ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.84 by root, Thu Aug 21 19:13:05 2008 UTC vs.
Revision 1.181 by root, Tue Sep 1 10:40:05 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
163 243
164Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
165 245
166=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
167 247
171 251
172=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
173 253
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
177 257
178For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
182isn't finished). 262isn't finished).
183 263
184=item autocork => <boolean> 264=item autocork => <boolean>
185 265
186When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
191 272
192When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
195 277
196=item no_delay => <boolean> 278=item no_delay => <boolean>
197 279
198When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
201 283
202In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
204 286
205The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
207 289
208=item read_size => <bytes> 290=item read_size => <bytes>
209 291
210The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
212 295
213=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
214 297
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
217considered empty. 300considered empty.
218 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
219=item linger => <seconds> 307=item linger => <seconds>
220 308
221If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 313system treats outstanding data at socket close time).
226 314
227This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
229 328
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 330
232When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
233will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
235 337
236TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
238 342
239For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
240connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
241 346
242You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
243to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
244or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
245AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
246 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
247See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
248 363
249=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
250 365
251Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
252(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
253missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
254 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
255=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
256 407
257This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
258 409
259If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
260suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
261 413
262Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
263use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
264 416
265=item filter_r => $cb
266
267=item filter_w => $cb
268
269These exist, but are undocumented at this time.
270
271=back 417=back
272 418
273=cut 419=cut
274 420
275sub new { 421sub new {
276 my $class = shift; 422 my $class = shift;
277
278 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
279 424
280 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
281 488
282 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
283 490
284 if ($self->{tls}) { 491 $self->{_activity} =
285 require Net::SSLeay; 492 $self->{_ractivity} =
286 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
287 }
288
289 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
290 $self->_timeout;
291 494
292 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
293 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
294 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
295 $self->start_read 506 $self->start_read
296 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
297 508
298 $self 509 $self->_drain_wbuf;
299}
300
301sub _shutdown {
302 my ($self) = @_;
303
304 delete $self->{_tw};
305 delete $self->{_rw};
306 delete $self->{_ww};
307 delete $self->{fh};
308
309 $self->stoptls;
310
311 delete $self->{on_read};
312 delete $self->{_queue};
313} 510}
314 511
315sub _error { 512sub _error {
316 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
317
318 $self->_shutdown
319 if $fatal;
320 514
321 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
322 517
323 if ($self->{on_error}) { 518 if ($self->{on_error}) {
324 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
325 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
326 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
327 } 524 }
328} 525}
329 526
330=item $fh = $handle->fh 527=item $fh = $handle->fh
331 528
332This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
333 530
334=cut 531=cut
335 532
336sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
337 534
355 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
356} 553}
357 554
358=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
359 556
360Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
361(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
362argument.
363 558
364=cut 559=item $handle->on_wtimeout ($cb)
365 560
366sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
367 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
368} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
369 568
370=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
371 570
372Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
373constructor argument). 572constructor argument). Changes will only take effect on the next write.
374 573
375=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
376 579
377=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
378 581
379Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
380the same name for details). 583the same name for details).
384sub no_delay { 587sub no_delay {
385 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
386 589
387 eval { 590 eval {
388 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
389 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
390 }; 594 };
391} 595}
392 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
393############################################################################# 627#############################################################################
394 628
395=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
396 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
397Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
398 636
399=cut 637=item $handle->timeout_reset
400 638
401sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
402 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
403 662
404 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
405 $self->_timeout; 664 delete $self->{$tw}; &$cb;
406} 665 };
407 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
408# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
409# also check for time-outs 673 # also check for time-outs
410sub _timeout { 674 $cb = sub {
411 my ($self) = @_; 675 my ($self) = @_;
412 676
413 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
414 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
415 679
416 # when would the timeout trigger? 680 # when would the timeout trigger?
417 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
418 682
419 # now or in the past already? 683 # now or in the past already?
420 if ($after <= 0) { 684 if ($after <= 0) {
421 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
422 686
423 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
424 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
425 } else { 689 } else {
426 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
427 } 698 }
428 699
429 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
430 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
431 702
432 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
433 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
434 } 709 }
435
436 Scalar::Util::weaken $self;
437 return unless $self; # ->error could have destroyed $self
438
439 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
440 delete $self->{_tw};
441 $self->_timeout;
442 });
443 } else {
444 delete $self->{_tw};
445 } 710 }
446} 711}
447 712
448############################################################################# 713#############################################################################
449 714
473 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
474 739
475 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
476 741
477 $cb->($self) 742 $cb->($self)
478 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
479} 744}
480 745
481=item $handle->push_write ($data) 746=item $handle->push_write ($data)
482 747
483Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
494 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
495 760
496 my $cb = sub { 761 my $cb = sub {
497 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
498 763
499 if ($len >= 0) { 764 if (defined $len) {
500 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
501 766
502 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
503 768
504 $self->{on_drain}($self) 769 $self->{on_drain}($self)
505 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
506 && $self->{on_drain}; 771 && $self->{on_drain};
507 772
508 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
509 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
510 $self->_error ($!, 1); 775 $self->_error ($!, 1);
513 778
514 # try to write data immediately 779 # try to write data immediately
515 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
516 781
517 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
518 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
519 if length $self->{wbuf}; 784 if length $self->{wbuf};
520 }; 785 };
521} 786}
522 787
523our %WH; 788our %WH;
534 799
535 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
536 ->($self, @_); 801 ->($self, @_);
537 } 802 }
538 803
539 if ($self->{filter_w}) { 804 if ($self->{tls}) {
540 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
541 } else { 807 } else {
542 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
543 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
544 } 810 }
545} 811}
546 812
547=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
548 814
562=cut 828=cut
563 829
564register_write_type netstring => sub { 830register_write_type netstring => sub {
565 my ($self, $string) = @_; 831 my ($self, $string) = @_;
566 832
567 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
568}; 834};
569 835
570=item packstring => $format, $data 836=item packstring => $format, $data
571 837
572An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
612Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
613this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
614 880
615=cut 881=cut
616 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
617register_write_type json => sub { 888register_write_type json => sub {
618 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
619 890
620 require JSON; 891 my $json = $self->{json} ||= json_coder;
621 892
622 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
623 : JSON::encode_json ($ref)
624}; 894};
625 895
626=item storable => $reference 896=item storable => $reference
627 897
628Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
637 907
638 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
639}; 909};
640 910
641=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
642 937
643=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
644 939
645This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
646Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
740=cut 1035=cut
741 1036
742sub _drain_rbuf { 1037sub _drain_rbuf {
743 my ($self) = @_; 1038 my ($self) = @_;
744 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
745 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
746
747 if (
748 defined $self->{rbuf_max}
749 && $self->{rbuf_max} < length $self->{rbuf}
750 ) {
751 $self->_error (&Errno::ENOSPC, 1), return;
752 }
753 1043
754 while () { 1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
755 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
756 1051
757 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
758 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
759 if ($self->{_eof}) { 1054 # no progress can be made
760 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
761 $self->_error (&Errno::EPIPE, 1), return; 1056 $self->_error (Errno::EPIPE, 1), return
762 } 1057 if $self->{_eof};
763 1058
764 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
765 last; 1060 last;
766 } 1061 }
767 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
774 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
775 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
776 ) { 1071 ) {
777 # no further data will arrive 1072 # no further data will arrive
778 # so no progress can be made 1073 # so no progress can be made
779 $self->_error (&Errno::EPIPE, 1), return 1074 $self->_error (Errno::EPIPE, 1), return
780 if $self->{_eof}; 1075 if $self->{_eof};
781 1076
782 last; # more data might arrive 1077 last; # more data might arrive
783 } 1078 }
784 } else { 1079 } else {
785 # read side becomes idle 1080 # read side becomes idle
786 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
787 last; 1082 last;
788 } 1083 }
789 } 1084 }
790 1085
791 if ($self->{_eof}) { 1086 if ($self->{_eof}) {
792 if ($self->{on_eof}) { 1087 $self->{on_eof}
793 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
794 } else { 1089 : $self->_error (0, 1, "Unexpected end-of-file");
795 $self->_error (0, 1); 1090
796 } 1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
797 } 1099 }
798 1100
799 # may need to restart read watcher 1101 # may need to restart read watcher
800 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
801 $self->start_read 1103 $self->start_read
813 1115
814sub on_read { 1116sub on_read {
815 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
816 1118
817 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
818 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
819} 1121}
820 1122
821=item $handle->rbuf 1123=item $handle->rbuf
822 1124
823Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
824 1126
825You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
826you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
827 1132
828NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
829C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
830automatically manage the read buffer. 1135automatically manage the read buffer.
831 1136
872 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
873 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
874 } 1179 }
875 1180
876 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
877 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
878} 1183}
879 1184
880sub unshift_read { 1185sub unshift_read {
881 my $self = shift; 1186 my $self = shift;
882 my $cb = pop; 1187 my $cb = pop;
886 1191
887 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1192 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
888 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
889 } 1194 }
890 1195
891
892 unshift @{ $self->{_queue} }, $cb; 1196 unshift @{ $self->{_queue} }, $cb;
893 $self->_drain_rbuf unless $self->{_in_drain}; 1197 $self->_drain_rbuf;
894} 1198}
895 1199
896=item $handle->push_read (type => @args, $cb) 1200=item $handle->push_read (type => @args, $cb)
897 1201
898=item $handle->unshift_read (type => @args, $cb) 1202=item $handle->unshift_read (type => @args, $cb)
1031 return 1; 1335 return 1;
1032 } 1336 }
1033 1337
1034 # reject 1338 # reject
1035 if ($reject && $$rbuf =~ $reject) { 1339 if ($reject && $$rbuf =~ $reject) {
1036 $self->_error (&Errno::EBADMSG); 1340 $self->_error (Errno::EBADMSG);
1037 } 1341 }
1038 1342
1039 # skip 1343 # skip
1040 if ($skip && $$rbuf =~ $skip) { 1344 if ($skip && $$rbuf =~ $skip) {
1041 $data .= substr $$rbuf, 0, $+[0], ""; 1345 $data .= substr $$rbuf, 0, $+[0], "";
1057 my ($self, $cb) = @_; 1361 my ($self, $cb) = @_;
1058 1362
1059 sub { 1363 sub {
1060 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1364 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1061 if ($_[0]{rbuf} =~ /[^0-9]/) { 1365 if ($_[0]{rbuf} =~ /[^0-9]/) {
1062 $self->_error (&Errno::EBADMSG); 1366 $self->_error (Errno::EBADMSG);
1063 } 1367 }
1064 return; 1368 return;
1065 } 1369 }
1066 1370
1067 my $len = $1; 1371 my $len = $1;
1070 my $string = $_[1]; 1374 my $string = $_[1];
1071 $_[0]->unshift_read (chunk => 1, sub { 1375 $_[0]->unshift_read (chunk => 1, sub {
1072 if ($_[1] eq ",") { 1376 if ($_[1] eq ",") {
1073 $cb->($_[0], $string); 1377 $cb->($_[0], $string);
1074 } else { 1378 } else {
1075 $self->_error (&Errno::EBADMSG); 1379 $self->_error (Errno::EBADMSG);
1076 } 1380 }
1077 }); 1381 });
1078 }); 1382 });
1079 1383
1080 1 1384 1
1086An octet string prefixed with an encoded length. The encoding C<$format> 1390An octet string prefixed with an encoded length. The encoding C<$format>
1087uses the same format as a Perl C<pack> format, but must specify a single 1391uses the same format as a Perl C<pack> format, but must specify a single
1088integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1392integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1089optional C<!>, C<< < >> or C<< > >> modifier). 1393optional C<!>, C<< < >> or C<< > >> modifier).
1090 1394
1091DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1395For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1396EPP uses a prefix of C<N> (4 octtes).
1092 1397
1093Example: read a block of data prefixed by its length in BER-encoded 1398Example: read a block of data prefixed by its length in BER-encoded
1094format (very efficient). 1399format (very efficient).
1095 1400
1096 $handle->push_read (packstring => "w", sub { 1401 $handle->push_read (packstring => "w", sub {
1126 } 1431 }
1127}; 1432};
1128 1433
1129=item json => $cb->($handle, $hash_or_arrayref) 1434=item json => $cb->($handle, $hash_or_arrayref)
1130 1435
1131Reads a JSON object or array, decodes it and passes it to the callback. 1436Reads a JSON object or array, decodes it and passes it to the
1437callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1132 1438
1133If a C<json> object was passed to the constructor, then that will be used 1439If a C<json> object was passed to the constructor, then that will be used
1134for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1440for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1135 1441
1136This read type uses the incremental parser available with JSON version 1442This read type uses the incremental parser available with JSON version
1145=cut 1451=cut
1146 1452
1147register_read_type json => sub { 1453register_read_type json => sub {
1148 my ($self, $cb) = @_; 1454 my ($self, $cb) = @_;
1149 1455
1150 require JSON; 1456 my $json = $self->{json} ||= json_coder;
1151 1457
1152 my $data; 1458 my $data;
1153 my $rbuf = \$self->{rbuf}; 1459 my $rbuf = \$self->{rbuf};
1154 1460
1155 my $json = $self->{json} ||= JSON->new->utf8;
1156
1157 sub { 1461 sub {
1158 my $ref = $json->incr_parse ($self->{rbuf}); 1462 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1159 1463
1160 if ($ref) { 1464 if ($ref) {
1161 $self->{rbuf} = $json->incr_text; 1465 $self->{rbuf} = $json->incr_text;
1162 $json->incr_text = ""; 1466 $json->incr_text = "";
1163 $cb->($self, $ref); 1467 $cb->($self, $ref);
1164 1468
1165 1 1469 1
1470 } elsif ($@) {
1471 # error case
1472 $json->incr_skip;
1473
1474 $self->{rbuf} = $json->incr_text;
1475 $json->incr_text = "";
1476
1477 $self->_error (Errno::EBADMSG);
1478
1479 ()
1166 } else { 1480 } else {
1167 $self->{rbuf} = ""; 1481 $self->{rbuf} = "";
1482
1168 () 1483 ()
1169 } 1484 }
1170 } 1485 }
1171}; 1486};
1172 1487
1204 # read remaining chunk 1519 # read remaining chunk
1205 $_[0]->unshift_read (chunk => $len, sub { 1520 $_[0]->unshift_read (chunk => $len, sub {
1206 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1521 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1207 $cb->($_[0], $ref); 1522 $cb->($_[0], $ref);
1208 } else { 1523 } else {
1209 $self->_error (&Errno::EBADMSG); 1524 $self->_error (Errno::EBADMSG);
1210 } 1525 }
1211 }); 1526 });
1212 } 1527 }
1213 1528
1214 1 1529 1
1249Note that AnyEvent::Handle will automatically C<start_read> for you when 1564Note that AnyEvent::Handle will automatically C<start_read> for you when
1250you change the C<on_read> callback or push/unshift a read callback, and it 1565you change the C<on_read> callback or push/unshift a read callback, and it
1251will automatically C<stop_read> for you when neither C<on_read> is set nor 1566will automatically C<stop_read> for you when neither C<on_read> is set nor
1252there are any read requests in the queue. 1567there are any read requests in the queue.
1253 1568
1569These methods will have no effect when in TLS mode (as TLS doesn't support
1570half-duplex connections).
1571
1254=cut 1572=cut
1255 1573
1256sub stop_read { 1574sub stop_read {
1257 my ($self) = @_; 1575 my ($self) = @_;
1258 1576
1259 delete $self->{_rw}; 1577 delete $self->{_rw} unless $self->{tls};
1260} 1578}
1261 1579
1262sub start_read { 1580sub start_read {
1263 my ($self) = @_; 1581 my ($self) = @_;
1264 1582
1265 unless ($self->{_rw} || $self->{_eof}) { 1583 unless ($self->{_rw} || $self->{_eof}) {
1266 Scalar::Util::weaken $self; 1584 Scalar::Util::weaken $self;
1267 1585
1268 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1586 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1269 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1587 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1270 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1588 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1271 1589
1272 if ($len > 0) { 1590 if ($len > 0) {
1273 $self->{_activity} = AnyEvent->now; 1591 $self->{_activity} = $self->{_ractivity} = AE::now;
1274 1592
1275 $self->{filter_r} 1593 if ($self->{tls}) {
1276 ? $self->{filter_r}($self, $rbuf) 1594 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1277 : $self->{_in_drain} || $self->_drain_rbuf; 1595
1596 &_dotls ($self);
1597 } else {
1598 $self->_drain_rbuf;
1599 }
1278 1600
1279 } elsif (defined $len) { 1601 } elsif (defined $len) {
1280 delete $self->{_rw}; 1602 delete $self->{_rw};
1281 $self->{_eof} = 1; 1603 $self->{_eof} = 1;
1282 $self->_drain_rbuf unless $self->{_in_drain}; 1604 $self->_drain_rbuf;
1283 1605
1284 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1606 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1285 return $self->_error ($!, 1); 1607 return $self->_error ($!, 1);
1286 } 1608 }
1287 }); 1609 };
1288 } 1610 }
1289} 1611}
1290 1612
1613our $ERROR_SYSCALL;
1614our $ERROR_WANT_READ;
1615
1616sub _tls_error {
1617 my ($self, $err) = @_;
1618
1619 return $self->_error ($!, 1)
1620 if $err == Net::SSLeay::ERROR_SYSCALL ();
1621
1622 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1623
1624 # reduce error string to look less scary
1625 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1626
1627 if ($self->{_on_starttls}) {
1628 (delete $self->{_on_starttls})->($self, undef, $err);
1629 &_freetls;
1630 } else {
1631 &_freetls;
1632 $self->_error (Errno::EPROTO, 1, $err);
1633 }
1634}
1635
1636# poll the write BIO and send the data if applicable
1637# also decode read data if possible
1638# this is basiclaly our TLS state machine
1639# more efficient implementations are possible with openssl,
1640# but not with the buggy and incomplete Net::SSLeay.
1291sub _dotls { 1641sub _dotls {
1292 my ($self) = @_; 1642 my ($self) = @_;
1293 1643
1294 my $buf; 1644 my $tmp;
1295 1645
1296 if (length $self->{_tls_wbuf}) { 1646 if (length $self->{_tls_wbuf}) {
1297 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1647 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1298 substr $self->{_tls_wbuf}, 0, $len, ""; 1648 substr $self->{_tls_wbuf}, 0, $tmp, "";
1299 } 1649 }
1300 }
1301 1650
1651 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1652 return $self->_tls_error ($tmp)
1653 if $tmp != $ERROR_WANT_READ
1654 && ($tmp != $ERROR_SYSCALL || $!);
1655 }
1656
1657 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1658 unless (length $tmp) {
1659 $self->{_on_starttls}
1660 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1661 &_freetls;
1662
1663 if ($self->{on_stoptls}) {
1664 $self->{on_stoptls}($self);
1665 return;
1666 } else {
1667 # let's treat SSL-eof as we treat normal EOF
1668 delete $self->{_rw};
1669 $self->{_eof} = 1;
1670 }
1671 }
1672
1673 $self->{_tls_rbuf} .= $tmp;
1674 $self->_drain_rbuf;
1675 $self->{tls} or return; # tls session might have gone away in callback
1676 }
1677
1678 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1679 return $self->_tls_error ($tmp)
1680 if $tmp != $ERROR_WANT_READ
1681 && ($tmp != $ERROR_SYSCALL || $!);
1682
1302 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1683 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1303 $self->{wbuf} .= $buf; 1684 $self->{wbuf} .= $tmp;
1304 $self->_drain_wbuf; 1685 $self->_drain_wbuf;
1305 } 1686 }
1306 1687
1307 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1688 $self->{_on_starttls}
1308 if (length $buf) { 1689 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1309 $self->{rbuf} .= $buf; 1690 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1310 $self->_drain_rbuf unless $self->{_in_drain};
1311 } else {
1312 # let's treat SSL-eof as we treat normal EOF
1313 $self->{_eof} = 1;
1314 $self->_shutdown;
1315 return;
1316 }
1317 }
1318
1319 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1320
1321 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1322 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1323 return $self->_error ($!, 1);
1324 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1325 return $self->_error (&Errno::EIO, 1);
1326 }
1327
1328 # all others are fine for our purposes
1329 }
1330} 1691}
1331 1692
1332=item $handle->starttls ($tls[, $tls_ctx]) 1693=item $handle->starttls ($tls[, $tls_ctx])
1333 1694
1334Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1695Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1335object is created, you can also do that at a later time by calling 1696object is created, you can also do that at a later time by calling
1336C<starttls>. 1697C<starttls>.
1337 1698
1699Starting TLS is currently an asynchronous operation - when you push some
1700write data and then call C<< ->starttls >> then TLS negotiation will start
1701immediately, after which the queued write data is then sent.
1702
1338The first argument is the same as the C<tls> constructor argument (either 1703The first argument is the same as the C<tls> constructor argument (either
1339C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1704C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1340 1705
1341The second argument is the optional C<Net::SSLeay::CTX> object that is 1706The second argument is the optional C<AnyEvent::TLS> object that is used
1342used when AnyEvent::Handle has to create its own TLS connection object. 1707when AnyEvent::Handle has to create its own TLS connection object, or
1708a hash reference with C<< key => value >> pairs that will be used to
1709construct a new context.
1343 1710
1344The TLS connection object will end up in C<< $handle->{tls} >> after this 1711The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1345call and can be used or changed to your liking. Note that the handshake 1712context in C<< $handle->{tls_ctx} >> after this call and can be used or
1346might have already started when this function returns. 1713changed to your liking. Note that the handshake might have already started
1714when this function returns.
1347 1715
1716Due to bugs in OpenSSL, it might or might not be possible to do multiple
1717handshakes on the same stream. Best do not attempt to use the stream after
1718stopping TLS.
1719
1348=cut 1720=cut
1721
1722our %TLS_CACHE; #TODO not yet documented, should we?
1349 1723
1350sub starttls { 1724sub starttls {
1351 my ($self, $ssl, $ctx) = @_; 1725 my ($self, $tls, $ctx) = @_;
1352 1726
1353 $self->stoptls; 1727 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1728 if $self->{tls};
1354 1729
1355 if ($ssl eq "accept") { 1730 $self->{tls} = $tls;
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1731 $self->{tls_ctx} = $ctx if @_ > 2;
1357 Net::SSLeay::set_accept_state ($ssl); 1732
1358 } elsif ($ssl eq "connect") { 1733 return unless $self->{fh};
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1734
1360 Net::SSLeay::set_connect_state ($ssl); 1735 require Net::SSLeay;
1736
1737 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1738 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1739
1740 $tls = delete $self->{tls};
1741 $ctx = $self->{tls_ctx};
1742
1743 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1744
1745 if ("HASH" eq ref $ctx) {
1746 require AnyEvent::TLS;
1747
1748 if ($ctx->{cache}) {
1749 my $key = $ctx+0;
1750 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1751 } else {
1752 $ctx = new AnyEvent::TLS %$ctx;
1753 }
1754 }
1361 } 1755
1362 1756 $self->{tls_ctx} = $ctx || TLS_CTX ();
1363 $self->{tls} = $ssl; 1757 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1364 1758
1365 # basically, this is deep magic (because SSL_read should have the same issues) 1759 # basically, this is deep magic (because SSL_read should have the same issues)
1366 # but the openssl maintainers basically said: "trust us, it just works". 1760 # but the openssl maintainers basically said: "trust us, it just works".
1367 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1761 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1368 # and mismaintained ssleay-module doesn't even offer them). 1762 # and mismaintained ssleay-module doesn't even offer them).
1369 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1763 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1764 #
1765 # in short: this is a mess.
1766 #
1767 # note that we do not try to keep the length constant between writes as we are required to do.
1768 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1769 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1770 # have identity issues in that area.
1370 Net::SSLeay::CTX_set_mode ($self->{tls}, 1771# Net::SSLeay::CTX_set_mode ($ssl,
1371 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1772# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1372 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1773# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1774 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1373 1775
1374 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1776 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1375 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1376 1778
1779 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1780
1377 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1781 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1378 1782
1379 $self->{filter_w} = sub { 1783 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1380 $_[0]{_tls_wbuf} .= ${$_[1]}; 1784 if $self->{on_starttls};
1381 &_dotls; 1785
1382 }; 1786 &_dotls; # need to trigger the initial handshake
1383 $self->{filter_r} = sub { 1787 $self->start_read; # make sure we actually do read
1384 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1385 &_dotls;
1386 };
1387} 1788}
1388 1789
1389=item $handle->stoptls 1790=item $handle->stoptls
1390 1791
1391Destroys the SSL connection, if any. Partial read or write data will be 1792Shuts down the SSL connection - this makes a proper EOF handshake by
1392lost. 1793sending a close notify to the other side, but since OpenSSL doesn't
1794support non-blocking shut downs, it is not guarenteed that you can re-use
1795the stream afterwards.
1393 1796
1394=cut 1797=cut
1395 1798
1396sub stoptls { 1799sub stoptls {
1397 my ($self) = @_; 1800 my ($self) = @_;
1398 1801
1399 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1802 if ($self->{tls}) {
1803 Net::SSLeay::shutdown ($self->{tls});
1400 1804
1401 delete $self->{_rbio}; 1805 &_dotls;
1402 delete $self->{_wbio}; 1806
1403 delete $self->{_tls_wbuf}; 1807# # we don't give a shit. no, we do, but we can't. no...#d#
1404 delete $self->{filter_r}; 1808# # we, we... have to use openssl :/#d#
1405 delete $self->{filter_w}; 1809# &_freetls;#d#
1810 }
1811}
1812
1813sub _freetls {
1814 my ($self) = @_;
1815
1816 return unless $self->{tls};
1817
1818 $self->{tls_ctx}->_put_session (delete $self->{tls})
1819 if $self->{tls} > 0;
1820
1821 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1406} 1822}
1407 1823
1408sub DESTROY { 1824sub DESTROY {
1409 my $self = shift; 1825 my ($self) = @_;
1410 1826
1411 $self->stoptls; 1827 &_freetls;
1412 1828
1413 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1829 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1414 1830
1415 if ($linger && length $self->{wbuf}) { 1831 if ($linger && length $self->{wbuf} && $self->{fh}) {
1416 my $fh = delete $self->{fh}; 1832 my $fh = delete $self->{fh};
1417 my $wbuf = delete $self->{wbuf}; 1833 my $wbuf = delete $self->{wbuf};
1418 1834
1419 my @linger; 1835 my @linger;
1420 1836
1421 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1837 push @linger, AE::io $fh, 1, sub {
1422 my $len = syswrite $fh, $wbuf, length $wbuf; 1838 my $len = syswrite $fh, $wbuf, length $wbuf;
1423 1839
1424 if ($len > 0) { 1840 if ($len > 0) {
1425 substr $wbuf, 0, $len, ""; 1841 substr $wbuf, 0, $len, "";
1426 } else { 1842 } else {
1427 @linger = (); # end 1843 @linger = (); # end
1428 } 1844 }
1429 }); 1845 };
1430 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1846 push @linger, AE::timer $linger, 0, sub {
1431 @linger = (); 1847 @linger = ();
1432 }); 1848 };
1433 } 1849 }
1850}
1851
1852=item $handle->destroy
1853
1854Shuts down the handle object as much as possible - this call ensures that
1855no further callbacks will be invoked and as many resources as possible
1856will be freed. Any method you will call on the handle object after
1857destroying it in this way will be silently ignored (and it will return the
1858empty list).
1859
1860Normally, you can just "forget" any references to an AnyEvent::Handle
1861object and it will simply shut down. This works in fatal error and EOF
1862callbacks, as well as code outside. It does I<NOT> work in a read or write
1863callback, so when you want to destroy the AnyEvent::Handle object from
1864within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1865that case.
1866
1867Destroying the handle object in this way has the advantage that callbacks
1868will be removed as well, so if those are the only reference holders (as
1869is common), then one doesn't need to do anything special to break any
1870reference cycles.
1871
1872The handle might still linger in the background and write out remaining
1873data, as specified by the C<linger> option, however.
1874
1875=cut
1876
1877sub destroy {
1878 my ($self) = @_;
1879
1880 $self->DESTROY;
1881 %$self = ();
1882 bless $self, "AnyEvent::Handle::destroyed";
1883}
1884
1885sub AnyEvent::Handle::destroyed::AUTOLOAD {
1886 #nop
1434} 1887}
1435 1888
1436=item AnyEvent::Handle::TLS_CTX 1889=item AnyEvent::Handle::TLS_CTX
1437 1890
1438This function creates and returns the Net::SSLeay::CTX object used by 1891This function creates and returns the AnyEvent::TLS object used by default
1439default for TLS mode. 1892for TLS mode.
1440 1893
1441The context is created like this: 1894The context is created by calling L<AnyEvent::TLS> without any arguments.
1442
1443 Net::SSLeay::load_error_strings;
1444 Net::SSLeay::SSLeay_add_ssl_algorithms;
1445 Net::SSLeay::randomize;
1446
1447 my $CTX = Net::SSLeay::CTX_new;
1448
1449 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1450 1895
1451=cut 1896=cut
1452 1897
1453our $TLS_CTX; 1898our $TLS_CTX;
1454 1899
1455sub TLS_CTX() { 1900sub TLS_CTX() {
1456 $TLS_CTX || do { 1901 $TLS_CTX ||= do {
1457 require Net::SSLeay; 1902 require AnyEvent::TLS;
1458 1903
1459 Net::SSLeay::load_error_strings (); 1904 new AnyEvent::TLS
1460 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1461 Net::SSLeay::randomize ();
1462
1463 $TLS_CTX = Net::SSLeay::CTX_new ();
1464
1465 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1466
1467 $TLS_CTX
1468 } 1905 }
1469} 1906}
1470 1907
1471=back 1908=back
1909
1910
1911=head1 NONFREQUENTLY ASKED QUESTIONS
1912
1913=over 4
1914
1915=item I C<undef> the AnyEvent::Handle reference inside my callback and
1916still get further invocations!
1917
1918That's because AnyEvent::Handle keeps a reference to itself when handling
1919read or write callbacks.
1920
1921It is only safe to "forget" the reference inside EOF or error callbacks,
1922from within all other callbacks, you need to explicitly call the C<<
1923->destroy >> method.
1924
1925=item I get different callback invocations in TLS mode/Why can't I pause
1926reading?
1927
1928Unlike, say, TCP, TLS connections do not consist of two independent
1929communication channels, one for each direction. Or put differently. The
1930read and write directions are not independent of each other: you cannot
1931write data unless you are also prepared to read, and vice versa.
1932
1933This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1934callback invocations when you are not expecting any read data - the reason
1935is that AnyEvent::Handle always reads in TLS mode.
1936
1937During the connection, you have to make sure that you always have a
1938non-empty read-queue, or an C<on_read> watcher. At the end of the
1939connection (or when you no longer want to use it) you can call the
1940C<destroy> method.
1941
1942=item How do I read data until the other side closes the connection?
1943
1944If you just want to read your data into a perl scalar, the easiest way
1945to achieve this is by setting an C<on_read> callback that does nothing,
1946clearing the C<on_eof> callback and in the C<on_error> callback, the data
1947will be in C<$_[0]{rbuf}>:
1948
1949 $handle->on_read (sub { });
1950 $handle->on_eof (undef);
1951 $handle->on_error (sub {
1952 my $data = delete $_[0]{rbuf};
1953 });
1954
1955The reason to use C<on_error> is that TCP connections, due to latencies
1956and packets loss, might get closed quite violently with an error, when in
1957fact, all data has been received.
1958
1959It is usually better to use acknowledgements when transferring data,
1960to make sure the other side hasn't just died and you got the data
1961intact. This is also one reason why so many internet protocols have an
1962explicit QUIT command.
1963
1964=item I don't want to destroy the handle too early - how do I wait until
1965all data has been written?
1966
1967After writing your last bits of data, set the C<on_drain> callback
1968and destroy the handle in there - with the default setting of
1969C<low_water_mark> this will be called precisely when all data has been
1970written to the socket:
1971
1972 $handle->push_write (...);
1973 $handle->on_drain (sub {
1974 warn "all data submitted to the kernel\n";
1975 undef $handle;
1976 });
1977
1978If you just want to queue some data and then signal EOF to the other side,
1979consider using C<< ->push_shutdown >> instead.
1980
1981=item I want to contact a TLS/SSL server, I don't care about security.
1982
1983If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1984simply connect to it and then create the AnyEvent::Handle with the C<tls>
1985parameter:
1986
1987 tcp_connect $host, $port, sub {
1988 my ($fh) = @_;
1989
1990 my $handle = new AnyEvent::Handle
1991 fh => $fh,
1992 tls => "connect",
1993 on_error => sub { ... };
1994
1995 $handle->push_write (...);
1996 };
1997
1998=item I want to contact a TLS/SSL server, I do care about security.
1999
2000Then you should additionally enable certificate verification, including
2001peername verification, if the protocol you use supports it (see
2002L<AnyEvent::TLS>, C<verify_peername>).
2003
2004E.g. for HTTPS:
2005
2006 tcp_connect $host, $port, sub {
2007 my ($fh) = @_;
2008
2009 my $handle = new AnyEvent::Handle
2010 fh => $fh,
2011 peername => $host,
2012 tls => "connect",
2013 tls_ctx => { verify => 1, verify_peername => "https" },
2014 ...
2015
2016Note that you must specify the hostname you connected to (or whatever
2017"peername" the protocol needs) as the C<peername> argument, otherwise no
2018peername verification will be done.
2019
2020The above will use the system-dependent default set of trusted CA
2021certificates. If you want to check against a specific CA, add the
2022C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2023
2024 tls_ctx => {
2025 verify => 1,
2026 verify_peername => "https",
2027 ca_file => "my-ca-cert.pem",
2028 },
2029
2030=item I want to create a TLS/SSL server, how do I do that?
2031
2032Well, you first need to get a server certificate and key. You have
2033three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2034self-signed certificate (cheap. check the search engine of your choice,
2035there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2036nice program for that purpose).
2037
2038Then create a file with your private key (in PEM format, see
2039L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2040file should then look like this:
2041
2042 -----BEGIN RSA PRIVATE KEY-----
2043 ...header data
2044 ... lots of base64'y-stuff
2045 -----END RSA PRIVATE KEY-----
2046
2047 -----BEGIN CERTIFICATE-----
2048 ... lots of base64'y-stuff
2049 -----END CERTIFICATE-----
2050
2051The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2052specify this file as C<cert_file>:
2053
2054 tcp_server undef, $port, sub {
2055 my ($fh) = @_;
2056
2057 my $handle = new AnyEvent::Handle
2058 fh => $fh,
2059 tls => "accept",
2060 tls_ctx => { cert_file => "my-server-keycert.pem" },
2061 ...
2062
2063When you have intermediate CA certificates that your clients might not
2064know about, just append them to the C<cert_file>.
2065
2066=back
2067
1472 2068
1473=head1 SUBCLASSING AnyEvent::Handle 2069=head1 SUBCLASSING AnyEvent::Handle
1474 2070
1475In many cases, you might want to subclass AnyEvent::Handle. 2071In many cases, you might want to subclass AnyEvent::Handle.
1476 2072

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines