ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC vs.
Revision 1.177 by root, Sun Aug 9 00:24:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
163 243
164Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
165 245
166=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
167 247
171 251
172=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
173 253
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
177 257
178For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
182isn't finished). 262isn't finished).
183 263
184=item autocork => <boolean> 264=item autocork => <boolean>
185 265
186When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
191 272
192When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
195 277
196=item no_delay => <boolean> 278=item no_delay => <boolean>
197 279
198When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
201 283
202In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
204 286
205The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
207 289
208=item read_size => <bytes> 290=item read_size => <bytes>
209 291
210The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
212 295
213=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
214 297
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
217considered empty. 300considered empty.
218 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
219=item linger => <seconds> 307=item linger => <seconds>
220 308
221If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 313system treats outstanding data at socket close time).
226 314
227This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
229 328
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 330
232When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
233will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
235 337
236TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
238 342
239For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
240connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
241 346
242You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
246 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
247See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
248 363
249=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
250 365
251Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
255=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
256 407
257This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
258 409
259If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
261 413
262Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
264 416
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
271=back 417=back
272 418
273=cut 419=cut
274 420
275sub new { 421sub new {
276 my $class = shift; 422 my $class = shift;
277
278 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
279 424
280 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
281 488
282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
283 490
284 if ($self->{tls}) { 491 $self->{_activity} =
285 require Net::SSLeay; 492 $self->{_ractivity} =
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
288
289 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
290 $self->_timeout;
291 494
292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
294 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
295 $self->start_read 506 $self->start_read
296 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
297 508
298 $self 509 $self->_drain_wbuf;
299} 510}
300 511
301sub _shutdown { 512#sub _shutdown {
302 my ($self) = @_; 513# my ($self) = @_;
303 514#
304 delete $self->{_tw}; 515# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
305 delete $self->{_rw}; 516# $self->{_eof} = 1; # tell starttls et. al to stop trying
306 delete $self->{_ww}; 517#
307 delete $self->{fh}; 518# &_freetls;
308 519#}
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313}
314 520
315sub _error { 521sub _error {
316 my ($self, $errno, $fatal) = @_; 522 my ($self, $errno, $fatal, $message) = @_;
317
318 $self->_shutdown
319 if $fatal;
320 523
321 $! = $errno; 524 $! = $errno;
525 $message ||= "$!";
322 526
323 if ($self->{on_error}) { 527 if ($self->{on_error}) {
324 $self->{on_error}($self, $fatal); 528 $self->{on_error}($self, $fatal, $message);
325 } else { 529 $self->destroy if $fatal;
530 } elsif ($self->{fh}) {
531 $self->destroy;
326 Carp::croak "AnyEvent::Handle uncaught error: $!"; 532 Carp::croak "AnyEvent::Handle uncaught error: $message";
327 } 533 }
328} 534}
329 535
330=item $fh = $handle->fh 536=item $fh = $handle->fh
331 537
332This method returns the file handle of the L<AnyEvent::Handle> object. 538This method returns the file handle used to create the L<AnyEvent::Handle> object.
333 539
334=cut 540=cut
335 541
336sub fh { $_[0]{fh} } 542sub fh { $_[0]{fh} }
337 543
355 $_[0]{on_eof} = $_[1]; 561 $_[0]{on_eof} = $_[1];
356} 562}
357 563
358=item $handle->on_timeout ($cb) 564=item $handle->on_timeout ($cb)
359 565
360Replace the current C<on_timeout> callback, or disables the callback 566=item $handle->on_rtimeout ($cb)
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363 567
364=cut 568=item $handle->on_wtimeout ($cb)
365 569
366sub on_timeout { 570Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
367 $_[0]{on_timeout} = $_[1]; 571callback, or disables the callback (but not the timeout) if C<$cb> =
368} 572C<undef>. See the C<timeout> constructor argument and method.
573
574=cut
575
576# see below
369 577
370=item $handle->autocork ($boolean) 578=item $handle->autocork ($boolean)
371 579
372Enables or disables the current autocork behaviour (see C<autocork> 580Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument). 581constructor argument). Changes will only take effect on the next write.
374 582
375=cut 583=cut
584
585sub autocork {
586 $_[0]{autocork} = $_[1];
587}
376 588
377=item $handle->no_delay ($boolean) 589=item $handle->no_delay ($boolean)
378 590
379Enables or disables the C<no_delay> setting (see constructor argument of 591Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details). 592the same name for details).
384sub no_delay { 596sub no_delay {
385 $_[0]{no_delay} = $_[1]; 597 $_[0]{no_delay} = $_[1];
386 598
387 eval { 599 eval {
388 local $SIG{__DIE__}; 600 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 601 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
602 if $_[0]{fh};
390 }; 603 };
391} 604}
392 605
606=item $handle->on_starttls ($cb)
607
608Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
609
610=cut
611
612sub on_starttls {
613 $_[0]{on_starttls} = $_[1];
614}
615
616=item $handle->on_stoptls ($cb)
617
618Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
619
620=cut
621
622sub on_starttls {
623 $_[0]{on_stoptls} = $_[1];
624}
625
626=item $handle->rbuf_max ($max_octets)
627
628Configures the C<rbuf_max> setting (C<undef> disables it).
629
630=cut
631
632sub rbuf_max {
633 $_[0]{rbuf_max} = $_[1];
634}
635
393############################################################################# 636#############################################################################
394 637
395=item $handle->timeout ($seconds) 638=item $handle->timeout ($seconds)
396 639
640=item $handle->rtimeout ($seconds)
641
642=item $handle->wtimeout ($seconds)
643
397Configures (or disables) the inactivity timeout. 644Configures (or disables) the inactivity timeout.
398 645
399=cut 646=item $handle->timeout_reset
400 647
401sub timeout { 648=item $handle->rtimeout_reset
649
650=item $handle->wtimeout_reset
651
652Reset the activity timeout, as if data was received or sent.
653
654These methods are cheap to call.
655
656=cut
657
658for my $dir ("", "r", "w") {
659 my $timeout = "${dir}timeout";
660 my $tw = "_${dir}tw";
661 my $on_timeout = "on_${dir}timeout";
662 my $activity = "_${dir}activity";
663 my $cb;
664
665 *$on_timeout = sub {
666 $_[0]{$on_timeout} = $_[1];
667 };
668
669 *$timeout = sub {
402 my ($self, $timeout) = @_; 670 my ($self, $new_value) = @_;
403 671
404 $self->{timeout} = $timeout; 672 $self->{$timeout} = $new_value;
405 $self->_timeout; 673 delete $self->{$tw}; &$cb;
406} 674 };
407 675
676 *{"${dir}timeout_reset"} = sub {
677 $_[0]{$activity} = AE::now;
678 };
679
680 # main workhorse:
408# reset the timeout watcher, as neccessary 681 # reset the timeout watcher, as neccessary
409# also check for time-outs 682 # also check for time-outs
410sub _timeout { 683 $cb = sub {
411 my ($self) = @_; 684 my ($self) = @_;
412 685
413 if ($self->{timeout}) { 686 if ($self->{$timeout} && $self->{fh}) {
414 my $NOW = AnyEvent->now; 687 my $NOW = AE::now;
415 688
416 # when would the timeout trigger? 689 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW; 690 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
418 691
419 # now or in the past already? 692 # now or in the past already?
420 if ($after <= 0) { 693 if ($after <= 0) {
421 $self->{_activity} = $NOW; 694 $self->{$activity} = $NOW;
422 695
423 if ($self->{on_timeout}) { 696 if ($self->{$on_timeout}) {
424 $self->{on_timeout}($self); 697 $self->{$on_timeout}($self);
425 } else { 698 } else {
426 $self->_error (&Errno::ETIMEDOUT); 699 $self->_error (Errno::ETIMEDOUT);
700 }
701
702 # callback could have changed timeout value, optimise
703 return unless $self->{$timeout};
704
705 # calculate new after
706 $after = $self->{$timeout};
427 } 707 }
428 708
429 # callback could have changed timeout value, optimise 709 Scalar::Util::weaken $self;
430 return unless $self->{timeout}; 710 return unless $self; # ->error could have destroyed $self
431 711
432 # calculate new after 712 $self->{$tw} ||= AE::timer $after, 0, sub {
433 $after = $self->{timeout}; 713 delete $self->{$tw};
714 $cb->($self);
715 };
716 } else {
717 delete $self->{$tw};
434 } 718 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 } 719 }
446} 720}
447 721
448############################################################################# 722#############################################################################
449 723
473 my ($self, $cb) = @_; 747 my ($self, $cb) = @_;
474 748
475 $self->{on_drain} = $cb; 749 $self->{on_drain} = $cb;
476 750
477 $cb->($self) 751 $cb->($self)
478 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 752 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
479} 753}
480 754
481=item $handle->push_write ($data) 755=item $handle->push_write ($data)
482 756
483Queues the given scalar to be written. You can push as much data as you 757Queues the given scalar to be written. You can push as much data as you
494 Scalar::Util::weaken $self; 768 Scalar::Util::weaken $self;
495 769
496 my $cb = sub { 770 my $cb = sub {
497 my $len = syswrite $self->{fh}, $self->{wbuf}; 771 my $len = syswrite $self->{fh}, $self->{wbuf};
498 772
499 if ($len >= 0) { 773 if (defined $len) {
500 substr $self->{wbuf}, 0, $len, ""; 774 substr $self->{wbuf}, 0, $len, "";
501 775
502 $self->{_activity} = AnyEvent->now; 776 $self->{_activity} = $self->{_wactivity} = AE::now;
503 777
504 $self->{on_drain}($self) 778 $self->{on_drain}($self)
505 if $self->{low_water_mark} >= length $self->{wbuf} 779 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
506 && $self->{on_drain}; 780 && $self->{on_drain};
507 781
508 delete $self->{_ww} unless length $self->{wbuf}; 782 delete $self->{_ww} unless length $self->{wbuf};
509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 783 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
510 $self->_error ($!, 1); 784 $self->_error ($!, 1);
513 787
514 # try to write data immediately 788 # try to write data immediately
515 $cb->() unless $self->{autocork}; 789 $cb->() unless $self->{autocork};
516 790
517 # if still data left in wbuf, we need to poll 791 # if still data left in wbuf, we need to poll
518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 792 $self->{_ww} = AE::io $self->{fh}, 1, $cb
519 if length $self->{wbuf}; 793 if length $self->{wbuf};
520 }; 794 };
521} 795}
522 796
523our %WH; 797our %WH;
534 808
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 809 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_); 810 ->($self, @_);
537 } 811 }
538 812
539 if ($self->{filter_w}) { 813 if ($self->{tls}) {
540 $self->{filter_w}($self, \$_[0]); 814 $self->{_tls_wbuf} .= $_[0];
815 &_dotls ($self) if $self->{fh};
541 } else { 816 } else {
542 $self->{wbuf} .= $_[0]; 817 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf; 818 $self->_drain_wbuf if $self->{fh};
544 } 819 }
545} 820}
546 821
547=item $handle->push_write (type => @args) 822=item $handle->push_write (type => @args)
548 823
562=cut 837=cut
563 838
564register_write_type netstring => sub { 839register_write_type netstring => sub {
565 my ($self, $string) = @_; 840 my ($self, $string) = @_;
566 841
567 sprintf "%d:%s,", (length $string), $string 842 (length $string) . ":$string,"
568}; 843};
569 844
570=item packstring => $format, $data 845=item packstring => $format, $data
571 846
572An octet string prefixed with an encoded length. The encoding C<$format> 847An octet string prefixed with an encoded length. The encoding C<$format>
637 912
638 pack "w/a*", Storable::nfreeze ($ref) 913 pack "w/a*", Storable::nfreeze ($ref)
639}; 914};
640 915
641=back 916=back
917
918=item $handle->push_shutdown
919
920Sometimes you know you want to close the socket after writing your data
921before it was actually written. One way to do that is to replace your
922C<on_drain> handler by a callback that shuts down the socket (and set
923C<low_water_mark> to C<0>). This method is a shorthand for just that, and
924replaces the C<on_drain> callback with:
925
926 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
927
928This simply shuts down the write side and signals an EOF condition to the
929the peer.
930
931You can rely on the normal read queue and C<on_eof> handling
932afterwards. This is the cleanest way to close a connection.
933
934=cut
935
936sub push_shutdown {
937 my ($self) = @_;
938
939 delete $self->{low_water_mark};
940 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
941}
642 942
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 943=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644 944
645This function (not method) lets you add your own types to C<push_write>. 945This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code 946Whenever the given C<type> is used, C<push_write> will invoke the code
740=cut 1040=cut
741 1041
742sub _drain_rbuf { 1042sub _drain_rbuf {
743 my ($self) = @_; 1043 my ($self) = @_;
744 1044
1045 # avoid recursion
1046 return if $self->{_skip_drain_rbuf};
745 local $self->{_in_drain} = 1; 1047 local $self->{_skip_drain_rbuf} = 1;
746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753 1048
754 while () { 1049 while () {
1050 # we need to use a separate tls read buffer, as we must not receive data while
1051 # we are draining the buffer, and this can only happen with TLS.
1052 $self->{rbuf} .= delete $self->{_tls_rbuf}
1053 if exists $self->{_tls_rbuf};
1054
755 my $len = length $self->{rbuf}; 1055 my $len = length $self->{rbuf};
756 1056
757 if (my $cb = shift @{ $self->{_queue} }) { 1057 if (my $cb = shift @{ $self->{_queue} }) {
758 unless ($cb->($self)) { 1058 unless ($cb->($self)) {
759 if ($self->{_eof}) { 1059 # no progress can be made
760 # no progress can be made (not enough data and no data forthcoming) 1060 # (not enough data and no data forthcoming)
761 $self->_error (&Errno::EPIPE, 1), return; 1061 $self->_error (Errno::EPIPE, 1), return
762 } 1062 if $self->{_eof};
763 1063
764 unshift @{ $self->{_queue} }, $cb; 1064 unshift @{ $self->{_queue} }, $cb;
765 last; 1065 last;
766 } 1066 }
767 } elsif ($self->{on_read}) { 1067 } elsif ($self->{on_read}) {
774 && !@{ $self->{_queue} } # and the queue is still empty 1074 && !@{ $self->{_queue} } # and the queue is still empty
775 && $self->{on_read} # but we still have on_read 1075 && $self->{on_read} # but we still have on_read
776 ) { 1076 ) {
777 # no further data will arrive 1077 # no further data will arrive
778 # so no progress can be made 1078 # so no progress can be made
779 $self->_error (&Errno::EPIPE, 1), return 1079 $self->_error (Errno::EPIPE, 1), return
780 if $self->{_eof}; 1080 if $self->{_eof};
781 1081
782 last; # more data might arrive 1082 last; # more data might arrive
783 } 1083 }
784 } else { 1084 } else {
785 # read side becomes idle 1085 # read side becomes idle
786 delete $self->{_rw}; 1086 delete $self->{_rw} unless $self->{tls};
787 last; 1087 last;
788 } 1088 }
789 } 1089 }
790 1090
791 if ($self->{_eof}) { 1091 if ($self->{_eof}) {
792 if ($self->{on_eof}) { 1092 $self->{on_eof}
793 $self->{on_eof}($self) 1093 ? $self->{on_eof}($self)
794 } else { 1094 : $self->_error (0, 1, "Unexpected end-of-file");
795 $self->_error (0, 1); 1095
796 } 1096 return;
1097 }
1098
1099 if (
1100 defined $self->{rbuf_max}
1101 && $self->{rbuf_max} < length $self->{rbuf}
1102 ) {
1103 $self->_error (Errno::ENOSPC, 1), return;
797 } 1104 }
798 1105
799 # may need to restart read watcher 1106 # may need to restart read watcher
800 unless ($self->{_rw}) { 1107 unless ($self->{_rw}) {
801 $self->start_read 1108 $self->start_read
813 1120
814sub on_read { 1121sub on_read {
815 my ($self, $cb) = @_; 1122 my ($self, $cb) = @_;
816 1123
817 $self->{on_read} = $cb; 1124 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1125 $self->_drain_rbuf if $cb;
819} 1126}
820 1127
821=item $handle->rbuf 1128=item $handle->rbuf
822 1129
823Returns the read buffer (as a modifiable lvalue). 1130Returns the read buffer (as a modifiable lvalue).
824 1131
825You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1132You can access the read buffer directly as the C<< ->{rbuf} >>
826you want. 1133member, if you want. However, the only operation allowed on the
1134read buffer (apart from looking at it) is removing data from its
1135beginning. Otherwise modifying or appending to it is not allowed and will
1136lead to hard-to-track-down bugs.
827 1137
828NOTE: The read buffer should only be used or modified if the C<on_read>, 1138NOTE: The read buffer should only be used or modified if the C<on_read>,
829C<push_read> or C<unshift_read> methods are used. The other read methods 1139C<push_read> or C<unshift_read> methods are used. The other read methods
830automatically manage the read buffer. 1140automatically manage the read buffer.
831 1141
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1182 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_); 1183 ->($self, $cb, @_);
874 } 1184 }
875 1185
876 push @{ $self->{_queue} }, $cb; 1186 push @{ $self->{_queue} }, $cb;
877 $self->_drain_rbuf unless $self->{_in_drain}; 1187 $self->_drain_rbuf;
878} 1188}
879 1189
880sub unshift_read { 1190sub unshift_read {
881 my $self = shift; 1191 my $self = shift;
882 my $cb = pop; 1192 my $cb = pop;
888 ->($self, $cb, @_); 1198 ->($self, $cb, @_);
889 } 1199 }
890 1200
891 1201
892 unshift @{ $self->{_queue} }, $cb; 1202 unshift @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain}; 1203 $self->_drain_rbuf;
894} 1204}
895 1205
896=item $handle->push_read (type => @args, $cb) 1206=item $handle->push_read (type => @args, $cb)
897 1207
898=item $handle->unshift_read (type => @args, $cb) 1208=item $handle->unshift_read (type => @args, $cb)
1031 return 1; 1341 return 1;
1032 } 1342 }
1033 1343
1034 # reject 1344 # reject
1035 if ($reject && $$rbuf =~ $reject) { 1345 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG); 1346 $self->_error (Errno::EBADMSG);
1037 } 1347 }
1038 1348
1039 # skip 1349 # skip
1040 if ($skip && $$rbuf =~ $skip) { 1350 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], ""; 1351 $data .= substr $$rbuf, 0, $+[0], "";
1057 my ($self, $cb) = @_; 1367 my ($self, $cb) = @_;
1058 1368
1059 sub { 1369 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1370 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) { 1371 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG); 1372 $self->_error (Errno::EBADMSG);
1063 } 1373 }
1064 return; 1374 return;
1065 } 1375 }
1066 1376
1067 my $len = $1; 1377 my $len = $1;
1070 my $string = $_[1]; 1380 my $string = $_[1];
1071 $_[0]->unshift_read (chunk => 1, sub { 1381 $_[0]->unshift_read (chunk => 1, sub {
1072 if ($_[1] eq ",") { 1382 if ($_[1] eq ",") {
1073 $cb->($_[0], $string); 1383 $cb->($_[0], $string);
1074 } else { 1384 } else {
1075 $self->_error (&Errno::EBADMSG); 1385 $self->_error (Errno::EBADMSG);
1076 } 1386 }
1077 }); 1387 });
1078 }); 1388 });
1079 1389
1080 1 1390 1
1086An octet string prefixed with an encoded length. The encoding C<$format> 1396An octet string prefixed with an encoded length. The encoding C<$format>
1087uses the same format as a Perl C<pack> format, but must specify a single 1397uses the same format as a Perl C<pack> format, but must specify a single
1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1398integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier). 1399optional C<!>, C<< < >> or C<< > >> modifier).
1090 1400
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1401For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1402EPP uses a prefix of C<N> (4 octtes).
1092 1403
1093Example: read a block of data prefixed by its length in BER-encoded 1404Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient). 1405format (very efficient).
1095 1406
1096 $handle->push_read (packstring => "w", sub { 1407 $handle->push_read (packstring => "w", sub {
1126 } 1437 }
1127}; 1438};
1128 1439
1129=item json => $cb->($handle, $hash_or_arrayref) 1440=item json => $cb->($handle, $hash_or_arrayref)
1130 1441
1131Reads a JSON object or array, decodes it and passes it to the callback. 1442Reads a JSON object or array, decodes it and passes it to the
1443callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1132 1444
1133If a C<json> object was passed to the constructor, then that will be used 1445If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1446for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135 1447
1136This read type uses the incremental parser available with JSON version 1448This read type uses the incremental parser available with JSON version
1145=cut 1457=cut
1146 1458
1147register_read_type json => sub { 1459register_read_type json => sub {
1148 my ($self, $cb) = @_; 1460 my ($self, $cb) = @_;
1149 1461
1150 require JSON; 1462 my $json = $self->{json} ||=
1463 eval { require JSON::XS; JSON::XS->new->utf8 }
1464 || do { require JSON; JSON->new->utf8 };
1151 1465
1152 my $data; 1466 my $data;
1153 my $rbuf = \$self->{rbuf}; 1467 my $rbuf = \$self->{rbuf};
1154 1468
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub { 1469 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf}); 1470 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1159 1471
1160 if ($ref) { 1472 if ($ref) {
1161 $self->{rbuf} = $json->incr_text; 1473 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = ""; 1474 $json->incr_text = "";
1163 $cb->($self, $ref); 1475 $cb->($self, $ref);
1164 1476
1165 1 1477 1
1478 } elsif ($@) {
1479 # error case
1480 $json->incr_skip;
1481
1482 $self->{rbuf} = $json->incr_text;
1483 $json->incr_text = "";
1484
1485 $self->_error (Errno::EBADMSG);
1486
1487 ()
1166 } else { 1488 } else {
1167 $self->{rbuf} = ""; 1489 $self->{rbuf} = "";
1490
1168 () 1491 ()
1169 } 1492 }
1170 } 1493 }
1171}; 1494};
1172 1495
1204 # read remaining chunk 1527 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub { 1528 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1529 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref); 1530 $cb->($_[0], $ref);
1208 } else { 1531 } else {
1209 $self->_error (&Errno::EBADMSG); 1532 $self->_error (Errno::EBADMSG);
1210 } 1533 }
1211 }); 1534 });
1212 } 1535 }
1213 1536
1214 1 1537 1
1249Note that AnyEvent::Handle will automatically C<start_read> for you when 1572Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it 1573you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor 1574will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue. 1575there are any read requests in the queue.
1253 1576
1577These methods will have no effect when in TLS mode (as TLS doesn't support
1578half-duplex connections).
1579
1254=cut 1580=cut
1255 1581
1256sub stop_read { 1582sub stop_read {
1257 my ($self) = @_; 1583 my ($self) = @_;
1258 1584
1259 delete $self->{_rw}; 1585 delete $self->{_rw} unless $self->{tls};
1260} 1586}
1261 1587
1262sub start_read { 1588sub start_read {
1263 my ($self) = @_; 1589 my ($self) = @_;
1264 1590
1265 unless ($self->{_rw} || $self->{_eof}) { 1591 unless ($self->{_rw} || $self->{_eof}) {
1266 Scalar::Util::weaken $self; 1592 Scalar::Util::weaken $self;
1267 1593
1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1594 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1595 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1596 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1271 1597
1272 if ($len > 0) { 1598 if ($len > 0) {
1273 $self->{_activity} = AnyEvent->now; 1599 $self->{_activity} = $self->{_ractivity} = AE::now;
1274 1600
1275 $self->{filter_r} 1601 if ($self->{tls}) {
1276 ? $self->{filter_r}($self, $rbuf) 1602 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1277 : $self->{_in_drain} || $self->_drain_rbuf; 1603
1604 &_dotls ($self);
1605 } else {
1606 $self->_drain_rbuf;
1607 }
1278 1608
1279 } elsif (defined $len) { 1609 } elsif (defined $len) {
1280 delete $self->{_rw}; 1610 delete $self->{_rw};
1281 $self->{_eof} = 1; 1611 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1283 1613
1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1614 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1285 return $self->_error ($!, 1); 1615 return $self->_error ($!, 1);
1286 } 1616 }
1287 }); 1617 };
1288 } 1618 }
1289} 1619}
1290 1620
1621our $ERROR_SYSCALL;
1622our $ERROR_WANT_READ;
1623
1624sub _tls_error {
1625 my ($self, $err) = @_;
1626
1627 return $self->_error ($!, 1)
1628 if $err == Net::SSLeay::ERROR_SYSCALL ();
1629
1630 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1631
1632 # reduce error string to look less scary
1633 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1634
1635 if ($self->{_on_starttls}) {
1636 (delete $self->{_on_starttls})->($self, undef, $err);
1637 &_freetls;
1638 } else {
1639 &_freetls;
1640 $self->_error (Errno::EPROTO, 1, $err);
1641 }
1642}
1643
1644# poll the write BIO and send the data if applicable
1645# also decode read data if possible
1646# this is basiclaly our TLS state machine
1647# more efficient implementations are possible with openssl,
1648# but not with the buggy and incomplete Net::SSLeay.
1291sub _dotls { 1649sub _dotls {
1292 my ($self) = @_; 1650 my ($self) = @_;
1293 1651
1294 my $buf; 1652 my $tmp;
1295 1653
1296 if (length $self->{_tls_wbuf}) { 1654 if (length $self->{_tls_wbuf}) {
1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1655 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1298 substr $self->{_tls_wbuf}, 0, $len, ""; 1656 substr $self->{_tls_wbuf}, 0, $tmp, "";
1299 } 1657 }
1300 }
1301 1658
1659 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1660 return $self->_tls_error ($tmp)
1661 if $tmp != $ERROR_WANT_READ
1662 && ($tmp != $ERROR_SYSCALL || $!);
1663 }
1664
1665 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1666 unless (length $tmp) {
1667 $self->{_on_starttls}
1668 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1669 &_freetls;
1670
1671 if ($self->{on_stoptls}) {
1672 $self->{on_stoptls}($self);
1673 return;
1674 } else {
1675 # let's treat SSL-eof as we treat normal EOF
1676 delete $self->{_rw};
1677 $self->{_eof} = 1;
1678 }
1679 }
1680
1681 $self->{_tls_rbuf} .= $tmp;
1682 $self->_drain_rbuf;
1683 $self->{tls} or return; # tls session might have gone away in callback
1684 }
1685
1686 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1687 return $self->_tls_error ($tmp)
1688 if $tmp != $ERROR_WANT_READ
1689 && ($tmp != $ERROR_SYSCALL || $!);
1690
1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1691 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1303 $self->{wbuf} .= $buf; 1692 $self->{wbuf} .= $tmp;
1304 $self->_drain_wbuf; 1693 $self->_drain_wbuf;
1305 } 1694 }
1306 1695
1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1696 $self->{_on_starttls}
1308 if (length $buf) { 1697 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1309 $self->{rbuf} .= $buf; 1698 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1310 $self->_drain_rbuf unless $self->{_in_drain};
1311 } else {
1312 # let's treat SSL-eof as we treat normal EOF
1313 $self->{_eof} = 1;
1314 $self->_shutdown;
1315 return;
1316 }
1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330} 1699}
1331 1700
1332=item $handle->starttls ($tls[, $tls_ctx]) 1701=item $handle->starttls ($tls[, $tls_ctx])
1333 1702
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1703Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling 1704object is created, you can also do that at a later time by calling
1336C<starttls>. 1705C<starttls>.
1337 1706
1707Starting TLS is currently an asynchronous operation - when you push some
1708write data and then call C<< ->starttls >> then TLS negotiation will start
1709immediately, after which the queued write data is then sent.
1710
1338The first argument is the same as the C<tls> constructor argument (either 1711The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1712C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340 1713
1341The second argument is the optional C<Net::SSLeay::CTX> object that is 1714The second argument is the optional C<AnyEvent::TLS> object that is used
1342used when AnyEvent::Handle has to create its own TLS connection object. 1715when AnyEvent::Handle has to create its own TLS connection object, or
1716a hash reference with C<< key => value >> pairs that will be used to
1717construct a new context.
1343 1718
1344The TLS connection object will end up in C<< $handle->{tls} >> after this 1719The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1345call and can be used or changed to your liking. Note that the handshake 1720context in C<< $handle->{tls_ctx} >> after this call and can be used or
1346might have already started when this function returns. 1721changed to your liking. Note that the handshake might have already started
1722when this function returns.
1347 1723
1724Due to bugs in OpenSSL, it might or might not be possible to do multiple
1725handshakes on the same stream. Best do not attempt to use the stream after
1726stopping TLS.
1727
1348=cut 1728=cut
1729
1730our %TLS_CACHE; #TODO not yet documented, should we?
1349 1731
1350sub starttls { 1732sub starttls {
1351 my ($self, $ssl, $ctx) = @_; 1733 my ($self, $tls, $ctx) = @_;
1352 1734
1353 $self->stoptls; 1735 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1736 if $self->{tls};
1354 1737
1355 if ($ssl eq "accept") { 1738 $self->{tls} = $tls;
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1739 $self->{tls_ctx} = $ctx if @_ > 2;
1357 Net::SSLeay::set_accept_state ($ssl); 1740
1358 } elsif ($ssl eq "connect") { 1741 return unless $self->{fh};
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1742
1360 Net::SSLeay::set_connect_state ($ssl); 1743 require Net::SSLeay;
1744
1745 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1746 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1747
1748 $tls = $self->{tls};
1749 $ctx = $self->{tls_ctx};
1750
1751 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1752
1753 if ("HASH" eq ref $ctx) {
1754 require AnyEvent::TLS;
1755
1756 if ($ctx->{cache}) {
1757 my $key = $ctx+0;
1758 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1759 } else {
1760 $ctx = new AnyEvent::TLS %$ctx;
1761 }
1762 }
1361 } 1763
1362 1764 $self->{tls_ctx} = $ctx || TLS_CTX ();
1363 $self->{tls} = $ssl; 1765 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1364 1766
1365 # basically, this is deep magic (because SSL_read should have the same issues) 1767 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works". 1768 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1769 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them). 1770 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1771 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1772 #
1773 # in short: this is a mess.
1774 #
1775 # note that we do not try to keep the length constant between writes as we are required to do.
1776 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1777 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1778 # have identity issues in that area.
1370 Net::SSLeay::CTX_set_mode ($self->{tls}, 1779# Net::SSLeay::CTX_set_mode ($ssl,
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1780# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1781# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1782 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1373 1783
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1784 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1785 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 1786
1787 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1788
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1789 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1378 1790
1379 $self->{filter_w} = sub { 1791 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1380 $_[0]{_tls_wbuf} .= ${$_[1]}; 1792 if $self->{on_starttls};
1381 &_dotls; 1793
1382 }; 1794 &_dotls; # need to trigger the initial handshake
1383 $self->{filter_r} = sub { 1795 $self->start_read; # make sure we actually do read
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
1387} 1796}
1388 1797
1389=item $handle->stoptls 1798=item $handle->stoptls
1390 1799
1391Destroys the SSL connection, if any. Partial read or write data will be 1800Shuts down the SSL connection - this makes a proper EOF handshake by
1392lost. 1801sending a close notify to the other side, but since OpenSSL doesn't
1802support non-blocking shut downs, it is not guarenteed that you can re-use
1803the stream afterwards.
1393 1804
1394=cut 1805=cut
1395 1806
1396sub stoptls { 1807sub stoptls {
1397 my ($self) = @_; 1808 my ($self) = @_;
1398 1809
1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1810 if ($self->{tls}) {
1811 Net::SSLeay::shutdown ($self->{tls});
1400 1812
1401 delete $self->{_rbio}; 1813 &_dotls;
1402 delete $self->{_wbio}; 1814
1403 delete $self->{_tls_wbuf}; 1815# # we don't give a shit. no, we do, but we can't. no...#d#
1404 delete $self->{filter_r}; 1816# # we, we... have to use openssl :/#d#
1405 delete $self->{filter_w}; 1817# &_freetls;#d#
1818 }
1819}
1820
1821sub _freetls {
1822 my ($self) = @_;
1823
1824 return unless $self->{tls};
1825
1826 $self->{tls_ctx}->_put_session (delete $self->{tls})
1827 if $self->{tls} > 0;
1828
1829 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1406} 1830}
1407 1831
1408sub DESTROY { 1832sub DESTROY {
1409 my $self = shift; 1833 my ($self) = @_;
1410 1834
1411 $self->stoptls; 1835 &_freetls;
1412 1836
1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1837 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1414 1838
1415 if ($linger && length $self->{wbuf}) { 1839 if ($linger && length $self->{wbuf} && $self->{fh}) {
1416 my $fh = delete $self->{fh}; 1840 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf}; 1841 my $wbuf = delete $self->{wbuf};
1418 1842
1419 my @linger; 1843 my @linger;
1420 1844
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1845 push @linger, AE::io $fh, 1, sub {
1422 my $len = syswrite $fh, $wbuf, length $wbuf; 1846 my $len = syswrite $fh, $wbuf, length $wbuf;
1423 1847
1424 if ($len > 0) { 1848 if ($len > 0) {
1425 substr $wbuf, 0, $len, ""; 1849 substr $wbuf, 0, $len, "";
1426 } else { 1850 } else {
1427 @linger = (); # end 1851 @linger = (); # end
1428 } 1852 }
1429 }); 1853 };
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1854 push @linger, AE::timer $linger, 0, sub {
1431 @linger = (); 1855 @linger = ();
1432 }); 1856 };
1433 } 1857 }
1858}
1859
1860=item $handle->destroy
1861
1862Shuts down the handle object as much as possible - this call ensures that
1863no further callbacks will be invoked and as many resources as possible
1864will be freed. Any method you will call on the handle object after
1865destroying it in this way will be silently ignored (and it will return the
1866empty list).
1867
1868Normally, you can just "forget" any references to an AnyEvent::Handle
1869object and it will simply shut down. This works in fatal error and EOF
1870callbacks, as well as code outside. It does I<NOT> work in a read or write
1871callback, so when you want to destroy the AnyEvent::Handle object from
1872within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1873that case.
1874
1875Destroying the handle object in this way has the advantage that callbacks
1876will be removed as well, so if those are the only reference holders (as
1877is common), then one doesn't need to do anything special to break any
1878reference cycles.
1879
1880The handle might still linger in the background and write out remaining
1881data, as specified by the C<linger> option, however.
1882
1883=cut
1884
1885sub destroy {
1886 my ($self) = @_;
1887
1888 $self->DESTROY;
1889 %$self = ();
1890 bless $self, "AnyEvent::Handle::destroyed";
1891}
1892
1893sub AnyEvent::Handle::destroyed::AUTOLOAD {
1894 #nop
1434} 1895}
1435 1896
1436=item AnyEvent::Handle::TLS_CTX 1897=item AnyEvent::Handle::TLS_CTX
1437 1898
1438This function creates and returns the Net::SSLeay::CTX object used by 1899This function creates and returns the AnyEvent::TLS object used by default
1439default for TLS mode. 1900for TLS mode.
1440 1901
1441The context is created like this: 1902The context is created by calling L<AnyEvent::TLS> without any arguments.
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450 1903
1451=cut 1904=cut
1452 1905
1453our $TLS_CTX; 1906our $TLS_CTX;
1454 1907
1455sub TLS_CTX() { 1908sub TLS_CTX() {
1456 $TLS_CTX || do { 1909 $TLS_CTX ||= do {
1457 require Net::SSLeay; 1910 require AnyEvent::TLS;
1458 1911
1459 Net::SSLeay::load_error_strings (); 1912 new AnyEvent::TLS
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 } 1913 }
1469} 1914}
1470 1915
1471=back 1916=back
1917
1918
1919=head1 NONFREQUENTLY ASKED QUESTIONS
1920
1921=over 4
1922
1923=item I C<undef> the AnyEvent::Handle reference inside my callback and
1924still get further invocations!
1925
1926That's because AnyEvent::Handle keeps a reference to itself when handling
1927read or write callbacks.
1928
1929It is only safe to "forget" the reference inside EOF or error callbacks,
1930from within all other callbacks, you need to explicitly call the C<<
1931->destroy >> method.
1932
1933=item I get different callback invocations in TLS mode/Why can't I pause
1934reading?
1935
1936Unlike, say, TCP, TLS connections do not consist of two independent
1937communication channels, one for each direction. Or put differently. The
1938read and write directions are not independent of each other: you cannot
1939write data unless you are also prepared to read, and vice versa.
1940
1941This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1942callback invocations when you are not expecting any read data - the reason
1943is that AnyEvent::Handle always reads in TLS mode.
1944
1945During the connection, you have to make sure that you always have a
1946non-empty read-queue, or an C<on_read> watcher. At the end of the
1947connection (or when you no longer want to use it) you can call the
1948C<destroy> method.
1949
1950=item How do I read data until the other side closes the connection?
1951
1952If you just want to read your data into a perl scalar, the easiest way
1953to achieve this is by setting an C<on_read> callback that does nothing,
1954clearing the C<on_eof> callback and in the C<on_error> callback, the data
1955will be in C<$_[0]{rbuf}>:
1956
1957 $handle->on_read (sub { });
1958 $handle->on_eof (undef);
1959 $handle->on_error (sub {
1960 my $data = delete $_[0]{rbuf};
1961 });
1962
1963The reason to use C<on_error> is that TCP connections, due to latencies
1964and packets loss, might get closed quite violently with an error, when in
1965fact, all data has been received.
1966
1967It is usually better to use acknowledgements when transferring data,
1968to make sure the other side hasn't just died and you got the data
1969intact. This is also one reason why so many internet protocols have an
1970explicit QUIT command.
1971
1972=item I don't want to destroy the handle too early - how do I wait until
1973all data has been written?
1974
1975After writing your last bits of data, set the C<on_drain> callback
1976and destroy the handle in there - with the default setting of
1977C<low_water_mark> this will be called precisely when all data has been
1978written to the socket:
1979
1980 $handle->push_write (...);
1981 $handle->on_drain (sub {
1982 warn "all data submitted to the kernel\n";
1983 undef $handle;
1984 });
1985
1986If you just want to queue some data and then signal EOF to the other side,
1987consider using C<< ->push_shutdown >> instead.
1988
1989=item I want to contact a TLS/SSL server, I don't care about security.
1990
1991If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1992simply connect to it and then create the AnyEvent::Handle with the C<tls>
1993parameter:
1994
1995 tcp_connect $host, $port, sub {
1996 my ($fh) = @_;
1997
1998 my $handle = new AnyEvent::Handle
1999 fh => $fh,
2000 tls => "connect",
2001 on_error => sub { ... };
2002
2003 $handle->push_write (...);
2004 };
2005
2006=item I want to contact a TLS/SSL server, I do care about security.
2007
2008Then you should additionally enable certificate verification, including
2009peername verification, if the protocol you use supports it (see
2010L<AnyEvent::TLS>, C<verify_peername>).
2011
2012E.g. for HTTPS:
2013
2014 tcp_connect $host, $port, sub {
2015 my ($fh) = @_;
2016
2017 my $handle = new AnyEvent::Handle
2018 fh => $fh,
2019 peername => $host,
2020 tls => "connect",
2021 tls_ctx => { verify => 1, verify_peername => "https" },
2022 ...
2023
2024Note that you must specify the hostname you connected to (or whatever
2025"peername" the protocol needs) as the C<peername> argument, otherwise no
2026peername verification will be done.
2027
2028The above will use the system-dependent default set of trusted CA
2029certificates. If you want to check against a specific CA, add the
2030C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2031
2032 tls_ctx => {
2033 verify => 1,
2034 verify_peername => "https",
2035 ca_file => "my-ca-cert.pem",
2036 },
2037
2038=item I want to create a TLS/SSL server, how do I do that?
2039
2040Well, you first need to get a server certificate and key. You have
2041three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2042self-signed certificate (cheap. check the search engine of your choice,
2043there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2044nice program for that purpose).
2045
2046Then create a file with your private key (in PEM format, see
2047L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2048file should then look like this:
2049
2050 -----BEGIN RSA PRIVATE KEY-----
2051 ...header data
2052 ... lots of base64'y-stuff
2053 -----END RSA PRIVATE KEY-----
2054
2055 -----BEGIN CERTIFICATE-----
2056 ... lots of base64'y-stuff
2057 -----END CERTIFICATE-----
2058
2059The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2060specify this file as C<cert_file>:
2061
2062 tcp_server undef, $port, sub {
2063 my ($fh) = @_;
2064
2065 my $handle = new AnyEvent::Handle
2066 fh => $fh,
2067 tls => "accept",
2068 tls_ctx => { cert_file => "my-server-keycert.pem" },
2069 ...
2070
2071When you have intermediate CA certificates that your clients might not
2072know about, just append them to the C<cert_file>.
2073
2074=back
2075
1472 2076
1473=head1 SUBCLASSING AnyEvent::Handle 2077=head1 SUBCLASSING AnyEvent::Handle
1474 2078
1475In many cases, you might want to subclass AnyEvent::Handle. 2079In many cases, you might want to subclass AnyEvent::Handle.
1476 2080

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines