ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.66
Committed: Fri Jun 6 15:32:54 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.65: +3 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = 4.15;
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called when an end-of-file condition is detcted,
81 i.e. in the case of a socket, when the other side has closed the
82 connection cleanly.
83
84 While not mandatory, it is highly recommended to set an eof callback,
85 otherwise you might end up with a closed socket while you are still
86 waiting for data.
87
88 =item on_error => $cb->($handle, $fatal)
89
90 This is the error callback, which is called when, well, some error
91 occured, such as not being able to resolve the hostname, failure to
92 connect or a read error.
93
94 Some errors are fatal (which is indicated by C<$fatal> being true). On
95 fatal errors the handle object will be shut down and will not be
96 usable. Non-fatal errors can be retried by simply returning, but it is
97 recommended to simply ignore this parameter and instead abondon the handle
98 object when this callback is invoked.
99
100 On callback entrance, the value of C<$!> contains the operating system
101 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103 While not mandatory, it is I<highly> recommended to set this callback, as
104 you will not be notified of errors otherwise. The default simply calls
105 C<croak>.
106
107 =item on_read => $cb->($handle)
108
109 This sets the default read callback, which is called when data arrives
110 and no read request is in the queue (unlike read queue callbacks, this
111 callback will only be called when at least one octet of data is in the
112 read buffer).
113
114 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 method or access the C<$handle->{rbuf}> member directly.
116
117 When an EOF condition is detected then AnyEvent::Handle will first try to
118 feed all the remaining data to the queued callbacks and C<on_read> before
119 calling the C<on_eof> callback. If no progress can be made, then a fatal
120 error will be raised (with C<$!> set to C<EPIPE>).
121
122 =item on_drain => $cb->($handle)
123
124 This sets the callback that is called when the write buffer becomes empty
125 (or when the callback is set and the buffer is empty already).
126
127 To append to the write buffer, use the C<< ->push_write >> method.
128
129 =item timeout => $fractional_seconds
130
131 If non-zero, then this enables an "inactivity" timeout: whenever this many
132 seconds pass without a successful read or write on the underlying file
133 handle, the C<on_timeout> callback will be invoked (and if that one is
134 missing, an C<ETIMEDOUT> error will be raised).
135
136 Note that timeout processing is also active when you currently do not have
137 any outstanding read or write requests: If you plan to keep the connection
138 idle then you should disable the timout temporarily or ignore the timeout
139 in the C<on_timeout> callback.
140
141 Zero (the default) disables this timeout.
142
143 =item on_timeout => $cb->($handle)
144
145 Called whenever the inactivity timeout passes. If you return from this
146 callback, then the timeout will be reset as if some activity had happened,
147 so this condition is not fatal in any way.
148
149 =item rbuf_max => <bytes>
150
151 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152 when the read buffer ever (strictly) exceeds this size. This is useful to
153 avoid denial-of-service attacks.
154
155 For example, a server accepting connections from untrusted sources should
156 be configured to accept only so-and-so much data that it cannot act on
157 (for example, when expecting a line, an attacker could send an unlimited
158 amount of data without a callback ever being called as long as the line
159 isn't finished).
160
161 =item read_size => <bytes>
162
163 The default read block size (the amount of bytes this module will try to read
164 during each (loop iteration). Default: C<8192>.
165
166 =item low_water_mark => <bytes>
167
168 Sets the amount of bytes (default: C<0>) that make up an "empty" write
169 buffer: If the write reaches this size or gets even samller it is
170 considered empty.
171
172 =item linger => <seconds>
173
174 If non-zero (default: C<3600>), then the destructor of the
175 AnyEvent::Handle object will check wether there is still outstanding write
176 data and will install a watcher that will write out this data. No errors
177 will be reported (this mostly matches how the operating system treats
178 outstanding data at socket close time).
179
180 This will not work for partial TLS data that could not yet been
181 encoded. This data will be lost.
182
183 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
184
185 When this parameter is given, it enables TLS (SSL) mode, that means it
186 will start making tls handshake and will transparently encrypt/decrypt
187 data.
188
189 TLS mode requires Net::SSLeay to be installed (it will be loaded
190 automatically when you try to create a TLS handle).
191
192 For the TLS server side, use C<accept>, and for the TLS client side of a
193 connection, use C<connect> mode.
194
195 You can also provide your own TLS connection object, but you have
196 to make sure that you call either C<Net::SSLeay::set_connect_state>
197 or C<Net::SSLeay::set_accept_state> on it before you pass it to
198 AnyEvent::Handle.
199
200 See the C<starttls> method if you need to start TLs negotiation later.
201
202 =item tls_ctx => $ssl_ctx
203
204 Use the given Net::SSLeay::CTX object to create the new TLS connection
205 (unless a connection object was specified directly). If this parameter is
206 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207
208 =item json => JSON or JSON::XS object
209
210 This is the json coder object used by the C<json> read and write types.
211
212 If you don't supply it, then AnyEvent::Handle will create and use a
213 suitable one, which will write and expect UTF-8 encoded JSON texts.
214
215 Note that you are responsible to depend on the JSON module if you want to
216 use this functionality, as AnyEvent does not have a dependency itself.
217
218 =item filter_r => $cb
219
220 =item filter_w => $cb
221
222 These exist, but are undocumented at this time.
223
224 =back
225
226 =cut
227
228 sub new {
229 my $class = shift;
230
231 my $self = bless { @_ }, $class;
232
233 $self->{fh} or Carp::croak "mandatory argument fh is missing";
234
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236
237 if ($self->{tls}) {
238 require Net::SSLeay;
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240 }
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246
247 $self->start_read
248 if $self->{on_read} || @{ $self->{_queue} };
249
250 $self
251 }
252
253 sub _shutdown {
254 my ($self) = @_;
255
256 delete $self->{_tw};
257 delete $self->{_rw};
258 delete $self->{_ww};
259 delete $self->{fh};
260
261 $self->stoptls;
262 }
263
264 sub _error {
265 my ($self, $errno, $fatal) = @_;
266
267 $self->_shutdown
268 if $fatal;
269
270 $! = $errno;
271
272 if ($self->{on_error}) {
273 $self->{on_error}($self, $fatal);
274 } else {
275 Carp::croak "AnyEvent::Handle uncaught error: $!";
276 }
277 }
278
279 =item $fh = $handle->fh
280
281 This method returns the file handle of the L<AnyEvent::Handle> object.
282
283 =cut
284
285 sub fh { $_[0]{fh} }
286
287 =item $handle->on_error ($cb)
288
289 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
290
291 =cut
292
293 sub on_error {
294 $_[0]{on_error} = $_[1];
295 }
296
297 =item $handle->on_eof ($cb)
298
299 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
300
301 =cut
302
303 sub on_eof {
304 $_[0]{on_eof} = $_[1];
305 }
306
307 =item $handle->on_timeout ($cb)
308
309 Replace the current C<on_timeout> callback, or disables the callback
310 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
311 argument.
312
313 =cut
314
315 sub on_timeout {
316 $_[0]{on_timeout} = $_[1];
317 }
318
319 #############################################################################
320
321 =item $handle->timeout ($seconds)
322
323 Configures (or disables) the inactivity timeout.
324
325 =cut
326
327 sub timeout {
328 my ($self, $timeout) = @_;
329
330 $self->{timeout} = $timeout;
331 $self->_timeout;
332 }
333
334 # reset the timeout watcher, as neccessary
335 # also check for time-outs
336 sub _timeout {
337 my ($self) = @_;
338
339 if ($self->{timeout}) {
340 my $NOW = AnyEvent->now;
341
342 # when would the timeout trigger?
343 my $after = $self->{_activity} + $self->{timeout} - $NOW;
344
345 # now or in the past already?
346 if ($after <= 0) {
347 $self->{_activity} = $NOW;
348
349 if ($self->{on_timeout}) {
350 $self->{on_timeout}($self);
351 } else {
352 $self->_error (&Errno::ETIMEDOUT);
353 }
354
355 # callback could have changed timeout value, optimise
356 return unless $self->{timeout};
357
358 # calculate new after
359 $after = $self->{timeout};
360 }
361
362 Scalar::Util::weaken $self;
363 return unless $self; # ->error could have destroyed $self
364
365 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
366 delete $self->{_tw};
367 $self->_timeout;
368 });
369 } else {
370 delete $self->{_tw};
371 }
372 }
373
374 #############################################################################
375
376 =back
377
378 =head2 WRITE QUEUE
379
380 AnyEvent::Handle manages two queues per handle, one for writing and one
381 for reading.
382
383 The write queue is very simple: you can add data to its end, and
384 AnyEvent::Handle will automatically try to get rid of it for you.
385
386 When data could be written and the write buffer is shorter then the low
387 water mark, the C<on_drain> callback will be invoked.
388
389 =over 4
390
391 =item $handle->on_drain ($cb)
392
393 Sets the C<on_drain> callback or clears it (see the description of
394 C<on_drain> in the constructor).
395
396 =cut
397
398 sub on_drain {
399 my ($self, $cb) = @_;
400
401 $self->{on_drain} = $cb;
402
403 $cb->($self)
404 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
405 }
406
407 =item $handle->push_write ($data)
408
409 Queues the given scalar to be written. You can push as much data as you
410 want (only limited by the available memory), as C<AnyEvent::Handle>
411 buffers it independently of the kernel.
412
413 =cut
414
415 sub _drain_wbuf {
416 my ($self) = @_;
417
418 if (!$self->{_ww} && length $self->{wbuf}) {
419
420 Scalar::Util::weaken $self;
421
422 my $cb = sub {
423 my $len = syswrite $self->{fh}, $self->{wbuf};
424
425 if ($len >= 0) {
426 substr $self->{wbuf}, 0, $len, "";
427
428 $self->{_activity} = AnyEvent->now;
429
430 $self->{on_drain}($self)
431 if $self->{low_water_mark} >= length $self->{wbuf}
432 && $self->{on_drain};
433
434 delete $self->{_ww} unless length $self->{wbuf};
435 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
436 $self->_error ($!, 1);
437 }
438 };
439
440 # try to write data immediately
441 $cb->();
442
443 # if still data left in wbuf, we need to poll
444 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
445 if length $self->{wbuf};
446 };
447 }
448
449 our %WH;
450
451 sub register_write_type($$) {
452 $WH{$_[0]} = $_[1];
453 }
454
455 sub push_write {
456 my $self = shift;
457
458 if (@_ > 1) {
459 my $type = shift;
460
461 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
462 ->($self, @_);
463 }
464
465 if ($self->{filter_w}) {
466 $self->{filter_w}($self, \$_[0]);
467 } else {
468 $self->{wbuf} .= $_[0];
469 $self->_drain_wbuf;
470 }
471 }
472
473 =item $handle->push_write (type => @args)
474
475 Instead of formatting your data yourself, you can also let this module do
476 the job by specifying a type and type-specific arguments.
477
478 Predefined types are (if you have ideas for additional types, feel free to
479 drop by and tell us):
480
481 =over 4
482
483 =item netstring => $string
484
485 Formats the given value as netstring
486 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
487
488 =cut
489
490 register_write_type netstring => sub {
491 my ($self, $string) = @_;
492
493 sprintf "%d:%s,", (length $string), $string
494 };
495
496 =item packstring => $format, $data
497
498 An octet string prefixed with an encoded length. The encoding C<$format>
499 uses the same format as a Perl C<pack> format, but must specify a single
500 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
501 optional C<!>, C<< < >> or C<< > >> modifier).
502
503 =cut
504
505 register_write_type packstring => sub {
506 my ($self, $format, $string) = @_;
507
508 pack "$format/a*", $string
509 };
510
511 =item json => $array_or_hashref
512
513 Encodes the given hash or array reference into a JSON object. Unless you
514 provide your own JSON object, this means it will be encoded to JSON text
515 in UTF-8.
516
517 JSON objects (and arrays) are self-delimiting, so you can write JSON at
518 one end of a handle and read them at the other end without using any
519 additional framing.
520
521 The generated JSON text is guaranteed not to contain any newlines: While
522 this module doesn't need delimiters after or between JSON texts to be
523 able to read them, many other languages depend on that.
524
525 A simple RPC protocol that interoperates easily with others is to send
526 JSON arrays (or objects, although arrays are usually the better choice as
527 they mimic how function argument passing works) and a newline after each
528 JSON text:
529
530 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
531 $handle->push_write ("\012");
532
533 An AnyEvent::Handle receiver would simply use the C<json> read type and
534 rely on the fact that the newline will be skipped as leading whitespace:
535
536 $handle->push_read (json => sub { my $array = $_[1]; ... });
537
538 Other languages could read single lines terminated by a newline and pass
539 this line into their JSON decoder of choice.
540
541 =cut
542
543 register_write_type json => sub {
544 my ($self, $ref) = @_;
545
546 require JSON;
547
548 $self->{json} ? $self->{json}->encode ($ref)
549 : JSON::encode_json ($ref)
550 };
551
552 =item storable => $reference
553
554 Freezes the given reference using L<Storable> and writes it to the
555 handle. Uses the C<nfreeze> format.
556
557 =cut
558
559 register_write_type storable => sub {
560 my ($self, $ref) = @_;
561
562 require Storable;
563
564 pack "w/a*", Storable::nfreeze ($ref)
565 };
566
567 =back
568
569 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
570
571 This function (not method) lets you add your own types to C<push_write>.
572 Whenever the given C<type> is used, C<push_write> will invoke the code
573 reference with the handle object and the remaining arguments.
574
575 The code reference is supposed to return a single octet string that will
576 be appended to the write buffer.
577
578 Note that this is a function, and all types registered this way will be
579 global, so try to use unique names.
580
581 =cut
582
583 #############################################################################
584
585 =back
586
587 =head2 READ QUEUE
588
589 AnyEvent::Handle manages two queues per handle, one for writing and one
590 for reading.
591
592 The read queue is more complex than the write queue. It can be used in two
593 ways, the "simple" way, using only C<on_read> and the "complex" way, using
594 a queue.
595
596 In the simple case, you just install an C<on_read> callback and whenever
597 new data arrives, it will be called. You can then remove some data (if
598 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
599 or not.
600
601 In the more complex case, you want to queue multiple callbacks. In this
602 case, AnyEvent::Handle will call the first queued callback each time new
603 data arrives (also the first time it is queued) and removes it when it has
604 done its job (see C<push_read>, below).
605
606 This way you can, for example, push three line-reads, followed by reading
607 a chunk of data, and AnyEvent::Handle will execute them in order.
608
609 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
610 the specified number of bytes which give an XML datagram.
611
612 # in the default state, expect some header bytes
613 $handle->on_read (sub {
614 # some data is here, now queue the length-header-read (4 octets)
615 shift->unshift_read (chunk => 4, sub {
616 # header arrived, decode
617 my $len = unpack "N", $_[1];
618
619 # now read the payload
620 shift->unshift_read (chunk => $len, sub {
621 my $xml = $_[1];
622 # handle xml
623 });
624 });
625 });
626
627 Example 2: Implement a client for a protocol that replies either with
628 "OK" and another line or "ERROR" for one request, and 64 bytes for the
629 second request. Due tot he availability of a full queue, we can just
630 pipeline sending both requests and manipulate the queue as necessary in
631 the callbacks:
632
633 # request one
634 $handle->push_write ("request 1\015\012");
635
636 # we expect "ERROR" or "OK" as response, so push a line read
637 $handle->push_read (line => sub {
638 # if we got an "OK", we have to _prepend_ another line,
639 # so it will be read before the second request reads its 64 bytes
640 # which are already in the queue when this callback is called
641 # we don't do this in case we got an error
642 if ($_[1] eq "OK") {
643 $_[0]->unshift_read (line => sub {
644 my $response = $_[1];
645 ...
646 });
647 }
648 });
649
650 # request two
651 $handle->push_write ("request 2\015\012");
652
653 # simply read 64 bytes, always
654 $handle->push_read (chunk => 64, sub {
655 my $response = $_[1];
656 ...
657 });
658
659 =over 4
660
661 =cut
662
663 sub _drain_rbuf {
664 my ($self) = @_;
665
666 local $self->{_in_drain} = 1;
667
668 if (
669 defined $self->{rbuf_max}
670 && $self->{rbuf_max} < length $self->{rbuf}
671 ) {
672 return $self->_error (&Errno::ENOSPC, 1);
673 }
674
675 while () {
676 no strict 'refs';
677
678 my $len = length $self->{rbuf};
679
680 if (my $cb = shift @{ $self->{_queue} }) {
681 unless ($cb->($self)) {
682 if ($self->{_eof}) {
683 # no progress can be made (not enough data and no data forthcoming)
684 $self->_error (&Errno::EPIPE, 1), last;
685 }
686
687 unshift @{ $self->{_queue} }, $cb;
688 last;
689 }
690 } elsif ($self->{on_read}) {
691 last unless $len;
692
693 $self->{on_read}($self);
694
695 if (
696 $len == length $self->{rbuf} # if no data has been consumed
697 && !@{ $self->{_queue} } # and the queue is still empty
698 && $self->{on_read} # but we still have on_read
699 ) {
700 # no further data will arrive
701 # so no progress can be made
702 $self->_error (&Errno::EPIPE, 1), last
703 if $self->{_eof};
704
705 last; # more data might arrive
706 }
707 } else {
708 # read side becomes idle
709 delete $self->{_rw};
710 last;
711 }
712 }
713
714 $self->{on_eof}($self)
715 if $self->{_eof} && $self->{on_eof};
716
717 # may need to restart read watcher
718 unless ($self->{_rw}) {
719 $self->start_read
720 if $self->{on_read} || @{ $self->{_queue} };
721 }
722 }
723
724 =item $handle->on_read ($cb)
725
726 This replaces the currently set C<on_read> callback, or clears it (when
727 the new callback is C<undef>). See the description of C<on_read> in the
728 constructor.
729
730 =cut
731
732 sub on_read {
733 my ($self, $cb) = @_;
734
735 $self->{on_read} = $cb;
736 $self->_drain_rbuf if $cb && !$self->{_in_drain};
737 }
738
739 =item $handle->rbuf
740
741 Returns the read buffer (as a modifiable lvalue).
742
743 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
744 you want.
745
746 NOTE: The read buffer should only be used or modified if the C<on_read>,
747 C<push_read> or C<unshift_read> methods are used. The other read methods
748 automatically manage the read buffer.
749
750 =cut
751
752 sub rbuf : lvalue {
753 $_[0]{rbuf}
754 }
755
756 =item $handle->push_read ($cb)
757
758 =item $handle->unshift_read ($cb)
759
760 Append the given callback to the end of the queue (C<push_read>) or
761 prepend it (C<unshift_read>).
762
763 The callback is called each time some additional read data arrives.
764
765 It must check whether enough data is in the read buffer already.
766
767 If not enough data is available, it must return the empty list or a false
768 value, in which case it will be called repeatedly until enough data is
769 available (or an error condition is detected).
770
771 If enough data was available, then the callback must remove all data it is
772 interested in (which can be none at all) and return a true value. After returning
773 true, it will be removed from the queue.
774
775 =cut
776
777 our %RH;
778
779 sub register_read_type($$) {
780 $RH{$_[0]} = $_[1];
781 }
782
783 sub push_read {
784 my $self = shift;
785 my $cb = pop;
786
787 if (@_) {
788 my $type = shift;
789
790 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
791 ->($self, $cb, @_);
792 }
793
794 push @{ $self->{_queue} }, $cb;
795 $self->_drain_rbuf unless $self->{_in_drain};
796 }
797
798 sub unshift_read {
799 my $self = shift;
800 my $cb = pop;
801
802 if (@_) {
803 my $type = shift;
804
805 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
806 ->($self, $cb, @_);
807 }
808
809
810 unshift @{ $self->{_queue} }, $cb;
811 $self->_drain_rbuf unless $self->{_in_drain};
812 }
813
814 =item $handle->push_read (type => @args, $cb)
815
816 =item $handle->unshift_read (type => @args, $cb)
817
818 Instead of providing a callback that parses the data itself you can chose
819 between a number of predefined parsing formats, for chunks of data, lines
820 etc.
821
822 Predefined types are (if you have ideas for additional types, feel free to
823 drop by and tell us):
824
825 =over 4
826
827 =item chunk => $octets, $cb->($handle, $data)
828
829 Invoke the callback only once C<$octets> bytes have been read. Pass the
830 data read to the callback. The callback will never be called with less
831 data.
832
833 Example: read 2 bytes.
834
835 $handle->push_read (chunk => 2, sub {
836 warn "yay ", unpack "H*", $_[1];
837 });
838
839 =cut
840
841 register_read_type chunk => sub {
842 my ($self, $cb, $len) = @_;
843
844 sub {
845 $len <= length $_[0]{rbuf} or return;
846 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
847 1
848 }
849 };
850
851 # compatibility with older API
852 sub push_read_chunk {
853 $_[0]->push_read (chunk => $_[1], $_[2]);
854 }
855
856 sub unshift_read_chunk {
857 $_[0]->unshift_read (chunk => $_[1], $_[2]);
858 }
859
860 =item line => [$eol, ]$cb->($handle, $line, $eol)
861
862 The callback will be called only once a full line (including the end of
863 line marker, C<$eol>) has been read. This line (excluding the end of line
864 marker) will be passed to the callback as second argument (C<$line>), and
865 the end of line marker as the third argument (C<$eol>).
866
867 The end of line marker, C<$eol>, can be either a string, in which case it
868 will be interpreted as a fixed record end marker, or it can be a regex
869 object (e.g. created by C<qr>), in which case it is interpreted as a
870 regular expression.
871
872 The end of line marker argument C<$eol> is optional, if it is missing (NOT
873 undef), then C<qr|\015?\012|> is used (which is good for most internet
874 protocols).
875
876 Partial lines at the end of the stream will never be returned, as they are
877 not marked by the end of line marker.
878
879 =cut
880
881 register_read_type line => sub {
882 my ($self, $cb, $eol) = @_;
883
884 $eol = qr|(\015?\012)| if @_ < 3;
885 $eol = quotemeta $eol unless ref $eol;
886 $eol = qr|^(.*?)($eol)|s;
887
888 sub {
889 $_[0]{rbuf} =~ s/$eol// or return;
890
891 $cb->($_[0], $1, $2);
892 1
893 }
894 };
895
896 # compatibility with older API
897 sub push_read_line {
898 my $self = shift;
899 $self->push_read (line => @_);
900 }
901
902 sub unshift_read_line {
903 my $self = shift;
904 $self->unshift_read (line => @_);
905 }
906
907 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
908
909 Makes a regex match against the regex object C<$accept> and returns
910 everything up to and including the match.
911
912 Example: read a single line terminated by '\n'.
913
914 $handle->push_read (regex => qr<\n>, sub { ... });
915
916 If C<$reject> is given and not undef, then it determines when the data is
917 to be rejected: it is matched against the data when the C<$accept> regex
918 does not match and generates an C<EBADMSG> error when it matches. This is
919 useful to quickly reject wrong data (to avoid waiting for a timeout or a
920 receive buffer overflow).
921
922 Example: expect a single decimal number followed by whitespace, reject
923 anything else (not the use of an anchor).
924
925 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
926
927 If C<$skip> is given and not C<undef>, then it will be matched against
928 the receive buffer when neither C<$accept> nor C<$reject> match,
929 and everything preceding and including the match will be accepted
930 unconditionally. This is useful to skip large amounts of data that you
931 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
932 have to start matching from the beginning. This is purely an optimisation
933 and is usually worth only when you expect more than a few kilobytes.
934
935 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
936 expect the header to be very large (it isn't in practise, but...), we use
937 a skip regex to skip initial portions. The skip regex is tricky in that
938 it only accepts something not ending in either \015 or \012, as these are
939 required for the accept regex.
940
941 $handle->push_read (regex =>
942 qr<\015\012\015\012>,
943 undef, # no reject
944 qr<^.*[^\015\012]>,
945 sub { ... });
946
947 =cut
948
949 register_read_type regex => sub {
950 my ($self, $cb, $accept, $reject, $skip) = @_;
951
952 my $data;
953 my $rbuf = \$self->{rbuf};
954
955 sub {
956 # accept
957 if ($$rbuf =~ $accept) {
958 $data .= substr $$rbuf, 0, $+[0], "";
959 $cb->($self, $data);
960 return 1;
961 }
962
963 # reject
964 if ($reject && $$rbuf =~ $reject) {
965 $self->_error (&Errno::EBADMSG);
966 }
967
968 # skip
969 if ($skip && $$rbuf =~ $skip) {
970 $data .= substr $$rbuf, 0, $+[0], "";
971 }
972
973 ()
974 }
975 };
976
977 =item netstring => $cb->($handle, $string)
978
979 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
980
981 Throws an error with C<$!> set to EBADMSG on format violations.
982
983 =cut
984
985 register_read_type netstring => sub {
986 my ($self, $cb) = @_;
987
988 sub {
989 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
990 if ($_[0]{rbuf} =~ /[^0-9]/) {
991 $self->_error (&Errno::EBADMSG);
992 }
993 return;
994 }
995
996 my $len = $1;
997
998 $self->unshift_read (chunk => $len, sub {
999 my $string = $_[1];
1000 $_[0]->unshift_read (chunk => 1, sub {
1001 if ($_[1] eq ",") {
1002 $cb->($_[0], $string);
1003 } else {
1004 $self->_error (&Errno::EBADMSG);
1005 }
1006 });
1007 });
1008
1009 1
1010 }
1011 };
1012
1013 =item packstring => $format, $cb->($handle, $string)
1014
1015 An octet string prefixed with an encoded length. The encoding C<$format>
1016 uses the same format as a Perl C<pack> format, but must specify a single
1017 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1018 optional C<!>, C<< < >> or C<< > >> modifier).
1019
1020 DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1021
1022 Example: read a block of data prefixed by its length in BER-encoded
1023 format (very efficient).
1024
1025 $handle->push_read (packstring => "w", sub {
1026 my ($handle, $data) = @_;
1027 });
1028
1029 =cut
1030
1031 register_read_type packstring => sub {
1032 my ($self, $cb, $format) = @_;
1033
1034 sub {
1035 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1036 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1037 or return;
1038
1039 # remove prefix
1040 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1041
1042 # read rest
1043 $_[0]->unshift_read (chunk => $len, $cb);
1044
1045 1
1046 }
1047 };
1048
1049 =item json => $cb->($handle, $hash_or_arrayref)
1050
1051 Reads a JSON object or array, decodes it and passes it to the callback.
1052
1053 If a C<json> object was passed to the constructor, then that will be used
1054 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1055
1056 This read type uses the incremental parser available with JSON version
1057 2.09 (and JSON::XS version 2.2) and above. You have to provide a
1058 dependency on your own: this module will load the JSON module, but
1059 AnyEvent does not depend on it itself.
1060
1061 Since JSON texts are fully self-delimiting, the C<json> read and write
1062 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1063 the C<json> write type description, above, for an actual example.
1064
1065 =cut
1066
1067 register_read_type json => sub {
1068 my ($self, $cb) = @_;
1069
1070 require JSON;
1071
1072 my $data;
1073 my $rbuf = \$self->{rbuf};
1074
1075 my $json = $self->{json} ||= JSON->new->utf8;
1076
1077 sub {
1078 my $ref = $json->incr_parse ($self->{rbuf});
1079
1080 if ($ref) {
1081 $self->{rbuf} = $json->incr_text;
1082 $json->incr_text = "";
1083 $cb->($self, $ref);
1084
1085 1
1086 } else {
1087 $self->{rbuf} = "";
1088 ()
1089 }
1090 }
1091 };
1092
1093 =item storable => $cb->($handle, $ref)
1094
1095 Deserialises a L<Storable> frozen representation as written by the
1096 C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1097 data).
1098
1099 Raises C<EBADMSG> error if the data could not be decoded.
1100
1101 =cut
1102
1103 register_read_type storable => sub {
1104 my ($self, $cb) = @_;
1105
1106 require Storable;
1107
1108 sub {
1109 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1111 or return;
1112
1113 # remove prefix
1114 substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1115
1116 # read rest
1117 $_[0]->unshift_read (chunk => $len, sub {
1118 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1119 $cb->($_[0], $ref);
1120 } else {
1121 $self->_error (&Errno::EBADMSG);
1122 }
1123 });
1124 }
1125 };
1126
1127 =back
1128
1129 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1130
1131 This function (not method) lets you add your own types to C<push_read>.
1132
1133 Whenever the given C<type> is used, C<push_read> will invoke the code
1134 reference with the handle object, the callback and the remaining
1135 arguments.
1136
1137 The code reference is supposed to return a callback (usually a closure)
1138 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1139
1140 It should invoke the passed callback when it is done reading (remember to
1141 pass C<$handle> as first argument as all other callbacks do that).
1142
1143 Note that this is a function, and all types registered this way will be
1144 global, so try to use unique names.
1145
1146 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1147 search for C<register_read_type>)).
1148
1149 =item $handle->stop_read
1150
1151 =item $handle->start_read
1152
1153 In rare cases you actually do not want to read anything from the
1154 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1155 any queued callbacks will be executed then. To start reading again, call
1156 C<start_read>.
1157
1158 Note that AnyEvent::Handle will automatically C<start_read> for you when
1159 you change the C<on_read> callback or push/unshift a read callback, and it
1160 will automatically C<stop_read> for you when neither C<on_read> is set nor
1161 there are any read requests in the queue.
1162
1163 =cut
1164
1165 sub stop_read {
1166 my ($self) = @_;
1167
1168 delete $self->{_rw};
1169 }
1170
1171 sub start_read {
1172 my ($self) = @_;
1173
1174 unless ($self->{_rw} || $self->{_eof}) {
1175 Scalar::Util::weaken $self;
1176
1177 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1178 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1179 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1180
1181 if ($len > 0) {
1182 $self->{_activity} = AnyEvent->now;
1183
1184 $self->{filter_r}
1185 ? $self->{filter_r}($self, $rbuf)
1186 : $self->{_in_drain} || $self->_drain_rbuf;
1187
1188 } elsif (defined $len) {
1189 delete $self->{_rw};
1190 $self->{_eof} = 1;
1191 $self->_drain_rbuf unless $self->{_in_drain};
1192
1193 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1194 return $self->_error ($!, 1);
1195 }
1196 });
1197 }
1198 }
1199
1200 sub _dotls {
1201 my ($self) = @_;
1202
1203 my $buf;
1204
1205 if (length $self->{_tls_wbuf}) {
1206 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1207 substr $self->{_tls_wbuf}, 0, $len, "";
1208 }
1209 }
1210
1211 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1212 $self->{wbuf} .= $buf;
1213 $self->_drain_wbuf;
1214 }
1215
1216 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1217 if (length $buf) {
1218 $self->{rbuf} .= $buf;
1219 $self->_drain_rbuf unless $self->{_in_drain};
1220 } else {
1221 # let's treat SSL-eof as we treat normal EOF
1222 $self->{_eof} = 1;
1223 $self->_shutdown;
1224 return;
1225 }
1226 }
1227
1228 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1229
1230 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1231 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1232 return $self->_error ($!, 1);
1233 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1234 return $self->_error (&Errno::EIO, 1);
1235 }
1236
1237 # all others are fine for our purposes
1238 }
1239 }
1240
1241 =item $handle->starttls ($tls[, $tls_ctx])
1242
1243 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1244 object is created, you can also do that at a later time by calling
1245 C<starttls>.
1246
1247 The first argument is the same as the C<tls> constructor argument (either
1248 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1249
1250 The second argument is the optional C<Net::SSLeay::CTX> object that is
1251 used when AnyEvent::Handle has to create its own TLS connection object.
1252
1253 The TLS connection object will end up in C<< $handle->{tls} >> after this
1254 call and can be used or changed to your liking. Note that the handshake
1255 might have already started when this function returns.
1256
1257 =cut
1258
1259 sub starttls {
1260 my ($self, $ssl, $ctx) = @_;
1261
1262 $self->stoptls;
1263
1264 if ($ssl eq "accept") {
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1266 Net::SSLeay::set_accept_state ($ssl);
1267 } elsif ($ssl eq "connect") {
1268 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1269 Net::SSLeay::set_connect_state ($ssl);
1270 }
1271
1272 $self->{tls} = $ssl;
1273
1274 # basically, this is deep magic (because SSL_read should have the same issues)
1275 # but the openssl maintainers basically said: "trust us, it just works".
1276 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1277 # and mismaintained ssleay-module doesn't even offer them).
1278 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1279 Net::SSLeay::CTX_set_mode ($self->{tls},
1280 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1281 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1282
1283 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1284 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1285
1286 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1287
1288 $self->{filter_w} = sub {
1289 $_[0]{_tls_wbuf} .= ${$_[1]};
1290 &_dotls;
1291 };
1292 $self->{filter_r} = sub {
1293 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1294 &_dotls;
1295 };
1296 }
1297
1298 =item $handle->stoptls
1299
1300 Destroys the SSL connection, if any. Partial read or write data will be
1301 lost.
1302
1303 =cut
1304
1305 sub stoptls {
1306 my ($self) = @_;
1307
1308 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1309
1310 delete $self->{_rbio};
1311 delete $self->{_wbio};
1312 delete $self->{_tls_wbuf};
1313 delete $self->{filter_r};
1314 delete $self->{filter_w};
1315 }
1316
1317 sub DESTROY {
1318 my $self = shift;
1319
1320 $self->stoptls;
1321
1322 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1323
1324 if ($linger && length $self->{wbuf}) {
1325 my $fh = delete $self->{fh};
1326 my $wbuf = delete $self->{wbuf};
1327
1328 my @linger;
1329
1330 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1331 my $len = syswrite $fh, $wbuf, length $wbuf;
1332
1333 if ($len > 0) {
1334 substr $wbuf, 0, $len, "";
1335 } else {
1336 @linger = (); # end
1337 }
1338 });
1339 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1340 @linger = ();
1341 });
1342 }
1343 }
1344
1345 =item AnyEvent::Handle::TLS_CTX
1346
1347 This function creates and returns the Net::SSLeay::CTX object used by
1348 default for TLS mode.
1349
1350 The context is created like this:
1351
1352 Net::SSLeay::load_error_strings;
1353 Net::SSLeay::SSLeay_add_ssl_algorithms;
1354 Net::SSLeay::randomize;
1355
1356 my $CTX = Net::SSLeay::CTX_new;
1357
1358 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1359
1360 =cut
1361
1362 our $TLS_CTX;
1363
1364 sub TLS_CTX() {
1365 $TLS_CTX || do {
1366 require Net::SSLeay;
1367
1368 Net::SSLeay::load_error_strings ();
1369 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1370 Net::SSLeay::randomize ();
1371
1372 $TLS_CTX = Net::SSLeay::CTX_new ();
1373
1374 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1375
1376 $TLS_CTX
1377 }
1378 }
1379
1380 =back
1381
1382 =head1 SUBCLASSING AnyEvent::Handle
1383
1384 In many cases, you might want to subclass AnyEvent::Handle.
1385
1386 To make this easier, a given version of AnyEvent::Handle uses these
1387 conventions:
1388
1389 =over 4
1390
1391 =item * all constructor arguments become object members.
1392
1393 At least initially, when you pass a C<tls>-argument to the constructor it
1394 will end up in C<< $handle->{tls} >>. Those members might be changes or
1395 mutated later on (for example C<tls> will hold the TLS connection object).
1396
1397 =item * other object member names are prefixed with an C<_>.
1398
1399 All object members not explicitly documented (internal use) are prefixed
1400 with an underscore character, so the remaining non-C<_>-namespace is free
1401 for use for subclasses.
1402
1403 =item * all members not documented here and not prefixed with an underscore
1404 are free to use in subclasses.
1405
1406 Of course, new versions of AnyEvent::Handle may introduce more "public"
1407 member variables, but thats just life, at least it is documented.
1408
1409 =back
1410
1411 =head1 AUTHOR
1412
1413 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1414
1415 =cut
1416
1417 1; # End of AnyEvent::Handle