ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.61
Committed: Fri Jun 6 10:23:50 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.60: +96 -42 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = 4.14;
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called when an end-of-file condition is detcted,
81 i.e. in the case of a socket, when the other side has closed the
82 connection cleanly.
83
84 While not mandatory, it is highly recommended to set an eof callback,
85 otherwise you might end up with a closed socket while you are still
86 waiting for data.
87
88 =item on_error => $cb->($handle, $fatal)
89
90 This is the error callback, which is called when, well, some error
91 occured, such as not being able to resolve the hostname, failure to
92 connect or a read error.
93
94 Some errors are fatal (which is indicated by C<$fatal> being true). On
95 fatal errors the handle object will be shut down and will not be
96 usable. Non-fatal errors can be retried by simply returning, but it is
97 recommended to simply ignore this parameter and instead abondon the handle
98 object when this callback is invoked.
99
100 On callback entrance, the value of C<$!> contains the operating system
101 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103 While not mandatory, it is I<highly> recommended to set this callback, as
104 you will not be notified of errors otherwise. The default simply calls
105 C<croak>.
106
107 =item on_read => $cb->($handle)
108
109 This sets the default read callback, which is called when data arrives
110 and no read request is in the queue (unlike read queue callbacks, this
111 callback will only be called when at least one octet of data is in the
112 read buffer).
113
114 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 method or access the C<$handle->{rbuf}> member directly.
116
117 When an EOF condition is detected then AnyEvent::Handle will first try to
118 feed all the remaining data to the queued callbacks and C<on_read> before
119 calling the C<on_eof> callback. If no progress can be made, then a fatal
120 error will be raised (with C<$!> set to C<EPIPE>).
121
122 =item on_drain => $cb->($handle)
123
124 This sets the callback that is called when the write buffer becomes empty
125 (or when the callback is set and the buffer is empty already).
126
127 To append to the write buffer, use the C<< ->push_write >> method.
128
129 =item timeout => $fractional_seconds
130
131 If non-zero, then this enables an "inactivity" timeout: whenever this many
132 seconds pass without a successful read or write on the underlying file
133 handle, the C<on_timeout> callback will be invoked (and if that one is
134 missing, an C<ETIMEDOUT> error will be raised).
135
136 Note that timeout processing is also active when you currently do not have
137 any outstanding read or write requests: If you plan to keep the connection
138 idle then you should disable the timout temporarily or ignore the timeout
139 in the C<on_timeout> callback.
140
141 Zero (the default) disables this timeout.
142
143 =item on_timeout => $cb->($handle)
144
145 Called whenever the inactivity timeout passes. If you return from this
146 callback, then the timeout will be reset as if some activity had happened,
147 so this condition is not fatal in any way.
148
149 =item rbuf_max => <bytes>
150
151 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152 when the read buffer ever (strictly) exceeds this size. This is useful to
153 avoid denial-of-service attacks.
154
155 For example, a server accepting connections from untrusted sources should
156 be configured to accept only so-and-so much data that it cannot act on
157 (for example, when expecting a line, an attacker could send an unlimited
158 amount of data without a callback ever being called as long as the line
159 isn't finished).
160
161 =item read_size => <bytes>
162
163 The default read block size (the amount of bytes this module will try to read
164 during each (loop iteration). Default: C<8192>.
165
166 =item low_water_mark => <bytes>
167
168 Sets the amount of bytes (default: C<0>) that make up an "empty" write
169 buffer: If the write reaches this size or gets even samller it is
170 considered empty.
171
172 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
173
174 When this parameter is given, it enables TLS (SSL) mode, that means it
175 will start making tls handshake and will transparently encrypt/decrypt
176 data.
177
178 TLS mode requires Net::SSLeay to be installed (it will be loaded
179 automatically when you try to create a TLS handle).
180
181 For the TLS server side, use C<accept>, and for the TLS client side of a
182 connection, use C<connect> mode.
183
184 You can also provide your own TLS connection object, but you have
185 to make sure that you call either C<Net::SSLeay::set_connect_state>
186 or C<Net::SSLeay::set_accept_state> on it before you pass it to
187 AnyEvent::Handle.
188
189 See the C<starttls> method if you need to start TLs negotiation later.
190
191 =item tls_ctx => $ssl_ctx
192
193 Use the given Net::SSLeay::CTX object to create the new TLS connection
194 (unless a connection object was specified directly). If this parameter is
195 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
196
197 =item json => JSON or JSON::XS object
198
199 This is the json coder object used by the C<json> read and write types.
200
201 If you don't supply it, then AnyEvent::Handle will create and use a
202 suitable one, which will write and expect UTF-8 encoded JSON texts.
203
204 Note that you are responsible to depend on the JSON module if you want to
205 use this functionality, as AnyEvent does not have a dependency itself.
206
207 =item filter_r => $cb
208
209 =item filter_w => $cb
210
211 These exist, but are undocumented at this time.
212
213 =back
214
215 =cut
216
217 sub new {
218 my $class = shift;
219
220 my $self = bless { @_ }, $class;
221
222 $self->{fh} or Carp::croak "mandatory argument fh is missing";
223
224 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
225
226 if ($self->{tls}) {
227 require Net::SSLeay;
228 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
229 }
230
231 $self->{_activity} = AnyEvent->now;
232 $self->_timeout;
233
234 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
235
236 $self
237 }
238
239 sub _shutdown {
240 my ($self) = @_;
241
242 delete $self->{_tw};
243 delete $self->{_rw};
244 delete $self->{_ww};
245 delete $self->{fh};
246
247 $self->stoptls;
248 }
249
250 sub _error {
251 my ($self, $errno, $fatal) = @_;
252
253 $self->_shutdown
254 if $fatal;
255
256 $! = $errno;
257
258 if ($self->{on_error}) {
259 $self->{on_error}($self, $fatal);
260 } else {
261 Carp::croak "AnyEvent::Handle uncaught error: $!";
262 }
263 }
264
265 =item $fh = $handle->fh
266
267 This method returns the file handle of the L<AnyEvent::Handle> object.
268
269 =cut
270
271 sub fh { $_[0]{fh} }
272
273 =item $handle->on_error ($cb)
274
275 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
276
277 =cut
278
279 sub on_error {
280 $_[0]{on_error} = $_[1];
281 }
282
283 =item $handle->on_eof ($cb)
284
285 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
286
287 =cut
288
289 sub on_eof {
290 $_[0]{on_eof} = $_[1];
291 }
292
293 =item $handle->on_timeout ($cb)
294
295 Replace the current C<on_timeout> callback, or disables the callback
296 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
297 argument.
298
299 =cut
300
301 sub on_timeout {
302 $_[0]{on_timeout} = $_[1];
303 }
304
305 #############################################################################
306
307 =item $handle->timeout ($seconds)
308
309 Configures (or disables) the inactivity timeout.
310
311 =cut
312
313 sub timeout {
314 my ($self, $timeout) = @_;
315
316 $self->{timeout} = $timeout;
317 $self->_timeout;
318 }
319
320 # reset the timeout watcher, as neccessary
321 # also check for time-outs
322 sub _timeout {
323 my ($self) = @_;
324
325 if ($self->{timeout}) {
326 my $NOW = AnyEvent->now;
327
328 # when would the timeout trigger?
329 my $after = $self->{_activity} + $self->{timeout} - $NOW;
330
331 # now or in the past already?
332 if ($after <= 0) {
333 $self->{_activity} = $NOW;
334
335 if ($self->{on_timeout}) {
336 $self->{on_timeout}($self);
337 } else {
338 $self->_error (&Errno::ETIMEDOUT);
339 }
340
341 # callback could have changed timeout value, optimise
342 return unless $self->{timeout};
343
344 # calculate new after
345 $after = $self->{timeout};
346 }
347
348 Scalar::Util::weaken $self;
349 return unless $self; # ->error could have destroyed $self
350
351 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
352 delete $self->{_tw};
353 $self->_timeout;
354 });
355 } else {
356 delete $self->{_tw};
357 }
358 }
359
360 #############################################################################
361
362 =back
363
364 =head2 WRITE QUEUE
365
366 AnyEvent::Handle manages two queues per handle, one for writing and one
367 for reading.
368
369 The write queue is very simple: you can add data to its end, and
370 AnyEvent::Handle will automatically try to get rid of it for you.
371
372 When data could be written and the write buffer is shorter then the low
373 water mark, the C<on_drain> callback will be invoked.
374
375 =over 4
376
377 =item $handle->on_drain ($cb)
378
379 Sets the C<on_drain> callback or clears it (see the description of
380 C<on_drain> in the constructor).
381
382 =cut
383
384 sub on_drain {
385 my ($self, $cb) = @_;
386
387 $self->{on_drain} = $cb;
388
389 $cb->($self)
390 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
391 }
392
393 =item $handle->push_write ($data)
394
395 Queues the given scalar to be written. You can push as much data as you
396 want (only limited by the available memory), as C<AnyEvent::Handle>
397 buffers it independently of the kernel.
398
399 =cut
400
401 sub _drain_wbuf {
402 my ($self) = @_;
403
404 if (!$self->{_ww} && length $self->{wbuf}) {
405
406 Scalar::Util::weaken $self;
407
408 my $cb = sub {
409 my $len = syswrite $self->{fh}, $self->{wbuf};
410
411 if ($len >= 0) {
412 substr $self->{wbuf}, 0, $len, "";
413
414 $self->{_activity} = AnyEvent->now;
415
416 $self->{on_drain}($self)
417 if $self->{low_water_mark} >= length $self->{wbuf}
418 && $self->{on_drain};
419
420 delete $self->{_ww} unless length $self->{wbuf};
421 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
422 $self->_error ($!, 1);
423 }
424 };
425
426 # try to write data immediately
427 $cb->();
428
429 # if still data left in wbuf, we need to poll
430 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
431 if length $self->{wbuf};
432 };
433 }
434
435 our %WH;
436
437 sub register_write_type($$) {
438 $WH{$_[0]} = $_[1];
439 }
440
441 sub push_write {
442 my $self = shift;
443
444 if (@_ > 1) {
445 my $type = shift;
446
447 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
448 ->($self, @_);
449 }
450
451 if ($self->{filter_w}) {
452 $self->{filter_w}($self, \$_[0]);
453 } else {
454 $self->{wbuf} .= $_[0];
455 $self->_drain_wbuf;
456 }
457 }
458
459 =item $handle->push_write (type => @args)
460
461 Instead of formatting your data yourself, you can also let this module do
462 the job by specifying a type and type-specific arguments.
463
464 Predefined types are (if you have ideas for additional types, feel free to
465 drop by and tell us):
466
467 =over 4
468
469 =item netstring => $string
470
471 Formats the given value as netstring
472 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473
474 =cut
475
476 register_write_type netstring => sub {
477 my ($self, $string) = @_;
478
479 sprintf "%d:%s,", (length $string), $string
480 };
481
482 =item packstring => $format, $data
483
484 An octet string prefixed with an encoded length. The encoding C<$format>
485 uses the same format as a Perl C<pack> format, but must specify a single
486 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
487 optional C<!>, C<< < >> or C<< > >> modifier).
488
489 =cut
490
491 register_write_type packstring => sub {
492 my ($self, $format, $string) = @_;
493
494 pack "$format/a", $string
495 };
496
497 =item json => $array_or_hashref
498
499 Encodes the given hash or array reference into a JSON object. Unless you
500 provide your own JSON object, this means it will be encoded to JSON text
501 in UTF-8.
502
503 JSON objects (and arrays) are self-delimiting, so you can write JSON at
504 one end of a handle and read them at the other end without using any
505 additional framing.
506
507 The generated JSON text is guaranteed not to contain any newlines: While
508 this module doesn't need delimiters after or between JSON texts to be
509 able to read them, many other languages depend on that.
510
511 A simple RPC protocol that interoperates easily with others is to send
512 JSON arrays (or objects, although arrays are usually the better choice as
513 they mimic how function argument passing works) and a newline after each
514 JSON text:
515
516 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
517 $handle->push_write ("\012");
518
519 An AnyEvent::Handle receiver would simply use the C<json> read type and
520 rely on the fact that the newline will be skipped as leading whitespace:
521
522 $handle->push_read (json => sub { my $array = $_[1]; ... });
523
524 Other languages could read single lines terminated by a newline and pass
525 this line into their JSON decoder of choice.
526
527 =cut
528
529 register_write_type json => sub {
530 my ($self, $ref) = @_;
531
532 require JSON;
533
534 $self->{json} ? $self->{json}->encode ($ref)
535 : JSON::encode_json ($ref)
536 };
537
538 =back
539
540 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
541
542 This function (not method) lets you add your own types to C<push_write>.
543 Whenever the given C<type> is used, C<push_write> will invoke the code
544 reference with the handle object and the remaining arguments.
545
546 The code reference is supposed to return a single octet string that will
547 be appended to the write buffer.
548
549 Note that this is a function, and all types registered this way will be
550 global, so try to use unique names.
551
552 =cut
553
554 #############################################################################
555
556 =back
557
558 =head2 READ QUEUE
559
560 AnyEvent::Handle manages two queues per handle, one for writing and one
561 for reading.
562
563 The read queue is more complex than the write queue. It can be used in two
564 ways, the "simple" way, using only C<on_read> and the "complex" way, using
565 a queue.
566
567 In the simple case, you just install an C<on_read> callback and whenever
568 new data arrives, it will be called. You can then remove some data (if
569 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
570 or not.
571
572 In the more complex case, you want to queue multiple callbacks. In this
573 case, AnyEvent::Handle will call the first queued callback each time new
574 data arrives (also the first time it is queued) and removes it when it has
575 done its job (see C<push_read>, below).
576
577 This way you can, for example, push three line-reads, followed by reading
578 a chunk of data, and AnyEvent::Handle will execute them in order.
579
580 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 the specified number of bytes which give an XML datagram.
582
583 # in the default state, expect some header bytes
584 $handle->on_read (sub {
585 # some data is here, now queue the length-header-read (4 octets)
586 shift->unshift_read (chunk => 4, sub {
587 # header arrived, decode
588 my $len = unpack "N", $_[1];
589
590 # now read the payload
591 shift->unshift_read (chunk => $len, sub {
592 my $xml = $_[1];
593 # handle xml
594 });
595 });
596 });
597
598 Example 2: Implement a client for a protocol that replies either with
599 "OK" and another line or "ERROR" for one request, and 64 bytes for the
600 second request. Due tot he availability of a full queue, we can just
601 pipeline sending both requests and manipulate the queue as necessary in
602 the callbacks:
603
604 # request one
605 $handle->push_write ("request 1\015\012");
606
607 # we expect "ERROR" or "OK" as response, so push a line read
608 $handle->push_read (line => sub {
609 # if we got an "OK", we have to _prepend_ another line,
610 # so it will be read before the second request reads its 64 bytes
611 # which are already in the queue when this callback is called
612 # we don't do this in case we got an error
613 if ($_[1] eq "OK") {
614 $_[0]->unshift_read (line => sub {
615 my $response = $_[1];
616 ...
617 });
618 }
619 });
620
621 # request two
622 $handle->push_write ("request 2\015\012");
623
624 # simply read 64 bytes, always
625 $handle->push_read (chunk => 64, sub {
626 my $response = $_[1];
627 ...
628 });
629
630 =over 4
631
632 =cut
633
634 sub _drain_rbuf {
635 my ($self) = @_;
636
637 local $self->{_in_drain} = 1;
638
639 if (
640 defined $self->{rbuf_max}
641 && $self->{rbuf_max} < length $self->{rbuf}
642 ) {
643 return $self->_error (&Errno::ENOSPC, 1);
644 }
645
646 while () {
647 no strict 'refs';
648
649 my $len = length $self->{rbuf};
650
651 if (my $cb = shift @{ $self->{_queue} }) {
652 unless ($cb->($self)) {
653 if ($self->{_eof}) {
654 # no progress can be made (not enough data and no data forthcoming)
655 $self->_error (&Errno::EPIPE, 1), last;
656 }
657
658 unshift @{ $self->{_queue} }, $cb;
659 last;
660 }
661 } elsif ($self->{on_read}) {
662 last unless $len;
663
664 $self->{on_read}($self);
665
666 if (
667 $len == length $self->{rbuf} # if no data has been consumed
668 && !@{ $self->{_queue} } # and the queue is still empty
669 && $self->{on_read} # but we still have on_read
670 ) {
671 # no further data will arrive
672 # so no progress can be made
673 $self->_error (&Errno::EPIPE, 1), last
674 if $self->{_eof};
675
676 last; # more data might arrive
677 }
678 } else {
679 # read side becomes idle
680 delete $self->{_rw};
681 last;
682 }
683 }
684
685 $self->{on_eof}($self)
686 if $self->{_eof} && $self->{on_eof};
687
688 # may need to restart read watcher
689 unless ($self->{_rw}) {
690 $self->start_read
691 if $self->{on_read} || @{ $self->{_queue} };
692 }
693 }
694
695 =item $handle->on_read ($cb)
696
697 This replaces the currently set C<on_read> callback, or clears it (when
698 the new callback is C<undef>). See the description of C<on_read> in the
699 constructor.
700
701 =cut
702
703 sub on_read {
704 my ($self, $cb) = @_;
705
706 $self->{on_read} = $cb;
707 $self->_drain_rbuf if $cb && !$self->{_in_drain};
708 }
709
710 =item $handle->rbuf
711
712 Returns the read buffer (as a modifiable lvalue).
713
714 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
715 you want.
716
717 NOTE: The read buffer should only be used or modified if the C<on_read>,
718 C<push_read> or C<unshift_read> methods are used. The other read methods
719 automatically manage the read buffer.
720
721 =cut
722
723 sub rbuf : lvalue {
724 $_[0]{rbuf}
725 }
726
727 =item $handle->push_read ($cb)
728
729 =item $handle->unshift_read ($cb)
730
731 Append the given callback to the end of the queue (C<push_read>) or
732 prepend it (C<unshift_read>).
733
734 The callback is called each time some additional read data arrives.
735
736 It must check whether enough data is in the read buffer already.
737
738 If not enough data is available, it must return the empty list or a false
739 value, in which case it will be called repeatedly until enough data is
740 available (or an error condition is detected).
741
742 If enough data was available, then the callback must remove all data it is
743 interested in (which can be none at all) and return a true value. After returning
744 true, it will be removed from the queue.
745
746 =cut
747
748 our %RH;
749
750 sub register_read_type($$) {
751 $RH{$_[0]} = $_[1];
752 }
753
754 sub push_read {
755 my $self = shift;
756 my $cb = pop;
757
758 if (@_) {
759 my $type = shift;
760
761 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
762 ->($self, $cb, @_);
763 }
764
765 push @{ $self->{_queue} }, $cb;
766 $self->_drain_rbuf unless $self->{_in_drain};
767 }
768
769 sub unshift_read {
770 my $self = shift;
771 my $cb = pop;
772
773 if (@_) {
774 my $type = shift;
775
776 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
777 ->($self, $cb, @_);
778 }
779
780
781 unshift @{ $self->{_queue} }, $cb;
782 $self->_drain_rbuf unless $self->{_in_drain};
783 }
784
785 =item $handle->push_read (type => @args, $cb)
786
787 =item $handle->unshift_read (type => @args, $cb)
788
789 Instead of providing a callback that parses the data itself you can chose
790 between a number of predefined parsing formats, for chunks of data, lines
791 etc.
792
793 Predefined types are (if you have ideas for additional types, feel free to
794 drop by and tell us):
795
796 =over 4
797
798 =item chunk => $octets, $cb->($handle, $data)
799
800 Invoke the callback only once C<$octets> bytes have been read. Pass the
801 data read to the callback. The callback will never be called with less
802 data.
803
804 Example: read 2 bytes.
805
806 $handle->push_read (chunk => 2, sub {
807 warn "yay ", unpack "H*", $_[1];
808 });
809
810 =cut
811
812 register_read_type chunk => sub {
813 my ($self, $cb, $len) = @_;
814
815 sub {
816 $len <= length $_[0]{rbuf} or return;
817 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
818 1
819 }
820 };
821
822 # compatibility with older API
823 sub push_read_chunk {
824 $_[0]->push_read (chunk => $_[1], $_[2]);
825 }
826
827 sub unshift_read_chunk {
828 $_[0]->unshift_read (chunk => $_[1], $_[2]);
829 }
830
831 =item line => [$eol, ]$cb->($handle, $line, $eol)
832
833 The callback will be called only once a full line (including the end of
834 line marker, C<$eol>) has been read. This line (excluding the end of line
835 marker) will be passed to the callback as second argument (C<$line>), and
836 the end of line marker as the third argument (C<$eol>).
837
838 The end of line marker, C<$eol>, can be either a string, in which case it
839 will be interpreted as a fixed record end marker, or it can be a regex
840 object (e.g. created by C<qr>), in which case it is interpreted as a
841 regular expression.
842
843 The end of line marker argument C<$eol> is optional, if it is missing (NOT
844 undef), then C<qr|\015?\012|> is used (which is good for most internet
845 protocols).
846
847 Partial lines at the end of the stream will never be returned, as they are
848 not marked by the end of line marker.
849
850 =cut
851
852 register_read_type line => sub {
853 my ($self, $cb, $eol) = @_;
854
855 $eol = qr|(\015?\012)| if @_ < 3;
856 $eol = quotemeta $eol unless ref $eol;
857 $eol = qr|^(.*?)($eol)|s;
858
859 sub {
860 $_[0]{rbuf} =~ s/$eol// or return;
861
862 $cb->($_[0], $1, $2);
863 1
864 }
865 };
866
867 # compatibility with older API
868 sub push_read_line {
869 my $self = shift;
870 $self->push_read (line => @_);
871 }
872
873 sub unshift_read_line {
874 my $self = shift;
875 $self->unshift_read (line => @_);
876 }
877
878 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
879
880 Makes a regex match against the regex object C<$accept> and returns
881 everything up to and including the match.
882
883 Example: read a single line terminated by '\n'.
884
885 $handle->push_read (regex => qr<\n>, sub { ... });
886
887 If C<$reject> is given and not undef, then it determines when the data is
888 to be rejected: it is matched against the data when the C<$accept> regex
889 does not match and generates an C<EBADMSG> error when it matches. This is
890 useful to quickly reject wrong data (to avoid waiting for a timeout or a
891 receive buffer overflow).
892
893 Example: expect a single decimal number followed by whitespace, reject
894 anything else (not the use of an anchor).
895
896 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
897
898 If C<$skip> is given and not C<undef>, then it will be matched against
899 the receive buffer when neither C<$accept> nor C<$reject> match,
900 and everything preceding and including the match will be accepted
901 unconditionally. This is useful to skip large amounts of data that you
902 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
903 have to start matching from the beginning. This is purely an optimisation
904 and is usually worth only when you expect more than a few kilobytes.
905
906 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
907 expect the header to be very large (it isn't in practise, but...), we use
908 a skip regex to skip initial portions. The skip regex is tricky in that
909 it only accepts something not ending in either \015 or \012, as these are
910 required for the accept regex.
911
912 $handle->push_read (regex =>
913 qr<\015\012\015\012>,
914 undef, # no reject
915 qr<^.*[^\015\012]>,
916 sub { ... });
917
918 =cut
919
920 register_read_type regex => sub {
921 my ($self, $cb, $accept, $reject, $skip) = @_;
922
923 my $data;
924 my $rbuf = \$self->{rbuf};
925
926 sub {
927 # accept
928 if ($$rbuf =~ $accept) {
929 $data .= substr $$rbuf, 0, $+[0], "";
930 $cb->($self, $data);
931 return 1;
932 }
933
934 # reject
935 if ($reject && $$rbuf =~ $reject) {
936 $self->_error (&Errno::EBADMSG);
937 }
938
939 # skip
940 if ($skip && $$rbuf =~ $skip) {
941 $data .= substr $$rbuf, 0, $+[0], "";
942 }
943
944 ()
945 }
946 };
947
948 =item netstring => $cb->($handle, $string)
949
950 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
951
952 Throws an error with C<$!> set to EBADMSG on format violations.
953
954 =cut
955
956 register_read_type netstring => sub {
957 my ($self, $cb) = @_;
958
959 sub {
960 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
961 if ($_[0]{rbuf} =~ /[^0-9]/) {
962 $self->_error (&Errno::EBADMSG);
963 }
964 return;
965 }
966
967 my $len = $1;
968
969 $self->unshift_read (chunk => $len, sub {
970 my $string = $_[1];
971 $_[0]->unshift_read (chunk => 1, sub {
972 if ($_[1] eq ",") {
973 $cb->($_[0], $string);
974 } else {
975 $self->_error (&Errno::EBADMSG);
976 }
977 });
978 });
979
980 1
981 }
982 };
983
984 =item packstring => $format, $cb->($handle, $string)
985
986 An octet string prefixed with an encoded length. The encoding C<$format>
987 uses the same format as a Perl C<pack> format, but must specify a single
988 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
989 optional C<!>, C<< < >> or C<< > >> modifier).
990
991 DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
992
993 Example: read a block of data prefixed by its length in BER-encoded
994 format (very efficient).
995
996 $handle->push_read (packstring => "w", sub {
997 my ($handle, $data) = @_;
998 });
999
1000 =cut
1001
1002 register_read_type packstring => sub {
1003 my ($self, $cb, $format) = @_;
1004
1005 sub {
1006 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1007 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1008 or return;
1009
1010 # remove prefix
1011 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1012
1013 # read rest
1014 $_[0]->unshift_read (chunk => $len, $cb);
1015
1016 1
1017 }
1018 };
1019
1020 =item json => $cb->($handle, $hash_or_arrayref)
1021
1022 Reads a JSON object or array, decodes it and passes it to the callback.
1023
1024 If a C<json> object was passed to the constructor, then that will be used
1025 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1026
1027 This read type uses the incremental parser available with JSON version
1028 2.09 (and JSON::XS version 2.2) and above. You have to provide a
1029 dependency on your own: this module will load the JSON module, but
1030 AnyEvent does not depend on it itself.
1031
1032 Since JSON texts are fully self-delimiting, the C<json> read and write
1033 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1034 the C<json> write type description, above, for an actual example.
1035
1036 =cut
1037
1038 register_read_type json => sub {
1039 my ($self, $cb, $accept, $reject, $skip) = @_;
1040
1041 require JSON;
1042
1043 my $data;
1044 my $rbuf = \$self->{rbuf};
1045
1046 my $json = $self->{json} ||= JSON->new->utf8;
1047
1048 sub {
1049 my $ref = $json->incr_parse ($self->{rbuf});
1050
1051 if ($ref) {
1052 $self->{rbuf} = $json->incr_text;
1053 $json->incr_text = "";
1054 $cb->($self, $ref);
1055
1056 1
1057 } else {
1058 $self->{rbuf} = "";
1059 ()
1060 }
1061 }
1062 };
1063
1064 =back
1065
1066 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1067
1068 This function (not method) lets you add your own types to C<push_read>.
1069
1070 Whenever the given C<type> is used, C<push_read> will invoke the code
1071 reference with the handle object, the callback and the remaining
1072 arguments.
1073
1074 The code reference is supposed to return a callback (usually a closure)
1075 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1076
1077 It should invoke the passed callback when it is done reading (remember to
1078 pass C<$handle> as first argument as all other callbacks do that).
1079
1080 Note that this is a function, and all types registered this way will be
1081 global, so try to use unique names.
1082
1083 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1084 search for C<register_read_type>)).
1085
1086 =item $handle->stop_read
1087
1088 =item $handle->start_read
1089
1090 In rare cases you actually do not want to read anything from the
1091 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1092 any queued callbacks will be executed then. To start reading again, call
1093 C<start_read>.
1094
1095 Note that AnyEvent::Handle will automatically C<start_read> for you when
1096 you change the C<on_read> callback or push/unshift a read callback, and it
1097 will automatically C<stop_read> for you when neither C<on_read> is set nor
1098 there are any read requests in the queue.
1099
1100 =cut
1101
1102 sub stop_read {
1103 my ($self) = @_;
1104
1105 delete $self->{_rw};
1106 }
1107
1108 sub start_read {
1109 my ($self) = @_;
1110
1111 unless ($self->{_rw} || $self->{_eof}) {
1112 Scalar::Util::weaken $self;
1113
1114 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1115 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1116 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1117
1118 if ($len > 0) {
1119 $self->{_activity} = AnyEvent->now;
1120
1121 $self->{filter_r}
1122 ? $self->{filter_r}($self, $rbuf)
1123 : $self->{_in_drain} || $self->_drain_rbuf;
1124
1125 } elsif (defined $len) {
1126 delete $self->{_rw};
1127 $self->{_eof} = 1;
1128 $self->_drain_rbuf unless $self->{_in_drain};
1129
1130 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1131 return $self->_error ($!, 1);
1132 }
1133 });
1134 }
1135 }
1136
1137 sub _dotls {
1138 my ($self) = @_;
1139
1140 my $buf;
1141
1142 if (length $self->{_tls_wbuf}) {
1143 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1144 substr $self->{_tls_wbuf}, 0, $len, "";
1145 }
1146 }
1147
1148 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1149 $self->{wbuf} .= $buf;
1150 $self->_drain_wbuf;
1151 }
1152
1153 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1154 if (length $buf) {
1155 $self->{rbuf} .= $buf;
1156 $self->_drain_rbuf unless $self->{_in_drain};
1157 } else {
1158 # let's treat SSL-eof as we treat normal EOF
1159 $self->{_eof} = 1;
1160 $self->_shutdown;
1161 return;
1162 }
1163 }
1164
1165 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1166
1167 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1168 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1169 return $self->_error ($!, 1);
1170 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1171 return $self->_error (&Errno::EIO, 1);
1172 }
1173
1174 # all others are fine for our purposes
1175 }
1176 }
1177
1178 =item $handle->starttls ($tls[, $tls_ctx])
1179
1180 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1181 object is created, you can also do that at a later time by calling
1182 C<starttls>.
1183
1184 The first argument is the same as the C<tls> constructor argument (either
1185 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1186
1187 The second argument is the optional C<Net::SSLeay::CTX> object that is
1188 used when AnyEvent::Handle has to create its own TLS connection object.
1189
1190 The TLS connection object will end up in C<< $handle->{tls} >> after this
1191 call and can be used or changed to your liking. Note that the handshake
1192 might have already started when this function returns.
1193
1194 =cut
1195
1196 sub starttls {
1197 my ($self, $ssl, $ctx) = @_;
1198
1199 $self->stoptls;
1200
1201 if ($ssl eq "accept") {
1202 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1203 Net::SSLeay::set_accept_state ($ssl);
1204 } elsif ($ssl eq "connect") {
1205 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1206 Net::SSLeay::set_connect_state ($ssl);
1207 }
1208
1209 $self->{tls} = $ssl;
1210
1211 # basically, this is deep magic (because SSL_read should have the same issues)
1212 # but the openssl maintainers basically said: "trust us, it just works".
1213 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1214 # and mismaintained ssleay-module doesn't even offer them).
1215 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1216 Net::SSLeay::CTX_set_mode ($self->{tls},
1217 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1218 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1219
1220 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1221 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1222
1223 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1224
1225 $self->{filter_w} = sub {
1226 $_[0]{_tls_wbuf} .= ${$_[1]};
1227 &_dotls;
1228 };
1229 $self->{filter_r} = sub {
1230 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1231 &_dotls;
1232 };
1233 }
1234
1235 =item $handle->stoptls
1236
1237 Destroys the SSL connection, if any. Partial read or write data will be
1238 lost.
1239
1240 =cut
1241
1242 sub stoptls {
1243 my ($self) = @_;
1244
1245 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1246
1247 delete $self->{_rbio};
1248 delete $self->{_wbio};
1249 delete $self->{_tls_wbuf};
1250 delete $self->{filter_r};
1251 delete $self->{filter_w};
1252 }
1253
1254 sub DESTROY {
1255 my $self = shift;
1256
1257 $self->stoptls;
1258 }
1259
1260 =item AnyEvent::Handle::TLS_CTX
1261
1262 This function creates and returns the Net::SSLeay::CTX object used by
1263 default for TLS mode.
1264
1265 The context is created like this:
1266
1267 Net::SSLeay::load_error_strings;
1268 Net::SSLeay::SSLeay_add_ssl_algorithms;
1269 Net::SSLeay::randomize;
1270
1271 my $CTX = Net::SSLeay::CTX_new;
1272
1273 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1274
1275 =cut
1276
1277 our $TLS_CTX;
1278
1279 sub TLS_CTX() {
1280 $TLS_CTX || do {
1281 require Net::SSLeay;
1282
1283 Net::SSLeay::load_error_strings ();
1284 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1285 Net::SSLeay::randomize ();
1286
1287 $TLS_CTX = Net::SSLeay::CTX_new ();
1288
1289 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1290
1291 $TLS_CTX
1292 }
1293 }
1294
1295 =back
1296
1297 =head1 SUBCLASSING AnyEvent::Handle
1298
1299 In many cases, you might want to subclass AnyEvent::Handle.
1300
1301 To make this easier, a given version of AnyEvent::Handle uses these
1302 conventions:
1303
1304 =over 4
1305
1306 =item * all constructor arguments become object members.
1307
1308 At least initially, when you pass a C<tls>-argument to the constructor it
1309 will end up in C<< $handle->{tls} >>. Those members might be changes or
1310 mutated later on (for example C<tls> will hold the TLS connection object).
1311
1312 =item * other object member names are prefixed with an C<_>.
1313
1314 All object members not explicitly documented (internal use) are prefixed
1315 with an underscore character, so the remaining non-C<_>-namespace is free
1316 for use for subclasses.
1317
1318 =item * all members not documented here and not prefixed with an underscore
1319 are free to use in subclasses.
1320
1321 Of course, new versions of AnyEvent::Handle may introduce more "public"
1322 member variables, but thats just life, at least it is documented.
1323
1324 =back
1325
1326 =head1 AUTHOR
1327
1328 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1329
1330 =cut
1331
1332 1; # End of AnyEvent::Handle