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
1037 } 1349 }
1038 1350
1039 # skip 1351 # skip
1040 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
1057 my ($self, $cb) = @_; 1369 my ($self, $cb) = @_;
1058 1370
1059 sub { 1371 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) { 1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG); 1374 $self->_error (Errno::EBADMSG);
1063 } 1375 }
1064 return; 1376 return;
1065 } 1377 }
1066 1378
1067 my $len = $1; 1379 my $len = $1;
1070 my $string = $_[1]; 1382 my $string = $_[1];
1071 $_[0]->unshift_read (chunk => 1, sub { 1383 $_[0]->unshift_read (chunk => 1, sub {
1072 if ($_[1] eq ",") { 1384 if ($_[1] eq ",") {
1073 $cb->($_[0], $string); 1385 $cb->($_[0], $string);
1074 } else { 1386 } else {
1075 $self->_error (&Errno::EBADMSG); 1387 $self->_error (Errno::EBADMSG);
1076 } 1388 }
1077 }); 1389 });
1078 }); 1390 });
1079 1391
1080 1 1392 1
1086An octet string prefixed with an encoded length. The encoding C<$format> 1398An octet string prefixed with an encoded length. The encoding C<$format>
1087uses the same format as a Perl C<pack> format, but must specify a single 1399uses the same format as a Perl C<pack> format, but must specify a single
1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier). 1401optional C<!>, C<< < >> or C<< > >> modifier).
1090 1402
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1092 1405
1093Example: read a block of data prefixed by its length in BER-encoded 1406Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient). 1407format (very efficient).
1095 1408
1096 $handle->push_read (packstring => "w", sub { 1409 $handle->push_read (packstring => "w", sub {
1126 } 1439 }
1127}; 1440};
1128 1441
1129=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
1130 1443
1131Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1132 1446
1133If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135 1449
1136This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
1145=cut 1459=cut
1146 1460
1147register_read_type json => sub { 1461register_read_type json => sub {
1148 my ($self, $cb) = @_; 1462 my ($self, $cb) = @_;
1149 1463
1150 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
1151 1467
1152 my $data; 1468 my $data;
1153 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
1154 1470
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub { 1471 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1159 1473
1160 if ($ref) { 1474 if ($ref) {
1161 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = ""; 1476 $json->incr_text = "";
1163 $cb->($self, $ref); 1477 $cb->($self, $ref);
1164 1478
1165 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1166 } else { 1490 } else {
1167 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1168 () 1493 ()
1169 } 1494 }
1170 } 1495 }
1171}; 1496};
1172 1497
1204 # read remaining chunk 1529 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub { 1530 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref); 1532 $cb->($_[0], $ref);
1208 } else { 1533 } else {
1209 $self->_error (&Errno::EBADMSG); 1534 $self->_error (Errno::EBADMSG);
1210 } 1535 }
1211 }); 1536 });
1212 } 1537 }
1213 1538
1214 1 1539 1
1249Note that AnyEvent::Handle will automatically C<start_read> for you when 1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it 1575you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor 1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue. 1577there are any read requests in the queue.
1253 1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1254=cut 1582=cut
1255 1583
1256sub stop_read { 1584sub stop_read {
1257 my ($self) = @_; 1585 my ($self) = @_;
1258 1586
1259 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1260} 1588}
1261 1589
1262sub start_read { 1590sub start_read {
1263 my ($self) = @_; 1591 my ($self) = @_;
1264 1592
1265 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1266 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1267 1595
1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1271 1599
1272 if ($len > 0) { 1600 if ($len > 0) {
1273 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1274 1602
1275 $self->{filter_r} 1603 if ($self->{tls}) {
1276 ? $self->{filter_r}($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1277 : $self->{_in_drain} || $self->_drain_rbuf; 1605
1606 &_dotls ($self);
1607 } else {
1608 $self->_drain_rbuf;
1609 }
1278 1610
1279 } elsif (defined $len) { 1611 } elsif (defined $len) {
1280 delete $self->{_rw}; 1612 delete $self->{_rw};
1281 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain}; 1614 $self->_drain_rbuf;
1283 1615
1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1285 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1286 } 1618 }
1287 }); 1619 };
1288 } 1620 }
1289} 1621}
1290 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1291sub _dotls { 1651sub _dotls {
1292 my ($self) = @_; 1652 my ($self) = @_;
1293 1653
1294 my $buf; 1654 my $tmp;
1295 1655
1296 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1298 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1299 } 1659 }
1300 }
1301 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1303 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1304 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1305 } 1696 }
1306 1697
1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
1308 if (length $buf) { 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1309 $self->{rbuf} .= $buf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1310 $self->_drain_rbuf unless $self->{_in_drain};
1311 } else {
1312 # let's treat SSL-eof as we treat normal EOF
1313 $self->{_eof} = 1;
1314 $self->_shutdown;
1315 return;
1316 }
1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330} 1701}
1331 1702
1332=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1333 1704
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1336C<starttls>. 1707C<starttls>.
1337 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1338The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340 1715
1341The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1342used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1343 1720
1344The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1345call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1346might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1347 1725
1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1729
1348=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1349 1733
1350sub starttls { 1734sub starttls {
1351 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1352 1736
1353 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1354 1739
1355 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1357 Net::SSLeay::set_accept_state ($ssl); 1742
1358 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1360 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1361 } 1765
1362 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1363 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1364 1768
1365 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1370 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1373 1785
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1378 1792
1379 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1380 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1381 &_dotls; 1795
1382 }; 1796 &_dotls; # need to trigger the initial handshake
1383 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
1387} 1798}
1388 1799
1389=item $handle->stoptls 1800=item $handle->stoptls
1390 1801
1391Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1392lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1393 1806
1394=cut 1807=cut
1395 1808
1396sub stoptls { 1809sub stoptls {
1397 my ($self) = @_; 1810 my ($self) = @_;
1398 1811
1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1400 1814
1401 delete $self->{_rbio}; 1815 &_dotls;
1402 delete $self->{_wbio}; 1816
1403 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1404 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1405 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1406} 1832}
1407 1833
1408sub DESTROY { 1834sub DESTROY {
1409 my $self = shift; 1835 my ($self) = @_;
1410 1836
1411 $self->stoptls; 1837 &_freetls;
1412 1838
1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1414 1840
1415 if ($linger && length $self->{wbuf}) { 1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1416 my $fh = delete $self->{fh}; 1842 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf}; 1843 my $wbuf = delete $self->{wbuf};
1418 1844
1419 my @linger; 1845 my @linger;
1420 1846
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1847 push @linger, AE::io $fh, 1, sub {
1422 my $len = syswrite $fh, $wbuf, length $wbuf; 1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1423 1849
1424 if ($len > 0) { 1850 if ($len > 0) {
1425 substr $wbuf, 0, $len, ""; 1851 substr $wbuf, 0, $len, "";
1426 } else { 1852 } else {
1427 @linger = (); # end 1853 @linger = (); # end
1428 } 1854 }
1429 }); 1855 };
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1856 push @linger, AE::timer $linger, 0, sub {
1431 @linger = (); 1857 @linger = ();
1432 }); 1858 };
1433 } 1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1434} 1897}
1435 1898
1436=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1437 1900
1438This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1439default for TLS mode. 1902for TLS mode.
1440 1903
1441The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450 1905
1451=cut 1906=cut
1452 1907
1453our $TLS_CTX; 1908our $TLS_CTX;
1454 1909
1455sub TLS_CTX() { 1910sub TLS_CTX() {
1456 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1457 require Net::SSLeay; 1912 require AnyEvent::TLS;
1458 1913
1459 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 } 1915 }
1469} 1916}
1470 1917
1471=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1472 2078
1473=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1474 2080
1475In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1476 2082

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines