ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.112 by root, Wed Jan 21 06:01:35 2009 UTC vs.
Revision 1.192 by root, Fri Mar 12 23:22:14 2010 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.331;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
15 my ($hdl, $fatal, $msg) = @_;
16 warn "got error $msg\n";
17 $hdl->destroy;
32 $cv->send; 18 $cv->send;
33 },
34 ); 19 };
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
64=head1 METHODS 80=head1 METHODS
65 81
66=over 4 82=over 4
67 83
68=item B<new (%args)> 84=item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
69 85
70The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
71 87
72=over 4 88=over 4
73 89
74=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 91
76The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 93NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 95that mode.
81 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
114=item on_prepare => $cb->($handle)
115
116This (rarely used) callback is called before a new connection is
117attempted, but after the file handle has been created. It could be used to
118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
121
122The return value of this callback should be the connect timeout value in
123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124timeout is to be used).
125
126=item on_connect => $cb->($handle, $host, $port, $retry->())
127
128This callback is called when a connection has been successfully established.
129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next connection target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). At the time it is called the read and write queues, eof
137status, tls status and similar properties of the handle will have been
138reset.
139
140In most cases, ignoring the C<$retry> parameter is the way to go.
141
142=item on_connect_error => $cb->($handle, $message)
143
144This callback is called when the connection could not be
145established. C<$!> will contain the relevant error code, and C<$message> a
146message describing it (usually the same as C<"$!">).
147
148If this callback isn't specified, then C<on_error> will be called with a
149fatal error instead.
150
151=back
152
153=item on_error => $cb->($handle, $fatal, $message)
154
155This is the error callback, which is called when, well, some error
156occured, such as not being able to resolve the hostname, failure to
157connect or a read error.
158
159Some errors are fatal (which is indicated by C<$fatal> being true). On
160fatal errors the handle object will be destroyed (by a call to C<< ->
161destroy >>) after invoking the error callback (which means you are free to
162examine the handle object). Examples of fatal errors are an EOF condition
163with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164cases where the other side can close the connection at their will it is
165often easiest to not report C<EPIPE> errors in this callback.
166
167AnyEvent::Handle tries to find an appropriate error code for you to check
168against, but in some cases (TLS errors), this does not work well. It is
169recommended to always output the C<$message> argument in human-readable
170error messages (it's usually the same as C<"$!">).
171
172Non-fatal errors can be retried by simply returning, but it is recommended
173to simply ignore this parameter and instead abondon the handle object
174when this callback is invoked. Examples of non-fatal errors are timeouts
175C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176
177On callback entrance, the value of C<$!> contains the operating system
178error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179C<EPROTO>).
180
181While not mandatory, it is I<highly> recommended to set this callback, as
182you will not be notified of errors otherwise. The default simply calls
183C<croak>.
184
185=item on_read => $cb->($handle)
186
187This sets the default read callback, which is called when data arrives
188and no read request is in the queue (unlike read queue callbacks, this
189callback will only be called when at least one octet of data is in the
190read buffer).
191
192To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193method or access the C<< $handle->{rbuf} >> member directly. Note that you
194must not enlarge or modify the read buffer, you can only remove data at
195the beginning from it.
196
197When an EOF condition is detected then AnyEvent::Handle will first try to
198feed all the remaining data to the queued callbacks and C<on_read> before
199calling the C<on_eof> callback. If no progress can be made, then a fatal
200error will be raised (with C<$!> set to C<EPIPE>).
201
202Note that, unlike requests in the read queue, an C<on_read> callback
203doesn't mean you I<require> some data: if there is an EOF and there
204are outstanding read requests then an error will be flagged. With an
205C<on_read> callback, the C<on_eof> callback will be invoked.
206
82=item on_eof => $cb->($handle) 207=item on_eof => $cb->($handle)
83 208
84Set the callback to be called when an end-of-file condition is detected, 209Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 210i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 211connection cleanly, and there are no outstanding read requests in the
212queue (if there are read requests, then an EOF counts as an unexpected
213connection close and will be flagged as an error).
87 214
88For sockets, this just means that the other side has stopped sending data, 215For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 216you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 217callback and continue writing data, as only the read part has been shut
91down. 218down.
92 219
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 220If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 221set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138 222
139=item on_drain => $cb->($handle) 223=item on_drain => $cb->($handle)
140 224
141This sets the callback that is called when the write buffer becomes empty 225This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 226(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 233memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 234the file when the write queue becomes empty.
151 235
152=item timeout => $fractional_seconds 236=item timeout => $fractional_seconds
153 237
238=item rtimeout => $fractional_seconds
239
240=item wtimeout => $fractional_seconds
241
154If non-zero, then this enables an "inactivity" timeout: whenever this many 242If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 243many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 244file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, a non-fatal C<ETIMEDOUT> error will be raised). 245will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246error will be raised).
247
248There are three variants of the timeouts that work fully independent
249of each other, for both read and write, just read, and just write:
250C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 253
159Note that timeout processing is also active when you currently do not have 254Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 255any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 256idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 257in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
206accomplishd by setting this option to a true value. 301accomplishd by setting this option to a true value.
207 302
208The default is your opertaing system's default behaviour (most likely 303The default is your opertaing system's default behaviour (most likely
209enabled), this option explicitly enables or disables it, if possible. 304enabled), this option explicitly enables or disables it, if possible.
210 305
306=item keepalive => <boolean>
307
308Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309normally, TCP connections have no time-out once established, so TCP
310connections, once established, can stay alive forever even when the other
311side has long gone. TCP keepalives are a cheap way to take down long-lived
312TCP connections whent he other side becomes unreachable. While the default
313is OS-dependent, TCP keepalives usually kick in after around two hours,
314and, if the other side doesn't reply, take down the TCP connection some 10
315to 15 minutes later.
316
317It is harmless to specify this option for file handles that do not support
318keepalives, and enabling it on connections that are potentially long-lived
319is usually a good idea.
320
321=item oobinline => <boolean>
322
323BSD majorly fucked up the implementation of TCP urgent data. The result
324is that almost no OS implements TCP according to the specs, and every OS
325implements it slightly differently.
326
327If you want to handle TCP urgent data, then setting this flag (the default
328is enabled) gives you the most portable way of getting urgent data, by
329putting it into the stream.
330
331Since BSD emulation of OOB data on top of TCP's urgent data can have
332security implications, AnyEvent::Handle sets this flag automatically
333unless explicitly specified. Note that setting this flag after
334establishing a connection I<may> be a bit too late (data loss could
335already have occured on BSD systems), but at least it will protect you
336from most attacks.
337
211=item read_size => <bytes> 338=item read_size => <bytes>
212 339
213The default read block size (the amount of bytes this module will 340The default read block size (the amount of bytes this module will
214try to read during each loop iteration, which affects memory 341try to read during each loop iteration, which affects memory
215requirements). Default: C<8192>. 342requirements). Default: C<8192>.
235 362
236This will not work for partial TLS data that could not be encoded 363This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 364yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 365help.
239 366
367=item peername => $string
368
369A string used to identify the remote site - usually the DNS hostname
370(I<not> IDN!) used to create the connection, rarely the IP address.
371
372Apart from being useful in error messages, this string is also used in TLS
373peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374verification will be skipped when C<peername> is not specified or
375C<undef>.
376
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 377=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 378
242When this parameter is given, it enables TLS (SSL) mode, that means 379When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 380AnyEvent will start a TLS handshake as soon as the connection has been
244established and will transparently encrypt/decrypt data afterwards. 381established and will transparently encrypt/decrypt data afterwards.
382
383All TLS protocol errors will be signalled as C<EPROTO>, with an
384appropriate error message.
245 385
246TLS mode requires Net::SSLeay to be installed (it will be loaded 386TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 387automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 388have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 389to add the dependency yourself.
253mode. 393mode.
254 394
255You can also provide your own TLS connection object, but you have 395You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 396to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 397or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 398AnyEvent::Handle. Also, this module will take ownership of this connection
399object.
400
401At some future point, AnyEvent::Handle might switch to another TLS
402implementation, then the option to use your own session object will go
403away.
259 404
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 405B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 406passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 407happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 408segmentation fault.
264 409
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 410See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 411
267=item tls_ctx => $ssl_ctx 412=item tls_ctx => $anyevent_tls
268 413
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 414Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 415(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 416missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417
418Instead of an object, you can also specify a hash reference with C<< key
419=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420new TLS context object.
421
422=item on_starttls => $cb->($handle, $success[, $error_message])
423
424This callback will be invoked when the TLS/SSL handshake has finished. If
425C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426(C<on_stoptls> will not be called in this case).
427
428The session in C<< $handle->{tls} >> can still be examined in this
429callback, even when the handshake was not successful.
430
431TLS handshake failures will not cause C<on_error> to be invoked when this
432callback is in effect, instead, the error message will be passed to C<on_starttls>.
433
434Without this callback, handshake failures lead to C<on_error> being
435called, as normal.
436
437Note that you cannot call C<starttls> right again in this callback. If you
438need to do that, start an zero-second timer instead whose callback can
439then call C<< ->starttls >> again.
440
441=item on_stoptls => $cb->($handle)
442
443When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444set, then it will be invoked after freeing the TLS session. If it is not,
445then a TLS shutdown condition will be treated like a normal EOF condition
446on the handle.
447
448The session in C<< $handle->{tls} >> can still be examined in this
449callback.
450
451This callback will only be called on TLS shutdowns, not when the
452underlying handle signals EOF.
272 453
273=item json => JSON or JSON::XS object 454=item json => JSON or JSON::XS object
274 455
275This is the json coder object used by the C<json> read and write types. 456This is the json coder object used by the C<json> read and write types.
276 457
285 466
286=cut 467=cut
287 468
288sub new { 469sub new {
289 my $class = shift; 470 my $class = shift;
290
291 my $self = bless { @_ }, $class; 471 my $self = bless { @_ }, $class;
292 472
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 473 if ($self->{fh}) {
474 $self->_start;
475 return unless $self->{fh}; # could be gone by now
476
477 } elsif ($self->{connect}) {
478 require AnyEvent::Socket;
479
480 $self->{peername} = $self->{connect}[0]
481 unless exists $self->{peername};
482
483 $self->{_skip_drain_rbuf} = 1;
484
485 {
486 Scalar::Util::weaken (my $self = $self);
487
488 $self->{_connect} =
489 AnyEvent::Socket::tcp_connect (
490 $self->{connect}[0],
491 $self->{connect}[1],
492 sub {
493 my ($fh, $host, $port, $retry) = @_;
494
495 if ($fh) {
496 $self->{fh} = $fh;
497
498 delete $self->{_skip_drain_rbuf};
499 $self->_start;
500
501 $self->{on_connect}
502 and $self->{on_connect}($self, $host, $port, sub {
503 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 $self->{_skip_drain_rbuf} = 1;
505 &$retry;
506 });
507
508 } else {
509 if ($self->{on_connect_error}) {
510 $self->{on_connect_error}($self, "$!");
511 $self->destroy;
512 } else {
513 $self->_error ($!, 1);
514 }
515 }
516 },
517 sub {
518 local $self->{fh} = $_[0];
519
520 $self->{on_prepare}
521 ? $self->{on_prepare}->($self)
522 : ()
523 }
524 );
525 }
526
527 } else {
528 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529 }
530
531 $self
532}
533
534sub _start {
535 my ($self) = @_;
294 536
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 537 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
296 538
539 $self->{_activity} =
540 $self->{_ractivity} =
541 $self->{_wactivity} = AE::now;
542
543 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546
547 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549
550 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 552 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 553 if $self->{tls};
299 554
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 555 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 556
306 $self->start_read 557 $self->start_read
307 if $self->{on_read}; 558 if $self->{on_read} || @{ $self->{_queue} };
308 559
309 $self 560 $self->_drain_wbuf;
310}
311
312sub _shutdown {
313 my ($self) = @_;
314
315 delete $self->{_tw};
316 delete $self->{_rw};
317 delete $self->{_ww};
318 delete $self->{fh};
319
320 &_freetls;
321
322 delete $self->{on_read};
323 delete $self->{_queue};
324} 561}
325 562
326sub _error { 563sub _error {
327 my ($self, $errno, $fatal) = @_; 564 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 565
332 $! = $errno; 566 $! = $errno;
567 $message ||= "$!";
333 568
334 if ($self->{on_error}) { 569 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 570 $self->{on_error}($self, $fatal, $message);
336 } elsif ($self->{fh}) { 571 $self->destroy if $fatal;
572 } elsif ($self->{fh} || $self->{connect}) {
573 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 574 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 575 }
339} 576}
340 577
341=item $fh = $handle->fh 578=item $fh = $handle->fh
342 579
366 $_[0]{on_eof} = $_[1]; 603 $_[0]{on_eof} = $_[1];
367} 604}
368 605
369=item $handle->on_timeout ($cb) 606=item $handle->on_timeout ($cb)
370 607
371Replace the current C<on_timeout> callback, or disables the callback (but 608=item $handle->on_rtimeout ($cb)
372not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
373argument and method.
374 609
375=cut 610=item $handle->on_wtimeout ($cb)
376 611
377sub on_timeout { 612Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
378 $_[0]{on_timeout} = $_[1]; 613callback, or disables the callback (but not the timeout) if C<$cb> =
379} 614C<undef>. See the C<timeout> constructor argument and method.
615
616=cut
617
618# see below
380 619
381=item $handle->autocork ($boolean) 620=item $handle->autocork ($boolean)
382 621
383Enables or disables the current autocork behaviour (see C<autocork> 622Enables or disables the current autocork behaviour (see C<autocork>
384constructor argument). Changes will only take effect on the next write. 623constructor argument). Changes will only take effect on the next write.
399sub no_delay { 638sub no_delay {
400 $_[0]{no_delay} = $_[1]; 639 $_[0]{no_delay} = $_[1];
401 640
402 eval { 641 eval {
403 local $SIG{__DIE__}; 642 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 643 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644 if $_[0]{fh};
405 }; 645 };
406} 646}
407 647
648=item $handle->keepalive ($boolean)
649
650Enables or disables the C<keepalive> setting (see constructor argument of
651the same name for details).
652
653=cut
654
655sub keepalive {
656 $_[0]{keepalive} = $_[1];
657
658 eval {
659 local $SIG{__DIE__};
660 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661 if $_[0]{fh};
662 };
663}
664
665=item $handle->oobinline ($boolean)
666
667Enables or disables the C<oobinline> setting (see constructor argument of
668the same name for details).
669
670=cut
671
672sub oobinline {
673 $_[0]{oobinline} = $_[1];
674
675 eval {
676 local $SIG{__DIE__};
677 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678 if $_[0]{fh};
679 };
680}
681
682=item $handle->keepalive ($boolean)
683
684Enables or disables the C<keepalive> setting (see constructor argument of
685the same name for details).
686
687=cut
688
689sub keepalive {
690 $_[0]{keepalive} = $_[1];
691
692 eval {
693 local $SIG{__DIE__};
694 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 if $_[0]{fh};
696 };
697}
698
699=item $handle->on_starttls ($cb)
700
701Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702
703=cut
704
705sub on_starttls {
706 $_[0]{on_starttls} = $_[1];
707}
708
709=item $handle->on_stoptls ($cb)
710
711Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712
713=cut
714
715sub on_stoptls {
716 $_[0]{on_stoptls} = $_[1];
717}
718
719=item $handle->rbuf_max ($max_octets)
720
721Configures the C<rbuf_max> setting (C<undef> disables it).
722
723=cut
724
725sub rbuf_max {
726 $_[0]{rbuf_max} = $_[1];
727}
728
408############################################################################# 729#############################################################################
409 730
410=item $handle->timeout ($seconds) 731=item $handle->timeout ($seconds)
411 732
733=item $handle->rtimeout ($seconds)
734
735=item $handle->wtimeout ($seconds)
736
412Configures (or disables) the inactivity timeout. 737Configures (or disables) the inactivity timeout.
413 738
414=cut 739=item $handle->timeout_reset
415 740
416sub timeout { 741=item $handle->rtimeout_reset
742
743=item $handle->wtimeout_reset
744
745Reset the activity timeout, as if data was received or sent.
746
747These methods are cheap to call.
748
749=cut
750
751for my $dir ("", "r", "w") {
752 my $timeout = "${dir}timeout";
753 my $tw = "_${dir}tw";
754 my $on_timeout = "on_${dir}timeout";
755 my $activity = "_${dir}activity";
756 my $cb;
757
758 *$on_timeout = sub {
759 $_[0]{$on_timeout} = $_[1];
760 };
761
762 *$timeout = sub {
417 my ($self, $timeout) = @_; 763 my ($self, $new_value) = @_;
418 764
419 $self->{timeout} = $timeout; 765 $self->{$timeout} = $new_value;
420 $self->_timeout; 766 delete $self->{$tw}; &$cb;
421} 767 };
422 768
769 *{"${dir}timeout_reset"} = sub {
770 $_[0]{$activity} = AE::now;
771 };
772
773 # main workhorse:
423# reset the timeout watcher, as neccessary 774 # reset the timeout watcher, as neccessary
424# also check for time-outs 775 # also check for time-outs
425sub _timeout { 776 $cb = sub {
426 my ($self) = @_; 777 my ($self) = @_;
427 778
428 if ($self->{timeout}) { 779 if ($self->{$timeout} && $self->{fh}) {
429 my $NOW = AnyEvent->now; 780 my $NOW = AE::now;
430 781
431 # when would the timeout trigger? 782 # when would the timeout trigger?
432 my $after = $self->{_activity} + $self->{timeout} - $NOW; 783 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
433 784
434 # now or in the past already? 785 # now or in the past already?
435 if ($after <= 0) { 786 if ($after <= 0) {
436 $self->{_activity} = $NOW; 787 $self->{$activity} = $NOW;
437 788
438 if ($self->{on_timeout}) { 789 if ($self->{$on_timeout}) {
439 $self->{on_timeout}($self); 790 $self->{$on_timeout}($self);
440 } else { 791 } else {
441 $self->_error (&Errno::ETIMEDOUT); 792 $self->_error (Errno::ETIMEDOUT);
793 }
794
795 # callback could have changed timeout value, optimise
796 return unless $self->{$timeout};
797
798 # calculate new after
799 $after = $self->{$timeout};
442 } 800 }
443 801
444 # callback could have changed timeout value, optimise 802 Scalar::Util::weaken $self;
445 return unless $self->{timeout}; 803 return unless $self; # ->error could have destroyed $self
446 804
447 # calculate new after 805 $self->{$tw} ||= AE::timer $after, 0, sub {
448 $after = $self->{timeout}; 806 delete $self->{$tw};
807 $cb->($self);
808 };
809 } else {
810 delete $self->{$tw};
449 } 811 }
450
451 Scalar::Util::weaken $self;
452 return unless $self; # ->error could have destroyed $self
453
454 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
455 delete $self->{_tw};
456 $self->_timeout;
457 });
458 } else {
459 delete $self->{_tw};
460 } 812 }
461} 813}
462 814
463############################################################################# 815#############################################################################
464 816
509 Scalar::Util::weaken $self; 861 Scalar::Util::weaken $self;
510 862
511 my $cb = sub { 863 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 864 my $len = syswrite $self->{fh}, $self->{wbuf};
513 865
514 if ($len >= 0) { 866 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 867 substr $self->{wbuf}, 0, $len, "";
516 868
517 $self->{_activity} = AnyEvent->now; 869 $self->{_activity} = $self->{_wactivity} = AE::now;
518 870
519 $self->{on_drain}($self) 871 $self->{on_drain}($self)
520 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 872 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
521 && $self->{on_drain}; 873 && $self->{on_drain};
522 874
528 880
529 # try to write data immediately 881 # try to write data immediately
530 $cb->() unless $self->{autocork}; 882 $cb->() unless $self->{autocork};
531 883
532 # if still data left in wbuf, we need to poll 884 # if still data left in wbuf, we need to poll
533 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 885 $self->{_ww} = AE::io $self->{fh}, 1, $cb
534 if length $self->{wbuf}; 886 if length $self->{wbuf};
535 }; 887 };
536} 888}
537 889
538our %WH; 890our %WH;
539 891
892# deprecated
540sub register_write_type($$) { 893sub register_write_type($$) {
541 $WH{$_[0]} = $_[1]; 894 $WH{$_[0]} = $_[1];
542} 895}
543 896
544sub push_write { 897sub push_write {
545 my $self = shift; 898 my $self = shift;
546 899
547 if (@_ > 1) { 900 if (@_ > 1) {
548 my $type = shift; 901 my $type = shift;
549 902
903 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
550 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 904 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
551 ->($self, @_); 905 ->($self, @_);
552 } 906 }
553 907
908 # we downgrade here to avoid hard-to-track-down bugs,
909 # and diagnose the problem earlier and better.
910
554 if ($self->{tls}) { 911 if ($self->{tls}) {
555 $self->{_tls_wbuf} .= $_[0]; 912 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
556 913 &_dotls ($self) if $self->{fh};
557 &_dotls ($self);
558 } else { 914 } else {
559 $self->{wbuf} .= $_[0]; 915 utf8::downgrade $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 916 $self->_drain_wbuf if $self->{fh};
561 } 917 }
562} 918}
563 919
564=item $handle->push_write (type => @args) 920=item $handle->push_write (type => @args)
565 921
566Instead of formatting your data yourself, you can also let this module do 922Instead of formatting your data yourself, you can also let this module
567the job by specifying a type and type-specific arguments. 923do the job by specifying a type and type-specific arguments. You
924can also specify the (fully qualified) name of a package, in which
925case AnyEvent tries to load the package and then expects to find the
926C<anyevent_read_type> function inside (see "custom write types", below).
568 927
569Predefined types are (if you have ideas for additional types, feel free to 928Predefined types are (if you have ideas for additional types, feel free to
570drop by and tell us): 929drop by and tell us):
571 930
572=over 4 931=over 4
629Other languages could read single lines terminated by a newline and pass 988Other languages could read single lines terminated by a newline and pass
630this line into their JSON decoder of choice. 989this line into their JSON decoder of choice.
631 990
632=cut 991=cut
633 992
993sub json_coder() {
994 eval { require JSON::XS; JSON::XS->new->utf8 }
995 || do { require JSON; JSON->new->utf8 }
996}
997
634register_write_type json => sub { 998register_write_type json => sub {
635 my ($self, $ref) = @_; 999 my ($self, $ref) = @_;
636 1000
637 require JSON; 1001 my $json = $self->{json} ||= json_coder;
638 1002
639 $self->{json} ? $self->{json}->encode ($ref) 1003 $json->encode ($ref)
640 : JSON::encode_json ($ref)
641}; 1004};
642 1005
643=item storable => $reference 1006=item storable => $reference
644 1007
645Freezes the given reference using L<Storable> and writes it to the 1008Freezes the given reference using L<Storable> and writes it to the
655 pack "w/a*", Storable::nfreeze ($ref) 1018 pack "w/a*", Storable::nfreeze ($ref)
656}; 1019};
657 1020
658=back 1021=back
659 1022
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1023=item $handle->push_shutdown
661 1024
662This function (not method) lets you add your own types to C<push_write>. 1025Sometimes you know you want to close the socket after writing your data
1026before it was actually written. One way to do that is to replace your
1027C<on_drain> handler by a callback that shuts down the socket (and set
1028C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1029replaces the C<on_drain> callback with:
1030
1031 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1032
1033This simply shuts down the write side and signals an EOF condition to the
1034the peer.
1035
1036You can rely on the normal read queue and C<on_eof> handling
1037afterwards. This is the cleanest way to close a connection.
1038
1039=cut
1040
1041sub push_shutdown {
1042 my ($self) = @_;
1043
1044 delete $self->{low_water_mark};
1045 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1046}
1047
1048=item custom write types - Package::anyevent_write_type $handle, @args
1049
1050Instead of one of the predefined types, you can also specify the name of
1051a package. AnyEvent will try to load the package and then expects to find
1052a function named C<anyevent_write_type> inside. If it isn't found, it
1053progressively tries to load the parent package until it either finds the
1054function (good) or runs out of packages (bad).
1055
663Whenever the given C<type> is used, C<push_write> will invoke the code 1056Whenever the given C<type> is used, C<push_write> will the function with
664reference with the handle object and the remaining arguments. 1057the handle object and the remaining arguments.
665 1058
666The code reference is supposed to return a single octet string that will 1059The function is supposed to return a single octet string that will be
667be appended to the write buffer. 1060appended to the write buffer, so you cna mentally treat this function as a
1061"arguments to on-the-wire-format" converter.
668 1062
669Note that this is a function, and all types registered this way will be 1063Example: implement a custom write type C<join> that joins the remaining
670global, so try to use unique names. 1064arguments using the first one.
1065
1066 $handle->push_write (My::Type => " ", 1,2,3);
1067
1068 # uses the following package, which can be defined in the "My::Type" or in
1069 # the "My" modules to be auto-loaded, or just about anywhere when the
1070 # My::Type::anyevent_write_type is defined before invoking it.
1071
1072 package My::Type;
1073
1074 sub anyevent_write_type {
1075 my ($handle, $delim, @args) = @_;
1076
1077 join $delim, @args
1078 }
671 1079
672=cut 1080=cut
673 1081
674############################################################################# 1082#############################################################################
675 1083
757=cut 1165=cut
758 1166
759sub _drain_rbuf { 1167sub _drain_rbuf {
760 my ($self) = @_; 1168 my ($self) = @_;
761 1169
1170 # avoid recursion
1171 return if $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 1172 local $self->{_skip_drain_rbuf} = 1;
763
764 if (
765 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf}
767 ) {
768 $self->_error (&Errno::ENOSPC, 1), return;
769 }
770 1173
771 while () { 1174 while () {
1175 # we need to use a separate tls read buffer, as we must not receive data while
1176 # we are draining the buffer, and this can only happen with TLS.
1177 $self->{rbuf} .= delete $self->{_tls_rbuf}
1178 if exists $self->{_tls_rbuf};
1179
772 my $len = length $self->{rbuf}; 1180 my $len = length $self->{rbuf};
773 1181
774 if (my $cb = shift @{ $self->{_queue} }) { 1182 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1183 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1184 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1185 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1186 $self->_error (Errno::EPIPE, 1), return
779 } 1187 if $self->{_eof};
780 1188
781 unshift @{ $self->{_queue} }, $cb; 1189 unshift @{ $self->{_queue} }, $cb;
782 last; 1190 last;
783 } 1191 }
784 } elsif ($self->{on_read}) { 1192 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1199 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1200 && $self->{on_read} # but we still have on_read
793 ) { 1201 ) {
794 # no further data will arrive 1202 # no further data will arrive
795 # so no progress can be made 1203 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1204 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1205 if $self->{_eof};
798 1206
799 last; # more data might arrive 1207 last; # more data might arrive
800 } 1208 }
801 } else { 1209 } else {
804 last; 1212 last;
805 } 1213 }
806 } 1214 }
807 1215
808 if ($self->{_eof}) { 1216 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1217 $self->{on_eof}
810 $self->{on_eof}($self) 1218 ? $self->{on_eof}($self)
811 } else { 1219 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1220
813 } 1221 return;
1222 }
1223
1224 if (
1225 defined $self->{rbuf_max}
1226 && $self->{rbuf_max} < length $self->{rbuf}
1227 ) {
1228 $self->_error (Errno::ENOSPC, 1), return;
814 } 1229 }
815 1230
816 # may need to restart read watcher 1231 # may need to restart read watcher
817 unless ($self->{_rw}) { 1232 unless ($self->{_rw}) {
818 $self->start_read 1233 $self->start_read
830 1245
831sub on_read { 1246sub on_read {
832 my ($self, $cb) = @_; 1247 my ($self, $cb) = @_;
833 1248
834 $self->{on_read} = $cb; 1249 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1250 $self->_drain_rbuf if $cb;
836} 1251}
837 1252
838=item $handle->rbuf 1253=item $handle->rbuf
839 1254
840Returns the read buffer (as a modifiable lvalue). 1255Returns the read buffer (as a modifiable lvalue).
841 1256
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1257You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 1258member, if you want. However, the only operation allowed on the
1259read buffer (apart from looking at it) is removing data from its
1260beginning. Otherwise modifying or appending to it is not allowed and will
1261lead to hard-to-track-down bugs.
844 1262
845NOTE: The read buffer should only be used or modified if the C<on_read>, 1263NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 1264C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 1265automatically manage the read buffer.
848 1266
884 my $cb = pop; 1302 my $cb = pop;
885 1303
886 if (@_) { 1304 if (@_) {
887 my $type = shift; 1305 my $type = shift;
888 1306
1307 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1308 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_); 1309 ->($self, $cb, @_);
891 } 1310 }
892 1311
893 push @{ $self->{_queue} }, $cb; 1312 push @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1313 $self->_drain_rbuf;
895} 1314}
896 1315
897sub unshift_read { 1316sub unshift_read {
898 my $self = shift; 1317 my $self = shift;
899 my $cb = pop; 1318 my $cb = pop;
903 1322
904 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1323 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905 ->($self, $cb, @_); 1324 ->($self, $cb, @_);
906 } 1325 }
907 1326
908
909 unshift @{ $self->{_queue} }, $cb; 1327 unshift @{ $self->{_queue} }, $cb;
910 $self->_drain_rbuf unless $self->{_in_drain}; 1328 $self->_drain_rbuf;
911} 1329}
912 1330
913=item $handle->push_read (type => @args, $cb) 1331=item $handle->push_read (type => @args, $cb)
914 1332
915=item $handle->unshift_read (type => @args, $cb) 1333=item $handle->unshift_read (type => @args, $cb)
916 1334
917Instead of providing a callback that parses the data itself you can chose 1335Instead of providing a callback that parses the data itself you can chose
918between a number of predefined parsing formats, for chunks of data, lines 1336between a number of predefined parsing formats, for chunks of data, lines
919etc. 1337etc. You can also specify the (fully qualified) name of a package, in
1338which case AnyEvent tries to load the package and then expects to find the
1339C<anyevent_read_type> function inside (see "custom read types", below).
920 1340
921Predefined types are (if you have ideas for additional types, feel free to 1341Predefined types are (if you have ideas for additional types, feel free to
922drop by and tell us): 1342drop by and tell us):
923 1343
924=over 4 1344=over 4
1048 return 1; 1468 return 1;
1049 } 1469 }
1050 1470
1051 # reject 1471 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1472 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1473 $self->_error (Errno::EBADMSG);
1054 } 1474 }
1055 1475
1056 # skip 1476 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1477 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1478 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1494 my ($self, $cb) = @_;
1075 1495
1076 sub { 1496 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1497 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1498 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1499 $self->_error (Errno::EBADMSG);
1080 } 1500 }
1081 return; 1501 return;
1082 } 1502 }
1083 1503
1084 my $len = $1; 1504 my $len = $1;
1087 my $string = $_[1]; 1507 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1508 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1509 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1510 $cb->($_[0], $string);
1091 } else { 1511 } else {
1092 $self->_error (&Errno::EBADMSG); 1512 $self->_error (Errno::EBADMSG);
1093 } 1513 }
1094 }); 1514 });
1095 }); 1515 });
1096 1516
1097 1 1517 1
1164=cut 1584=cut
1165 1585
1166register_read_type json => sub { 1586register_read_type json => sub {
1167 my ($self, $cb) = @_; 1587 my ($self, $cb) = @_;
1168 1588
1169 require JSON; 1589 my $json = $self->{json} ||= json_coder;
1170 1590
1171 my $data; 1591 my $data;
1172 my $rbuf = \$self->{rbuf}; 1592 my $rbuf = \$self->{rbuf};
1173 1593
1174 my $json = $self->{json} ||= JSON->new->utf8;
1175
1176 sub { 1594 sub {
1177 eval {
1178 my $ref = $json->incr_parse ($self->{rbuf}); 1595 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1179 1596
1180 if ($ref) { 1597 if ($ref) {
1181 $self->{rbuf} = $json->incr_text; 1598 $self->{rbuf} = $json->incr_text;
1182 $json->incr_text = ""; 1599 $json->incr_text = "";
1183 $cb->($self, $ref); 1600 $cb->($self, $ref);
1184
1185 1
1186 } else {
1187 $self->{rbuf} = "";
1188 ()
1189 }
1190 1601
1191 1 1602 1
1192 } or do { 1603 } elsif ($@) {
1193 # error case 1604 # error case
1194 $json->incr_skip; 1605 $json->incr_skip;
1195 1606
1196 $self->{rbuf} = $json->incr_text; 1607 $self->{rbuf} = $json->incr_text;
1197 $json->incr_text = ""; 1608 $json->incr_text = "";
1198 1609
1199 $self->_error (&Errno::EBADMSG); 1610 $self->_error (Errno::EBADMSG);
1611
1612 ()
1613 } else {
1614 $self->{rbuf} = "";
1615
1616 ()
1200 }; 1617 }
1201 } 1618 }
1202}; 1619};
1203 1620
1204=item storable => $cb->($handle, $ref) 1621=item storable => $cb->($handle, $ref)
1205 1622
1235 # read remaining chunk 1652 # read remaining chunk
1236 $_[0]->unshift_read (chunk => $len, sub { 1653 $_[0]->unshift_read (chunk => $len, sub {
1237 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1654 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1238 $cb->($_[0], $ref); 1655 $cb->($_[0], $ref);
1239 } else { 1656 } else {
1240 $self->_error (&Errno::EBADMSG); 1657 $self->_error (Errno::EBADMSG);
1241 } 1658 }
1242 }); 1659 });
1243 } 1660 }
1244 1661
1245 1 1662 1
1246 } 1663 }
1247}; 1664};
1248 1665
1249=back 1666=back
1250 1667
1251=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1668=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1252 1669
1253This function (not method) lets you add your own types to C<push_read>. 1670Instead of one of the predefined types, you can also specify the name
1671of a package. AnyEvent will try to load the package and then expects to
1672find a function named C<anyevent_read_type> inside. If it isn't found, it
1673progressively tries to load the parent package until it either finds the
1674function (good) or runs out of packages (bad).
1254 1675
1255Whenever the given C<type> is used, C<push_read> will invoke the code 1676Whenever this type is used, C<push_read> will invoke the function with the
1256reference with the handle object, the callback and the remaining 1677handle object, the original callback and the remaining arguments.
1257arguments.
1258 1678
1259The code reference is supposed to return a callback (usually a closure) 1679The function is supposed to return a callback (usually a closure) that
1260that works as a plain read callback (see C<< ->push_read ($cb) >>). 1680works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1681mentally treat the function as a "configurable read type to read callback"
1682converter.
1261 1683
1262It should invoke the passed callback when it is done reading (remember to 1684It should invoke the original callback when it is done reading (remember
1263pass C<$handle> as first argument as all other callbacks do that). 1685to pass C<$handle> as first argument as all other callbacks do that,
1686although there is no strict requirement on this).
1264 1687
1265Note that this is a function, and all types registered this way will be
1266global, so try to use unique names.
1267
1268For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1688For examples, see the source of this module (F<perldoc -m
1269search for C<register_read_type>)). 1689AnyEvent::Handle>, search for C<register_read_type>)).
1270 1690
1271=item $handle->stop_read 1691=item $handle->stop_read
1272 1692
1273=item $handle->start_read 1693=item $handle->start_read
1274 1694
1294} 1714}
1295 1715
1296sub start_read { 1716sub start_read {
1297 my ($self) = @_; 1717 my ($self) = @_;
1298 1718
1299 unless ($self->{_rw} || $self->{_eof}) { 1719 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1300 Scalar::Util::weaken $self; 1720 Scalar::Util::weaken $self;
1301 1721
1302 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1722 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1303 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1723 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1304 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1724 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1305 1725
1306 if ($len > 0) { 1726 if ($len > 0) {
1307 $self->{_activity} = AnyEvent->now; 1727 $self->{_activity} = $self->{_ractivity} = AE::now;
1308 1728
1309 if ($self->{tls}) { 1729 if ($self->{tls}) {
1310 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1730 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1311 1731
1312 &_dotls ($self); 1732 &_dotls ($self);
1313 } else { 1733 } else {
1314 $self->_drain_rbuf unless $self->{_in_drain}; 1734 $self->_drain_rbuf;
1315 } 1735 }
1316 1736
1317 } elsif (defined $len) { 1737 } elsif (defined $len) {
1318 delete $self->{_rw}; 1738 delete $self->{_rw};
1319 $self->{_eof} = 1; 1739 $self->{_eof} = 1;
1320 $self->_drain_rbuf unless $self->{_in_drain}; 1740 $self->_drain_rbuf;
1321 1741
1322 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1742 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1323 return $self->_error ($!, 1); 1743 return $self->_error ($!, 1);
1324 } 1744 }
1325 }); 1745 };
1746 }
1747}
1748
1749our $ERROR_SYSCALL;
1750our $ERROR_WANT_READ;
1751
1752sub _tls_error {
1753 my ($self, $err) = @_;
1754
1755 return $self->_error ($!, 1)
1756 if $err == Net::SSLeay::ERROR_SYSCALL ();
1757
1758 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1759
1760 # reduce error string to look less scary
1761 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1762
1763 if ($self->{_on_starttls}) {
1764 (delete $self->{_on_starttls})->($self, undef, $err);
1765 &_freetls;
1766 } else {
1767 &_freetls;
1768 $self->_error (Errno::EPROTO, 1, $err);
1326 } 1769 }
1327} 1770}
1328 1771
1329# poll the write BIO and send the data if applicable 1772# poll the write BIO and send the data if applicable
1773# also decode read data if possible
1774# this is basiclaly our TLS state machine
1775# more efficient implementations are possible with openssl,
1776# but not with the buggy and incomplete Net::SSLeay.
1330sub _dotls { 1777sub _dotls {
1331 my ($self) = @_; 1778 my ($self) = @_;
1332 1779
1333 my $tmp; 1780 my $tmp;
1334 1781
1335 if (length $self->{_tls_wbuf}) { 1782 if (length $self->{_tls_wbuf}) {
1336 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1783 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1337 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1784 substr $self->{_tls_wbuf}, 0, $tmp, "";
1338 } 1785 }
1786
1787 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1788 return $self->_tls_error ($tmp)
1789 if $tmp != $ERROR_WANT_READ
1790 && ($tmp != $ERROR_SYSCALL || $!);
1339 } 1791 }
1340 1792
1341 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1793 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1342 unless (length $tmp) { 1794 unless (length $tmp) {
1343 # let's treat SSL-eof as we treat normal EOF 1795 $self->{_on_starttls}
1344 delete $self->{_rw}; 1796 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1345 $self->{_eof} = 1;
1346 &_freetls; 1797 &_freetls;
1798
1799 if ($self->{on_stoptls}) {
1800 $self->{on_stoptls}($self);
1801 return;
1802 } else {
1803 # let's treat SSL-eof as we treat normal EOF
1804 delete $self->{_rw};
1805 $self->{_eof} = 1;
1806 }
1347 } 1807 }
1348 1808
1349 $self->{rbuf} .= $tmp; 1809 $self->{_tls_rbuf} .= $tmp;
1350 $self->_drain_rbuf unless $self->{_in_drain}; 1810 $self->_drain_rbuf;
1351 $self->{tls} or return; # tls session might have gone away in callback 1811 $self->{tls} or return; # tls session might have gone away in callback
1352 } 1812 }
1353 1813
1354 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1814 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1355
1356 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1357 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1358 return $self->_error ($!, 1); 1815 return $self->_tls_error ($tmp)
1359 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1816 if $tmp != $ERROR_WANT_READ
1360 return $self->_error (&Errno::EIO, 1); 1817 && ($tmp != $ERROR_SYSCALL || $!);
1361 }
1362
1363 # all other errors are fine for our purposes
1364 }
1365 1818
1366 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1819 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1367 $self->{wbuf} .= $tmp; 1820 $self->{wbuf} .= $tmp;
1368 $self->_drain_wbuf; 1821 $self->_drain_wbuf;
1822 $self->{tls} or return; # tls session might have gone away in callback
1369 } 1823 }
1824
1825 $self->{_on_starttls}
1826 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1827 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1370} 1828}
1371 1829
1372=item $handle->starttls ($tls[, $tls_ctx]) 1830=item $handle->starttls ($tls[, $tls_ctx])
1373 1831
1374Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1832Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1375object is created, you can also do that at a later time by calling 1833object is created, you can also do that at a later time by calling
1376C<starttls>. 1834C<starttls>.
1377 1835
1836Starting TLS is currently an asynchronous operation - when you push some
1837write data and then call C<< ->starttls >> then TLS negotiation will start
1838immediately, after which the queued write data is then sent.
1839
1378The first argument is the same as the C<tls> constructor argument (either 1840The first argument is the same as the C<tls> constructor argument (either
1379C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1841C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1380 1842
1381The second argument is the optional C<Net::SSLeay::CTX> object that is 1843The second argument is the optional C<AnyEvent::TLS> object that is used
1382used when AnyEvent::Handle has to create its own TLS connection object. 1844when AnyEvent::Handle has to create its own TLS connection object, or
1845a hash reference with C<< key => value >> pairs that will be used to
1846construct a new context.
1383 1847
1384The TLS connection object will end up in C<< $handle->{tls} >> after this 1848The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1385call and can be used or changed to your liking. Note that the handshake 1849context in C<< $handle->{tls_ctx} >> after this call and can be used or
1386might have already started when this function returns. 1850changed to your liking. Note that the handshake might have already started
1851when this function returns.
1387 1852
1388If it an error to start a TLS handshake more than once per 1853Due to bugs in OpenSSL, it might or might not be possible to do multiple
1389AnyEvent::Handle object (this is due to bugs in OpenSSL). 1854handshakes on the same stream. Best do not attempt to use the stream after
1855stopping TLS.
1390 1856
1391=cut 1857=cut
1858
1859our %TLS_CACHE; #TODO not yet documented, should we?
1392 1860
1393sub starttls { 1861sub starttls {
1394 my ($self, $ssl, $ctx) = @_; 1862 my ($self, $tls, $ctx) = @_;
1863
1864 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1865 if $self->{tls};
1866
1867 $self->{tls} = $tls;
1868 $self->{tls_ctx} = $ctx if @_ > 2;
1869
1870 return unless $self->{fh};
1395 1871
1396 require Net::SSLeay; 1872 require Net::SSLeay;
1397 1873
1398 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1874 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1399 if $self->{tls}; 1875 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1876
1877 $tls = delete $self->{tls};
1878 $ctx = $self->{tls_ctx};
1879
1880 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1881
1882 if ("HASH" eq ref $ctx) {
1883 require AnyEvent::TLS;
1884
1885 if ($ctx->{cache}) {
1886 my $key = $ctx+0;
1887 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1888 } else {
1889 $ctx = new AnyEvent::TLS %$ctx;
1890 }
1891 }
1400 1892
1401 if ($ssl eq "accept") { 1893 $self->{tls_ctx} = $ctx || TLS_CTX ();
1402 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1894 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1403 Net::SSLeay::set_accept_state ($ssl);
1404 } elsif ($ssl eq "connect") {
1405 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1406 Net::SSLeay::set_connect_state ($ssl);
1407 }
1408
1409 $self->{tls} = $ssl;
1410 1895
1411 # basically, this is deep magic (because SSL_read should have the same issues) 1896 # basically, this is deep magic (because SSL_read should have the same issues)
1412 # but the openssl maintainers basically said: "trust us, it just works". 1897 # but the openssl maintainers basically said: "trust us, it just works".
1413 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1898 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1414 # and mismaintained ssleay-module doesn't even offer them). 1899 # and mismaintained ssleay-module doesn't even offer them).
1418 # 1903 #
1419 # note that we do not try to keep the length constant between writes as we are required to do. 1904 # note that we do not try to keep the length constant between writes as we are required to do.
1420 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1905 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1421 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1906 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1422 # have identity issues in that area. 1907 # have identity issues in that area.
1423 Net::SSLeay::CTX_set_mode ($self->{tls}, 1908# Net::SSLeay::CTX_set_mode ($ssl,
1424 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1909# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1425 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1910# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1911 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1426 1912
1427 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1913 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1428 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1914 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1429 1915
1916 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1917
1430 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1918 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1919
1920 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1921 if $self->{on_starttls};
1431 1922
1432 &_dotls; # need to trigger the initial handshake 1923 &_dotls; # need to trigger the initial handshake
1433 $self->start_read; # make sure we actually do read 1924 $self->start_read; # make sure we actually do read
1434} 1925}
1435 1926
1436=item $handle->stoptls 1927=item $handle->stoptls
1437 1928
1438Shuts down the SSL connection - this makes a proper EOF handshake by 1929Shuts down the SSL connection - this makes a proper EOF handshake by
1439sending a close notify to the other side, but since OpenSSL doesn't 1930sending a close notify to the other side, but since OpenSSL doesn't
1440support non-blocking shut downs, it is not possible to re-use the stream 1931support non-blocking shut downs, it is not guaranteed that you can re-use
1441afterwards. 1932the stream afterwards.
1442 1933
1443=cut 1934=cut
1444 1935
1445sub stoptls { 1936sub stoptls {
1446 my ($self) = @_; 1937 my ($self) = @_;
1447 1938
1448 if ($self->{tls}) { 1939 if ($self->{tls} && $self->{fh}) {
1449 Net::SSLeay::shutdown ($self->{tls}); 1940 Net::SSLeay::shutdown ($self->{tls});
1450 1941
1451 &_dotls; 1942 &_dotls;
1452 1943
1453 # we don't give a shit. no, we do, but we can't. no... 1944# # we don't give a shit. no, we do, but we can't. no...#d#
1454 # we, we... have to use openssl :/ 1945# # we, we... have to use openssl :/#d#
1455 &_freetls; 1946# &_freetls;#d#
1456 } 1947 }
1457} 1948}
1458 1949
1459sub _freetls { 1950sub _freetls {
1460 my ($self) = @_; 1951 my ($self) = @_;
1461 1952
1462 return unless $self->{tls}; 1953 return unless $self->{tls};
1463 1954
1464 Net::SSLeay::free (delete $self->{tls}); 1955 $self->{tls_ctx}->_put_session (delete $self->{tls})
1956 if $self->{tls} > 0;
1465 1957
1466 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1958 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1467} 1959}
1468 1960
1469sub DESTROY { 1961sub DESTROY {
1470 my $self = shift; 1962 my ($self) = @_;
1471 1963
1472 &_freetls; 1964 &_freetls;
1473 1965
1474 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1966 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1475 1967
1476 if ($linger && length $self->{wbuf}) { 1968 if ($linger && length $self->{wbuf} && $self->{fh}) {
1477 my $fh = delete $self->{fh}; 1969 my $fh = delete $self->{fh};
1478 my $wbuf = delete $self->{wbuf}; 1970 my $wbuf = delete $self->{wbuf};
1479 1971
1480 my @linger; 1972 my @linger;
1481 1973
1482 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1974 push @linger, AE::io $fh, 1, sub {
1483 my $len = syswrite $fh, $wbuf, length $wbuf; 1975 my $len = syswrite $fh, $wbuf, length $wbuf;
1484 1976
1485 if ($len > 0) { 1977 if ($len > 0) {
1486 substr $wbuf, 0, $len, ""; 1978 substr $wbuf, 0, $len, "";
1487 } else { 1979 } else {
1488 @linger = (); # end 1980 @linger = (); # end
1489 } 1981 }
1490 }); 1982 };
1491 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1983 push @linger, AE::timer $linger, 0, sub {
1492 @linger = (); 1984 @linger = ();
1493 }); 1985 };
1494 } 1986 }
1495} 1987}
1496 1988
1497=item $handle->destroy 1989=item $handle->destroy
1498 1990
1499Shuts down the handle object as much as possible - this call ensures that 1991Shuts down the handle object as much as possible - this call ensures that
1500no further callbacks will be invoked and resources will be freed as much 1992no further callbacks will be invoked and as many resources as possible
1501as possible. You must not call any methods on the object afterwards. 1993will be freed. Any method you will call on the handle object after
1994destroying it in this way will be silently ignored (and it will return the
1995empty list).
1502 1996
1503Normally, you can just "forget" any references to an AnyEvent::Handle 1997Normally, you can just "forget" any references to an AnyEvent::Handle
1504object and it will simply shut down. This works in fatal error and EOF 1998object and it will simply shut down. This works in fatal error and EOF
1505callbacks, as well as code outside. It does I<NOT> work in a read or write 1999callbacks, as well as code outside. It does I<NOT> work in a read or write
1506callback, so when you want to destroy the AnyEvent::Handle object from 2000callback, so when you want to destroy the AnyEvent::Handle object from
1507within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 2001within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1508that case. 2002that case.
1509 2003
2004Destroying the handle object in this way has the advantage that callbacks
2005will be removed as well, so if those are the only reference holders (as
2006is common), then one doesn't need to do anything special to break any
2007reference cycles.
2008
1510The handle might still linger in the background and write out remaining 2009The handle might still linger in the background and write out remaining
1511data, as specified by the C<linger> option, however. 2010data, as specified by the C<linger> option, however.
1512 2011
1513=cut 2012=cut
1514 2013
1515sub destroy { 2014sub destroy {
1516 my ($self) = @_; 2015 my ($self) = @_;
1517 2016
1518 $self->DESTROY; 2017 $self->DESTROY;
1519 %$self = (); 2018 %$self = ();
2019 bless $self, "AnyEvent::Handle::destroyed";
1520} 2020}
2021
2022sub AnyEvent::Handle::destroyed::AUTOLOAD {
2023 #nop
2024}
2025
2026=item $handle->destroyed
2027
2028Returns false as long as the handle hasn't been destroyed by a call to C<<
2029->destroy >>, true otherwise.
2030
2031Can be useful to decide whether the handle is still valid after some
2032callback possibly destroyed the handle. For example, C<< ->push_write >>,
2033C<< ->starttls >> and other methods can call user callbacks, which in turn
2034can destroy the handle, so work can be avoided by checking sometimes:
2035
2036 $hdl->starttls ("accept");
2037 return if $hdl->destroyed;
2038 $hdl->push_write (...
2039
2040Note that the call to C<push_write> will silently be ignored if the handle
2041has been destroyed, so often you can just ignore the possibility of the
2042handle being destroyed.
2043
2044=cut
2045
2046sub destroyed { 0 }
2047sub AnyEvent::Handle::destroyed::destroyed { 1 }
1521 2048
1522=item AnyEvent::Handle::TLS_CTX 2049=item AnyEvent::Handle::TLS_CTX
1523 2050
1524This function creates and returns the Net::SSLeay::CTX object used by 2051This function creates and returns the AnyEvent::TLS object used by default
1525default for TLS mode. 2052for TLS mode.
1526 2053
1527The context is created like this: 2054The context is created by calling L<AnyEvent::TLS> without any arguments.
1528
1529 Net::SSLeay::load_error_strings;
1530 Net::SSLeay::SSLeay_add_ssl_algorithms;
1531 Net::SSLeay::randomize;
1532
1533 my $CTX = Net::SSLeay::CTX_new;
1534
1535 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1536 2055
1537=cut 2056=cut
1538 2057
1539our $TLS_CTX; 2058our $TLS_CTX;
1540 2059
1541sub TLS_CTX() { 2060sub TLS_CTX() {
1542 $TLS_CTX || do { 2061 $TLS_CTX ||= do {
1543 require Net::SSLeay; 2062 require AnyEvent::TLS;
1544 2063
1545 Net::SSLeay::load_error_strings (); 2064 new AnyEvent::TLS
1546 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1547 Net::SSLeay::randomize ();
1548
1549 $TLS_CTX = Net::SSLeay::CTX_new ();
1550
1551 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1552
1553 $TLS_CTX
1554 } 2065 }
1555} 2066}
1556 2067
1557=back 2068=back
1558 2069
1597 2108
1598 $handle->on_read (sub { }); 2109 $handle->on_read (sub { });
1599 $handle->on_eof (undef); 2110 $handle->on_eof (undef);
1600 $handle->on_error (sub { 2111 $handle->on_error (sub {
1601 my $data = delete $_[0]{rbuf}; 2112 my $data = delete $_[0]{rbuf};
1602 undef $handle;
1603 }); 2113 });
1604 2114
1605The reason to use C<on_error> is that TCP connections, due to latencies 2115The reason to use C<on_error> is that TCP connections, due to latencies
1606and packets loss, might get closed quite violently with an error, when in 2116and packets loss, might get closed quite violently with an error, when in
1607fact, all data has been received. 2117fact, all data has been received.
1623 $handle->on_drain (sub { 2133 $handle->on_drain (sub {
1624 warn "all data submitted to the kernel\n"; 2134 warn "all data submitted to the kernel\n";
1625 undef $handle; 2135 undef $handle;
1626 }); 2136 });
1627 2137
2138If you just want to queue some data and then signal EOF to the other side,
2139consider using C<< ->push_shutdown >> instead.
2140
2141=item I want to contact a TLS/SSL server, I don't care about security.
2142
2143If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2144simply connect to it and then create the AnyEvent::Handle with the C<tls>
2145parameter:
2146
2147 tcp_connect $host, $port, sub {
2148 my ($fh) = @_;
2149
2150 my $handle = new AnyEvent::Handle
2151 fh => $fh,
2152 tls => "connect",
2153 on_error => sub { ... };
2154
2155 $handle->push_write (...);
2156 };
2157
2158=item I want to contact a TLS/SSL server, I do care about security.
2159
2160Then you should additionally enable certificate verification, including
2161peername verification, if the protocol you use supports it (see
2162L<AnyEvent::TLS>, C<verify_peername>).
2163
2164E.g. for HTTPS:
2165
2166 tcp_connect $host, $port, sub {
2167 my ($fh) = @_;
2168
2169 my $handle = new AnyEvent::Handle
2170 fh => $fh,
2171 peername => $host,
2172 tls => "connect",
2173 tls_ctx => { verify => 1, verify_peername => "https" },
2174 ...
2175
2176Note that you must specify the hostname you connected to (or whatever
2177"peername" the protocol needs) as the C<peername> argument, otherwise no
2178peername verification will be done.
2179
2180The above will use the system-dependent default set of trusted CA
2181certificates. If you want to check against a specific CA, add the
2182C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2183
2184 tls_ctx => {
2185 verify => 1,
2186 verify_peername => "https",
2187 ca_file => "my-ca-cert.pem",
2188 },
2189
2190=item I want to create a TLS/SSL server, how do I do that?
2191
2192Well, you first need to get a server certificate and key. You have
2193three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2194self-signed certificate (cheap. check the search engine of your choice,
2195there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2196nice program for that purpose).
2197
2198Then create a file with your private key (in PEM format, see
2199L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2200file should then look like this:
2201
2202 -----BEGIN RSA PRIVATE KEY-----
2203 ...header data
2204 ... lots of base64'y-stuff
2205 -----END RSA PRIVATE KEY-----
2206
2207 -----BEGIN CERTIFICATE-----
2208 ... lots of base64'y-stuff
2209 -----END CERTIFICATE-----
2210
2211The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2212specify this file as C<cert_file>:
2213
2214 tcp_server undef, $port, sub {
2215 my ($fh) = @_;
2216
2217 my $handle = new AnyEvent::Handle
2218 fh => $fh,
2219 tls => "accept",
2220 tls_ctx => { cert_file => "my-server-keycert.pem" },
2221 ...
2222
2223When you have intermediate CA certificates that your clients might not
2224know about, just append them to the C<cert_file>.
2225
1628=back 2226=back
1629 2227
1630 2228
1631=head1 SUBCLASSING AnyEvent::Handle 2229=head1 SUBCLASSING AnyEvent::Handle
1632 2230

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines