ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.158 by root, Fri Jul 24 08:40:35 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.151; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 50on sockets see L<AnyEvent::Util>.
53 51
52The L<AnyEvent::Intro> tutorial contains some well-documented
53AnyEvent::Handle examples.
54
54In the following, when the documentation refers to of "bytes" then this 55In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 56means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 57treatment of characters applies to this module as well.
57 58
58All callbacks will be invoked with the handle object as their first 59All callbacks will be invoked with the handle object as their first
60 61
61=head1 METHODS 62=head1 METHODS
62 63
63=over 4 64=over 4
64 65
65=item B<new (%args)> 66=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 67
67The constructor supports these arguments (all as key => value pairs). 68The constructor supports these arguments (all as C<< key => value >> pairs).
68 69
69=over 4 70=over 4
70 71
71=item fh => $filehandle [MANDATORY] 72=item fh => $filehandle [MANDATORY]
72 73
74#=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
80
81#=item connect => [$host, $service]
82#
83# You have to specify either this parameter, or C<connect>, below.
84#Try to connect to the specified host and service (port), using
85#C<AnyEvent::Socket::tcp_connect>.
86#
87#When this
77 88
78=item on_eof => $cb->($handle) 89=item on_eof => $cb->($handle)
79 90
80Set the callback to be called when an end-of-file condition is detcted, 91Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 92i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 93connection cleanly, and there are no outstanding read requests in the
94queue (if there are read requests, then an EOF counts as an unexpected
95connection close and will be flagged as an error).
83 96
84While not mandatory, it is highly recommended to set an eof callback, 97For sockets, this just means that the other side has stopped sending data,
85otherwise you might end up with a closed socket while you are still 98you can still try to write data, and, in fact, one can return from the EOF
86waiting for data. 99callback and continue writing data, as only the read part has been shut
100down.
87 101
102If an EOF condition has been detected but no C<on_eof> callback has been
103set, then a fatal error will be raised with C<$!> set to <0>.
104
88=item on_error => $cb->($handle, $fatal) 105=item on_error => $cb->($handle, $fatal, $message)
89 106
90This is the error callback, which is called when, well, some error 107This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 108occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 109connect or a read error.
93 110
94Some errors are fatal (which is indicated by C<$fatal> being true). On 111Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 112fatal errors the handle object will be destroyed (by a call to C<< ->
113destroy >>) after invoking the error callback (which means you are free to
114examine the handle object). Examples of fatal errors are an EOF condition
115with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
116
117AnyEvent::Handle tries to find an appropriate error code for you to check
118against, but in some cases (TLS errors), this does not work well. It is
119recommended to always output the C<$message> argument in human-readable
120error messages (it's usually the same as C<"$!">).
121
96usable. Non-fatal errors can be retried by simply returning, but it is 122Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 123to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 124when this callback is invoked. Examples of non-fatal errors are timeouts
125C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 126
100On callback entrance, the value of C<$!> contains the operating system 127On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 128error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
129C<EPROTO>).
102 130
103While not mandatory, it is I<highly> recommended to set this callback, as 131While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 132you will not be notified of errors otherwise. The default simply calls
105C<croak>. 133C<croak>.
106 134
110and no read request is in the queue (unlike read queue callbacks, this 138and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 139callback will only be called when at least one octet of data is in the
112read buffer). 140read buffer).
113 141
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 142To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 143method or access the C<< $handle->{rbuf} >> member directly. Note that you
144must not enlarge or modify the read buffer, you can only remove data at
145the beginning from it.
116 146
117When an EOF condition is detected then AnyEvent::Handle will first try to 147When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 148feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 149calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 150error will be raised (with C<$!> set to C<EPIPE>).
151
152Note that, unlike requests in the read queue, an C<on_read> callback
153doesn't mean you I<require> some data: if there is an EOF and there
154are outstanding read requests then an error will be flagged. With an
155C<on_read> callback, the C<on_eof> callback will be invoked.
121 156
122=item on_drain => $cb->($handle) 157=item on_drain => $cb->($handle)
123 158
124This sets the callback that is called when the write buffer becomes empty 159This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 160(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 170=item timeout => $fractional_seconds
136 171
137If non-zero, then this enables an "inactivity" timeout: whenever this many 172If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 173seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 174handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 175missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 176
142Note that timeout processing is also active when you currently do not have 177Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 178any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 179idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 180in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
181restart the timeout.
146 182
147Zero (the default) disables this timeout. 183Zero (the default) disables this timeout.
148 184
149=item on_timeout => $cb->($handle) 185=item on_timeout => $cb->($handle)
150 186
154 190
155=item rbuf_max => <bytes> 191=item rbuf_max => <bytes>
156 192
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 193If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 194when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 195avoid some forms of denial-of-service attacks.
160 196
161For example, a server accepting connections from untrusted sources should 197For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 198be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 199(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 200amount of data without a callback ever being called as long as the line
165isn't finished). 201isn't finished).
166 202
203=item autocork => <boolean>
204
205When disabled (the default), then C<push_write> will try to immediately
206write the data to the handle, if possible. This avoids having to register
207a write watcher and wait for the next event loop iteration, but can
208be inefficient if you write multiple small chunks (on the wire, this
209disadvantage is usually avoided by your kernel's nagle algorithm, see
210C<no_delay>, but this option can save costly syscalls).
211
212When enabled, then writes will always be queued till the next event loop
213iteration. This is efficient when you do many small writes per iteration,
214but less efficient when you do a single write only per iteration (or when
215the write buffer often is full). It also increases write latency.
216
217=item no_delay => <boolean>
218
219When doing small writes on sockets, your operating system kernel might
220wait a bit for more data before actually sending it out. This is called
221the Nagle algorithm, and usually it is beneficial.
222
223In some situations you want as low a delay as possible, which can be
224accomplishd by setting this option to a true value.
225
226The default is your opertaing system's default behaviour (most likely
227enabled), this option explicitly enables or disables it, if possible.
228
167=item read_size => <bytes> 229=item read_size => <bytes>
168 230
169The default read block size (the amount of bytes this module will try to read 231The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 232try to read during each loop iteration, which affects memory
233requirements). Default: C<8192>.
171 234
172=item low_water_mark => <bytes> 235=item low_water_mark => <bytes>
173 236
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 237Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 238buffer: If the write reaches this size or gets even samller it is
176considered empty. 239considered empty.
177 240
241Sometimes it can be beneficial (for performance reasons) to add data to
242the write buffer before it is fully drained, but this is a rare case, as
243the operating system kernel usually buffers data as well, so the default
244is good in almost all cases.
245
178=item linger => <seconds> 246=item linger => <seconds>
179 247
180If non-zero (default: C<3600>), then the destructor of the 248If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 249AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 250write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 251socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 252system treats outstanding data at socket close time).
185 253
186This will not work for partial TLS data that could not yet been 254This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 255yet. This data will be lost. Calling the C<stoptls> method in time might
256help.
257
258=item peername => $string
259
260A string used to identify the remote site - usually the DNS hostname
261(I<not> IDN!) used to create the connection, rarely the IP address.
262
263Apart from being useful in error messages, this string is also used in TLS
264peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
265verification will be skipped when C<peername> is not specified or
266C<undef>.
188 267
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 268=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 269
191When this parameter is given, it enables TLS (SSL) mode, that means it 270When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 271AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 272established and will transparently encrypt/decrypt data afterwards.
273
274All TLS protocol errors will be signalled as C<EPROTO>, with an
275appropriate error message.
194 276
195TLS mode requires Net::SSLeay to be installed (it will be loaded 277TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 278automatically when you try to create a TLS handle): this module doesn't
279have a dependency on that module, so if your module requires it, you have
280to add the dependency yourself.
197 281
198For the TLS server side, use C<accept>, and for the TLS client side of a 282Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 283C<accept>, and for the TLS client side of a connection, use C<connect>
284mode.
200 285
201You can also provide your own TLS connection object, but you have 286You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 287to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 288or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 289AnyEvent::Handle. Also, this module will take ownership of this connection
290object.
205 291
292At some future point, AnyEvent::Handle might switch to another TLS
293implementation, then the option to use your own session object will go
294away.
295
296B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
297passing in the wrong integer will lead to certain crash. This most often
298happens when one uses a stylish C<< tls => 1 >> and is surprised about the
299segmentation fault.
300
206See the C<starttls> method if you need to start TLs negotiation later. 301See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 302
208=item tls_ctx => $ssl_ctx 303=item tls_ctx => $anyevent_tls
209 304
210Use the given Net::SSLeay::CTX object to create the new TLS connection 305Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 306(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 307missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 308
309Instead of an object, you can also specify a hash reference with C<< key
310=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
311new TLS context object.
312
313=item on_starttls => $cb->($handle, $success[, $error_message])
314
315This callback will be invoked when the TLS/SSL handshake has finished. If
316C<$success> is true, then the TLS handshake succeeded, otherwise it failed
317(C<on_stoptls> will not be called in this case).
318
319The session in C<< $handle->{tls} >> can still be examined in this
320callback, even when the handshake was not successful.
321
322TLS handshake failures will not cause C<on_error> to be invoked when this
323callback is in effect, instead, the error message will be passed to C<on_starttls>.
324
325Without this callback, handshake failures lead to C<on_error> being
326called, as normal.
327
328Note that you cannot call C<starttls> right again in this callback. If you
329need to do that, start an zero-second timer instead whose callback can
330then call C<< ->starttls >> again.
331
332=item on_stoptls => $cb->($handle)
333
334When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
335set, then it will be invoked after freeing the TLS session. If it is not,
336then a TLS shutdown condition will be treated like a normal EOF condition
337on the handle.
338
339The session in C<< $handle->{tls} >> can still be examined in this
340callback.
341
342This callback will only be called on TLS shutdowns, not when the
343underlying handle signals EOF.
344
214=item json => JSON or JSON::XS object 345=item json => JSON or JSON::XS object
215 346
216This is the json coder object used by the C<json> read and write types. 347This is the json coder object used by the C<json> read and write types.
217 348
218If you don't supply it, then AnyEvent::Handle will create and use a 349If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 350suitable one (on demand), which will write and expect UTF-8 encoded JSON
351texts.
220 352
221Note that you are responsible to depend on the JSON module if you want to 353Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 354use this functionality, as AnyEvent does not have a dependency itself.
223 355
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 356=back
231 357
232=cut 358=cut
233 359
234sub new { 360sub new {
235 my $class = shift; 361 my $class = shift;
236
237 my $self = bless { @_ }, $class; 362 my $self = bless { @_ }, $class;
238 363
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 364 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240 365
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 366 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 367
248 $self->{_activity} = AnyEvent->now; 368 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 369 $self->_timeout;
250 370
371 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
372
373 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
374 if $self->{tls};
375
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 376 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 377
253 $self->start_read 378 $self->start_read
254 if $self->{on_read}; 379 if $self->{on_read};
255 380
256 $self 381 $self->{fh} && $self
257} 382}
258 383
259sub _shutdown { 384#sub _shutdown {
260 my ($self) = @_; 385# my ($self) = @_;
261 386#
262 delete $self->{_tw}; 387# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 388# $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww}; 389#
265 delete $self->{fh}; 390# &_freetls;
266 391#}
267 $self->stoptls;
268}
269 392
270sub _error { 393sub _error {
271 my ($self, $errno, $fatal) = @_; 394 my ($self, $errno, $fatal, $message) = @_;
272
273 $self->_shutdown
274 if $fatal;
275 395
276 $! = $errno; 396 $! = $errno;
397 $message ||= "$!";
277 398
278 if ($self->{on_error}) { 399 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 400 $self->{on_error}($self, $fatal, $message);
280 } else { 401 $self->destroy if $fatal;
402 } elsif ($self->{fh}) {
403 $self->destroy;
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 404 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 405 }
283} 406}
284 407
285=item $fh = $handle->fh 408=item $fh = $handle->fh
286 409
287This method returns the file handle of the L<AnyEvent::Handle> object. 410This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 411
289=cut 412=cut
290 413
291sub fh { $_[0]{fh} } 414sub fh { $_[0]{fh} }
292 415
310 $_[0]{on_eof} = $_[1]; 433 $_[0]{on_eof} = $_[1];
311} 434}
312 435
313=item $handle->on_timeout ($cb) 436=item $handle->on_timeout ($cb)
314 437
315Replace the current C<on_timeout> callback, or disables the callback 438Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 439not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 440argument and method.
318 441
319=cut 442=cut
320 443
321sub on_timeout { 444sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 445 $_[0]{on_timeout} = $_[1];
446}
447
448=item $handle->autocork ($boolean)
449
450Enables or disables the current autocork behaviour (see C<autocork>
451constructor argument). Changes will only take effect on the next write.
452
453=cut
454
455sub autocork {
456 $_[0]{autocork} = $_[1];
457}
458
459=item $handle->no_delay ($boolean)
460
461Enables or disables the C<no_delay> setting (see constructor argument of
462the same name for details).
463
464=cut
465
466sub no_delay {
467 $_[0]{no_delay} = $_[1];
468
469 eval {
470 local $SIG{__DIE__};
471 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
472 };
473}
474
475=item $handle->on_starttls ($cb)
476
477Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
478
479=cut
480
481sub on_starttls {
482 $_[0]{on_starttls} = $_[1];
483}
484
485=item $handle->on_stoptls ($cb)
486
487Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
488
489=cut
490
491sub on_starttls {
492 $_[0]{on_stoptls} = $_[1];
323} 493}
324 494
325############################################################################# 495#############################################################################
326 496
327=item $handle->timeout ($seconds) 497=item $handle->timeout ($seconds)
353 $self->{_activity} = $NOW; 523 $self->{_activity} = $NOW;
354 524
355 if ($self->{on_timeout}) { 525 if ($self->{on_timeout}) {
356 $self->{on_timeout}($self); 526 $self->{on_timeout}($self);
357 } else { 527 } else {
358 $self->_error (&Errno::ETIMEDOUT); 528 $self->_error (Errno::ETIMEDOUT);
359 } 529 }
360 530
361 # callback could have changed timeout value, optimise 531 # callback could have changed timeout value, optimise
362 return unless $self->{timeout}; 532 return unless $self->{timeout};
363 533
405 my ($self, $cb) = @_; 575 my ($self, $cb) = @_;
406 576
407 $self->{on_drain} = $cb; 577 $self->{on_drain} = $cb;
408 578
409 $cb->($self) 579 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 580 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 581}
412 582
413=item $handle->push_write ($data) 583=item $handle->push_write ($data)
414 584
415Queues the given scalar to be written. You can push as much data as you 585Queues the given scalar to be written. You can push as much data as you
426 Scalar::Util::weaken $self; 596 Scalar::Util::weaken $self;
427 597
428 my $cb = sub { 598 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf}; 599 my $len = syswrite $self->{fh}, $self->{wbuf};
430 600
431 if ($len >= 0) { 601 if (defined $len) {
432 substr $self->{wbuf}, 0, $len, ""; 602 substr $self->{wbuf}, 0, $len, "";
433 603
434 $self->{_activity} = AnyEvent->now; 604 $self->{_activity} = AnyEvent->now;
435 605
436 $self->{on_drain}($self) 606 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 607 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 608 && $self->{on_drain};
439 609
440 delete $self->{_ww} unless length $self->{wbuf}; 610 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 611 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 612 $self->_error ($!, 1);
443 } 613 }
444 }; 614 };
445 615
446 # try to write data immediately 616 # try to write data immediately
447 $cb->(); 617 $cb->() unless $self->{autocork};
448 618
449 # if still data left in wbuf, we need to poll 619 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 620 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 621 if length $self->{wbuf};
452 }; 622 };
466 636
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 637 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 638 ->($self, @_);
469 } 639 }
470 640
471 if ($self->{filter_w}) { 641 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 642 $self->{_tls_wbuf} .= $_[0];
643
644 &_dotls ($self);
473 } else { 645 } else {
474 $self->{wbuf} .= $_[0]; 646 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 647 $self->_drain_wbuf;
476 } 648 }
477} 649}
494=cut 666=cut
495 667
496register_write_type netstring => sub { 668register_write_type netstring => sub {
497 my ($self, $string) = @_; 669 my ($self, $string) = @_;
498 670
499 sprintf "%d:%s,", (length $string), $string 671 (length $string) . ":$string,"
500}; 672};
501 673
502=item packstring => $format, $data 674=item packstring => $format, $data
503 675
504An octet string prefixed with an encoded length. The encoding C<$format> 676An octet string prefixed with an encoded length. The encoding C<$format>
569 741
570 pack "w/a*", Storable::nfreeze ($ref) 742 pack "w/a*", Storable::nfreeze ($ref)
571}; 743};
572 744
573=back 745=back
746
747=item $handle->push_shutdown
748
749Sometimes you know you want to close the socket after writing your data
750before it was actually written. One way to do that is to replace your
751C<on_drain> handler by a callback that shuts down the socket (and set
752C<low_water_mark> to C<0>). This method is a shorthand for just that, and
753replaces the C<on_drain> callback with:
754
755 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
756
757This simply shuts down the write side and signals an EOF condition to the
758the peer.
759
760You can rely on the normal read queue and C<on_eof> handling
761afterwards. This is the cleanest way to close a connection.
762
763=cut
764
765sub push_shutdown {
766 my ($self) = @_;
767
768 delete $self->{low_water_mark};
769 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
770}
574 771
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 772=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 773
577This function (not method) lets you add your own types to C<push_write>. 774This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 775Whenever the given C<type> is used, C<push_write> will invoke the code
678 875
679 if ( 876 if (
680 defined $self->{rbuf_max} 877 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 878 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 879 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 880 $self->_error (Errno::ENOSPC, 1), return;
684 } 881 }
685 882
686 while () { 883 while () {
687 no strict 'refs'; 884 # we need to use a separate tls read buffer, as we must not receive data while
885 # we are draining the buffer, and this can only happen with TLS.
886 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
688 887
689 my $len = length $self->{rbuf}; 888 my $len = length $self->{rbuf};
690 889
691 if (my $cb = shift @{ $self->{_queue} }) { 890 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 891 unless ($cb->($self)) {
693 if ($self->{_eof}) { 892 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming) 893 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 894 $self->_error (Errno::EPIPE, 1), return;
696 } 895 }
697 896
698 unshift @{ $self->{_queue} }, $cb; 897 unshift @{ $self->{_queue} }, $cb;
699 last; 898 last;
700 } 899 }
708 && !@{ $self->{_queue} } # and the queue is still empty 907 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 908 && $self->{on_read} # but we still have on_read
710 ) { 909 ) {
711 # no further data will arrive 910 # no further data will arrive
712 # so no progress can be made 911 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 912 $self->_error (Errno::EPIPE, 1), return
714 if $self->{_eof}; 913 if $self->{_eof};
715 914
716 last; # more data might arrive 915 last; # more data might arrive
717 } 916 }
718 } else { 917 } else {
719 # read side becomes idle 918 # read side becomes idle
720 delete $self->{_rw}; 919 delete $self->{_rw} unless $self->{tls};
721 last; 920 last;
722 } 921 }
723 } 922 }
724 923
924 if ($self->{_eof}) {
925 if ($self->{on_eof}) {
725 $self->{on_eof}($self) 926 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 927 } else {
928 $self->_error (0, 1, "Unexpected end-of-file");
929 }
930 }
727 931
728 # may need to restart read watcher 932 # may need to restart read watcher
729 unless ($self->{_rw}) { 933 unless ($self->{_rw}) {
730 $self->start_read 934 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 935 if $self->{on_read} || @{ $self->{_queue} };
749 953
750=item $handle->rbuf 954=item $handle->rbuf
751 955
752Returns the read buffer (as a modifiable lvalue). 956Returns the read buffer (as a modifiable lvalue).
753 957
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 958You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 959member, if you want. However, the only operation allowed on the
960read buffer (apart from looking at it) is removing data from its
961beginning. Otherwise modifying or appending to it is not allowed and will
962lead to hard-to-track-down bugs.
756 963
757NOTE: The read buffer should only be used or modified if the C<on_read>, 964NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 965C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 966automatically manage the read buffer.
760 967
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1064 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 1065 1
859 } 1066 }
860}; 1067};
861 1068
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1069=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1070
873The callback will be called only once a full line (including the end of 1071The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1072line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1073marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1088=cut
891 1089
892register_read_type line => sub { 1090register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1091 my ($self, $cb, $eol) = @_;
894 1092
895 $eol = qr|(\015?\012)| if @_ < 3; 1093 if (@_ < 3) {
1094 # this is more than twice as fast as the generic code below
1095 sub {
1096 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1097
1098 $cb->($_[0], $1, $2);
1099 1
1100 }
1101 } else {
896 $eol = quotemeta $eol unless ref $eol; 1102 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1103 $eol = qr|^(.*?)($eol)|s;
898 1104
899 sub { 1105 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1106 $_[0]{rbuf} =~ s/$eol// or return;
901 1107
902 $cb->($_[0], $1, $2); 1108 $cb->($_[0], $1, $2);
1109 1
903 1 1110 }
904 } 1111 }
905}; 1112};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1113
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1114=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1115
920Makes a regex match against the regex object C<$accept> and returns 1116Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1117everything up to and including the match.
971 return 1; 1167 return 1;
972 } 1168 }
973 1169
974 # reject 1170 # reject
975 if ($reject && $$rbuf =~ $reject) { 1171 if ($reject && $$rbuf =~ $reject) {
976 $self->_error (&Errno::EBADMSG); 1172 $self->_error (Errno::EBADMSG);
977 } 1173 }
978 1174
979 # skip 1175 # skip
980 if ($skip && $$rbuf =~ $skip) { 1176 if ($skip && $$rbuf =~ $skip) {
981 $data .= substr $$rbuf, 0, $+[0], ""; 1177 $data .= substr $$rbuf, 0, $+[0], "";
997 my ($self, $cb) = @_; 1193 my ($self, $cb) = @_;
998 1194
999 sub { 1195 sub {
1000 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1196 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001 if ($_[0]{rbuf} =~ /[^0-9]/) { 1197 if ($_[0]{rbuf} =~ /[^0-9]/) {
1002 $self->_error (&Errno::EBADMSG); 1198 $self->_error (Errno::EBADMSG);
1003 } 1199 }
1004 return; 1200 return;
1005 } 1201 }
1006 1202
1007 my $len = $1; 1203 my $len = $1;
1010 my $string = $_[1]; 1206 my $string = $_[1];
1011 $_[0]->unshift_read (chunk => 1, sub { 1207 $_[0]->unshift_read (chunk => 1, sub {
1012 if ($_[1] eq ",") { 1208 if ($_[1] eq ",") {
1013 $cb->($_[0], $string); 1209 $cb->($_[0], $string);
1014 } else { 1210 } else {
1015 $self->_error (&Errno::EBADMSG); 1211 $self->_error (Errno::EBADMSG);
1016 } 1212 }
1017 }); 1213 });
1018 }); 1214 });
1019 1215
1020 1 1216 1
1026An octet string prefixed with an encoded length. The encoding C<$format> 1222An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1223uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1224integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1225optional C<!>, C<< < >> or C<< > >> modifier).
1030 1226
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1227For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1228EPP uses a prefix of C<N> (4 octtes).
1032 1229
1033Example: read a block of data prefixed by its length in BER-encoded 1230Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1231format (very efficient).
1035 1232
1036 $handle->push_read (packstring => "w", sub { 1233 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1239register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1240 my ($self, $cb, $format) = @_;
1044 1241
1045 sub { 1242 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1243 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1244 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1245 or return;
1049 1246
1247 $format = length pack $format, $len;
1248
1249 # bypass unshift if we already have the remaining chunk
1250 if ($format + $len <= length $_[0]{rbuf}) {
1251 my $data = substr $_[0]{rbuf}, $format, $len;
1252 substr $_[0]{rbuf}, 0, $format + $len, "";
1253 $cb->($_[0], $data);
1254 } else {
1050 # remove prefix 1255 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1256 substr $_[0]{rbuf}, 0, $format, "";
1052 1257
1053 # read rest 1258 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1259 $_[0]->unshift_read (chunk => $len, $cb);
1260 }
1055 1261
1056 1 1262 1
1057 } 1263 }
1058}; 1264};
1059 1265
1060=item json => $cb->($handle, $hash_or_arrayref) 1266=item json => $cb->($handle, $hash_or_arrayref)
1061 1267
1062Reads a JSON object or array, decodes it and passes it to the callback. 1268Reads a JSON object or array, decodes it and passes it to the
1269callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1270
1064If a C<json> object was passed to the constructor, then that will be used 1271If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1272for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1273
1067This read type uses the incremental parser available with JSON version 1274This read type uses the incremental parser available with JSON version
1076=cut 1283=cut
1077 1284
1078register_read_type json => sub { 1285register_read_type json => sub {
1079 my ($self, $cb) = @_; 1286 my ($self, $cb) = @_;
1080 1287
1081 require JSON; 1288 my $json = $self->{json} ||=
1289 eval { require JSON::XS; JSON::XS->new->utf8 }
1290 || do { require JSON; JSON->new->utf8 };
1082 1291
1083 my $data; 1292 my $data;
1084 my $rbuf = \$self->{rbuf}; 1293 my $rbuf = \$self->{rbuf};
1085 1294
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1295 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1296 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1297
1091 if ($ref) { 1298 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1299 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1300 $json->incr_text = "";
1094 $cb->($self, $ref); 1301 $cb->($self, $ref);
1095 1302
1096 1 1303 1
1304 } elsif ($@) {
1305 # error case
1306 $json->incr_skip;
1307
1308 $self->{rbuf} = $json->incr_text;
1309 $json->incr_text = "";
1310
1311 $self->_error (Errno::EBADMSG);
1312
1313 ()
1097 } else { 1314 } else {
1098 $self->{rbuf} = ""; 1315 $self->{rbuf} = "";
1316
1099 () 1317 ()
1100 } 1318 }
1101 } 1319 }
1102}; 1320};
1103 1321
1116 1334
1117 require Storable; 1335 require Storable;
1118 1336
1119 sub { 1337 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1338 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1339 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1340 or return;
1123 1341
1342 my $format = length pack "w", $len;
1343
1344 # bypass unshift if we already have the remaining chunk
1345 if ($format + $len <= length $_[0]{rbuf}) {
1346 my $data = substr $_[0]{rbuf}, $format, $len;
1347 substr $_[0]{rbuf}, 0, $format + $len, "";
1348 $cb->($_[0], Storable::thaw ($data));
1349 } else {
1124 # remove prefix 1350 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1351 substr $_[0]{rbuf}, 0, $format, "";
1126 1352
1127 # read rest 1353 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1354 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1355 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1356 $cb->($_[0], $ref);
1131 } else { 1357 } else {
1132 $self->_error (&Errno::EBADMSG); 1358 $self->_error (Errno::EBADMSG);
1359 }
1133 } 1360 });
1134 }); 1361 }
1362
1363 1
1135 } 1364 }
1136}; 1365};
1137 1366
1138=back 1367=back
1139 1368
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1398Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1399you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1400will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1401there are any read requests in the queue.
1173 1402
1403These methods will have no effect when in TLS mode (as TLS doesn't support
1404half-duplex connections).
1405
1174=cut 1406=cut
1175 1407
1176sub stop_read { 1408sub stop_read {
1177 my ($self) = @_; 1409 my ($self) = @_;
1178 1410
1179 delete $self->{_rw}; 1411 delete $self->{_rw} unless $self->{tls};
1180} 1412}
1181 1413
1182sub start_read { 1414sub start_read {
1183 my ($self) = @_; 1415 my ($self) = @_;
1184 1416
1185 unless ($self->{_rw} || $self->{_eof}) { 1417 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1418 Scalar::Util::weaken $self;
1187 1419
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1420 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1421 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1422 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1423
1192 if ($len > 0) { 1424 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1425 $self->{_activity} = AnyEvent->now;
1194 1426
1195 $self->{filter_r} 1427 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1428 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1429
1430 &_dotls ($self);
1431 } else {
1432 $self->_drain_rbuf unless $self->{_in_drain};
1433 }
1198 1434
1199 } elsif (defined $len) { 1435 } elsif (defined $len) {
1200 delete $self->{_rw}; 1436 delete $self->{_rw};
1201 $self->{_eof} = 1; 1437 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1438 $self->_drain_rbuf unless $self->{_in_drain};
1206 } 1442 }
1207 }); 1443 });
1208 } 1444 }
1209} 1445}
1210 1446
1447our $ERROR_SYSCALL;
1448our $ERROR_WANT_READ;
1449
1450sub _tls_error {
1451 my ($self, $err) = @_;
1452
1453 return $self->_error ($!, 1)
1454 if $err == Net::SSLeay::ERROR_SYSCALL ();
1455
1456 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1457
1458 # reduce error string to look less scary
1459 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1460
1461 if ($self->{_on_starttls}) {
1462 (delete $self->{_on_starttls})->($self, undef, $err);
1463 &_freetls;
1464 } else {
1465 &_freetls;
1466 $self->_error (Errno::EPROTO, 1, $err);
1467 }
1468}
1469
1470# poll the write BIO and send the data if applicable
1471# also decode read data if possible
1472# this is basiclaly our TLS state machine
1473# more efficient implementations are possible with openssl,
1474# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1475sub _dotls {
1212 my ($self) = @_; 1476 my ($self) = @_;
1213 1477
1214 my $buf; 1478 my $tmp;
1215 1479
1216 if (length $self->{_tls_wbuf}) { 1480 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1481 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1482 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1483 }
1220 }
1221 1484
1485 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1486 return $self->_tls_error ($tmp)
1487 if $tmp != $ERROR_WANT_READ
1488 && ($tmp != $ERROR_SYSCALL || $!);
1489 }
1490
1491 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1492 unless (length $tmp) {
1493 $self->{_on_starttls}
1494 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1495 &_freetls;
1496
1497 if ($self->{on_stoptls}) {
1498 $self->{on_stoptls}($self);
1499 return;
1500 } else {
1501 # let's treat SSL-eof as we treat normal EOF
1502 delete $self->{_rw};
1503 $self->{_eof} = 1;
1504 }
1505 }
1506
1507 $self->{_tls_rbuf} .= $tmp;
1508 $self->_drain_rbuf unless $self->{_in_drain};
1509 $self->{tls} or return; # tls session might have gone away in callback
1510 }
1511
1512 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1513 return $self->_tls_error ($tmp)
1514 if $tmp != $ERROR_WANT_READ
1515 && ($tmp != $ERROR_SYSCALL || $!);
1516
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1517 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1518 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1519 $self->_drain_wbuf;
1225 } 1520 }
1226 1521
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1522 $self->{_on_starttls}
1228 if (length $buf) { 1523 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1229 $self->{rbuf} .= $buf; 1524 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250} 1525}
1251 1526
1252=item $handle->starttls ($tls[, $tls_ctx]) 1527=item $handle->starttls ($tls[, $tls_ctx])
1253 1528
1254Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1529Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255object is created, you can also do that at a later time by calling 1530object is created, you can also do that at a later time by calling
1256C<starttls>. 1531C<starttls>.
1257 1532
1533Starting TLS is currently an asynchronous operation - when you push some
1534write data and then call C<< ->starttls >> then TLS negotiation will start
1535immediately, after which the queued write data is then sent.
1536
1258The first argument is the same as the C<tls> constructor argument (either 1537The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1538C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1539
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1540The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1541when AnyEvent::Handle has to create its own TLS connection object, or
1542a hash reference with C<< key => value >> pairs that will be used to
1543construct a new context.
1263 1544
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1545The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1546context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1547changed to your liking. Note that the handshake might have already started
1548when this function returns.
1267 1549
1550If it an error to start a TLS handshake more than once per
1551AnyEvent::Handle object (this is due to bugs in OpenSSL).
1552
1268=cut 1553=cut
1554
1555our %TLS_CACHE; #TODO not yet documented, should we?
1269 1556
1270sub starttls { 1557sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1558 my ($self, $ssl, $ctx) = @_;
1272 1559
1273 $self->stoptls; 1560 require Net::SSLeay;
1274 1561
1275 if ($ssl eq "accept") { 1562 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1563 if $self->{tls};
1277 Net::SSLeay::set_accept_state ($ssl); 1564
1278 } elsif ($ssl eq "connect") { 1565 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1566 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1280 Net::SSLeay::set_connect_state ($ssl); 1567
1568 $ctx ||= $self->{tls_ctx};
1569
1570 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1571
1572 if ("HASH" eq ref $ctx) {
1573 require AnyEvent::TLS;
1574
1575 if ($ctx->{cache}) {
1576 my $key = $ctx+0;
1577 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1578 } else {
1579 $ctx = new AnyEvent::TLS %$ctx;
1580 }
1581 }
1281 } 1582
1282 1583 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1584 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1284 1585
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1586 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1587 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1588 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1589 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1590 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1591 #
1592 # in short: this is a mess.
1593 #
1594 # note that we do not try to keep the length constant between writes as we are required to do.
1595 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1596 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1597 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1598# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1599# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1600# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1601 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1293 1602
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1603 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1604 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1605
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1606 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 1607
1299 $self->{filter_w} = sub { 1608 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1609 if $self->{on_starttls};
1301 &_dotls; 1610
1302 }; 1611 &_dotls; # need to trigger the initial handshake
1303 $self->{filter_r} = sub { 1612 $self->start_read; # make sure we actually do read
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1613}
1308 1614
1309=item $handle->stoptls 1615=item $handle->stoptls
1310 1616
1311Destroys the SSL connection, if any. Partial read or write data will be 1617Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1618sending a close notify to the other side, but since OpenSSL doesn't
1619support non-blocking shut downs, it is not possible to re-use the stream
1620afterwards.
1313 1621
1314=cut 1622=cut
1315 1623
1316sub stoptls { 1624sub stoptls {
1317 my ($self) = @_; 1625 my ($self) = @_;
1318 1626
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1627 if ($self->{tls}) {
1628 Net::SSLeay::shutdown ($self->{tls});
1320 1629
1321 delete $self->{_rbio}; 1630 &_dotls;
1322 delete $self->{_wbio}; 1631
1323 delete $self->{_tls_wbuf}; 1632# # we don't give a shit. no, we do, but we can't. no...#d#
1324 delete $self->{filter_r}; 1633# # we, we... have to use openssl :/#d#
1325 delete $self->{filter_w}; 1634# &_freetls;#d#
1635 }
1636}
1637
1638sub _freetls {
1639 my ($self) = @_;
1640
1641 return unless $self->{tls};
1642
1643 $self->{tls_ctx}->_put_session (delete $self->{tls});
1644
1645 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1326} 1646}
1327 1647
1328sub DESTROY { 1648sub DESTROY {
1329 my $self = shift; 1649 my ($self) = @_;
1330 1650
1331 $self->stoptls; 1651 &_freetls;
1332 1652
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1653 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1654
1335 if ($linger && length $self->{wbuf}) { 1655 if ($linger && length $self->{wbuf} && $self->{fh}) {
1336 my $fh = delete $self->{fh}; 1656 my $fh = delete $self->{fh};
1337 my $wbuf = delete $self->{wbuf}; 1657 my $wbuf = delete $self->{wbuf};
1338 1658
1339 my @linger; 1659 my @linger;
1340 1660
1351 @linger = (); 1671 @linger = ();
1352 }); 1672 });
1353 } 1673 }
1354} 1674}
1355 1675
1676=item $handle->destroy
1677
1678Shuts down the handle object as much as possible - this call ensures that
1679no further callbacks will be invoked and as many resources as possible
1680will be freed. You must not call any methods on the object afterwards.
1681
1682Normally, you can just "forget" any references to an AnyEvent::Handle
1683object and it will simply shut down. This works in fatal error and EOF
1684callbacks, as well as code outside. It does I<NOT> work in a read or write
1685callback, so when you want to destroy the AnyEvent::Handle object from
1686within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1687that case.
1688
1689Destroying the handle object in this way has the advantage that callbacks
1690will be removed as well, so if those are the only reference holders (as
1691is common), then one doesn't need to do anything special to break any
1692reference cycles.
1693
1694The handle might still linger in the background and write out remaining
1695data, as specified by the C<linger> option, however.
1696
1697=cut
1698
1699sub destroy {
1700 my ($self) = @_;
1701
1702 $self->DESTROY;
1703 %$self = ();
1704}
1705
1356=item AnyEvent::Handle::TLS_CTX 1706=item AnyEvent::Handle::TLS_CTX
1357 1707
1358This function creates and returns the Net::SSLeay::CTX object used by 1708This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1709for TLS mode.
1360 1710
1361The context is created like this: 1711The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1712
1371=cut 1713=cut
1372 1714
1373our $TLS_CTX; 1715our $TLS_CTX;
1374 1716
1375sub TLS_CTX() { 1717sub TLS_CTX() {
1376 $TLS_CTX || do { 1718 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1719 require AnyEvent::TLS;
1378 1720
1379 Net::SSLeay::load_error_strings (); 1721 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1722 }
1389} 1723}
1390 1724
1391=back 1725=back
1726
1727
1728=head1 NONFREQUENTLY ASKED QUESTIONS
1729
1730=over 4
1731
1732=item I C<undef> the AnyEvent::Handle reference inside my callback and
1733still get further invocations!
1734
1735That's because AnyEvent::Handle keeps a reference to itself when handling
1736read or write callbacks.
1737
1738It is only safe to "forget" the reference inside EOF or error callbacks,
1739from within all other callbacks, you need to explicitly call the C<<
1740->destroy >> method.
1741
1742=item I get different callback invocations in TLS mode/Why can't I pause
1743reading?
1744
1745Unlike, say, TCP, TLS connections do not consist of two independent
1746communication channels, one for each direction. Or put differently. The
1747read and write directions are not independent of each other: you cannot
1748write data unless you are also prepared to read, and vice versa.
1749
1750This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1751callback invocations when you are not expecting any read data - the reason
1752is that AnyEvent::Handle always reads in TLS mode.
1753
1754During the connection, you have to make sure that you always have a
1755non-empty read-queue, or an C<on_read> watcher. At the end of the
1756connection (or when you no longer want to use it) you can call the
1757C<destroy> method.
1758
1759=item How do I read data until the other side closes the connection?
1760
1761If you just want to read your data into a perl scalar, the easiest way
1762to achieve this is by setting an C<on_read> callback that does nothing,
1763clearing the C<on_eof> callback and in the C<on_error> callback, the data
1764will be in C<$_[0]{rbuf}>:
1765
1766 $handle->on_read (sub { });
1767 $handle->on_eof (undef);
1768 $handle->on_error (sub {
1769 my $data = delete $_[0]{rbuf};
1770 });
1771
1772The reason to use C<on_error> is that TCP connections, due to latencies
1773and packets loss, might get closed quite violently with an error, when in
1774fact, all data has been received.
1775
1776It is usually better to use acknowledgements when transferring data,
1777to make sure the other side hasn't just died and you got the data
1778intact. This is also one reason why so many internet protocols have an
1779explicit QUIT command.
1780
1781=item I don't want to destroy the handle too early - how do I wait until
1782all data has been written?
1783
1784After writing your last bits of data, set the C<on_drain> callback
1785and destroy the handle in there - with the default setting of
1786C<low_water_mark> this will be called precisely when all data has been
1787written to the socket:
1788
1789 $handle->push_write (...);
1790 $handle->on_drain (sub {
1791 warn "all data submitted to the kernel\n";
1792 undef $handle;
1793 });
1794
1795If you just want to queue some data and then signal EOF to the other side,
1796consider using C<< ->push_shutdown >> instead.
1797
1798=item I want to contact a TLS/SSL server, I don't care about security.
1799
1800If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1801simply connect to it and then create the AnyEvent::Handle with the C<tls>
1802parameter:
1803
1804 tcp_connect $host, $port, sub {
1805 my ($fh) = @_;
1806
1807 my $handle = new AnyEvent::Handle
1808 fh => $fh,
1809 tls => "connect",
1810 on_error => sub { ... };
1811
1812 $handle->push_write (...);
1813 };
1814
1815=item I want to contact a TLS/SSL server, I do care about security.
1816
1817Then you should additionally enable certificate verification, including
1818peername verification, if the protocol you use supports it (see
1819L<AnyEvent::TLS>, C<verify_peername>).
1820
1821E.g. for HTTPS:
1822
1823 tcp_connect $host, $port, sub {
1824 my ($fh) = @_;
1825
1826 my $handle = new AnyEvent::Handle
1827 fh => $fh,
1828 peername => $host,
1829 tls => "connect",
1830 tls_ctx => { verify => 1, verify_peername => "https" },
1831 ...
1832
1833Note that you must specify the hostname you connected to (or whatever
1834"peername" the protocol needs) as the C<peername> argument, otherwise no
1835peername verification will be done.
1836
1837The above will use the system-dependent default set of trusted CA
1838certificates. If you want to check against a specific CA, add the
1839C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1840
1841 tls_ctx => {
1842 verify => 1,
1843 verify_peername => "https",
1844 ca_file => "my-ca-cert.pem",
1845 },
1846
1847=item I want to create a TLS/SSL server, how do I do that?
1848
1849Well, you first need to get a server certificate and key. You have
1850three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1851self-signed certificate (cheap. check the search engine of your choice,
1852there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1853nice program for that purpose).
1854
1855Then create a file with your private key (in PEM format, see
1856L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1857file should then look like this:
1858
1859 -----BEGIN RSA PRIVATE KEY-----
1860 ...header data
1861 ... lots of base64'y-stuff
1862 -----END RSA PRIVATE KEY-----
1863
1864 -----BEGIN CERTIFICATE-----
1865 ... lots of base64'y-stuff
1866 -----END CERTIFICATE-----
1867
1868The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1869specify this file as C<cert_file>:
1870
1871 tcp_server undef, $port, sub {
1872 my ($fh) = @_;
1873
1874 my $handle = new AnyEvent::Handle
1875 fh => $fh,
1876 tls => "accept",
1877 tls_ctx => { cert_file => "my-server-keycert.pem" },
1878 ...
1879
1880When you have intermediate CA certificates that your clients might not
1881know about, just append them to the C<cert_file>.
1882
1883=back
1884
1392 1885
1393=head1 SUBCLASSING AnyEvent::Handle 1886=head1 SUBCLASSING AnyEvent::Handle
1394 1887
1395In many cases, you might want to subclass AnyEvent::Handle. 1888In many cases, you might want to subclass AnyEvent::Handle.
1396 1889
1400=over 4 1893=over 4
1401 1894
1402=item * all constructor arguments become object members. 1895=item * all constructor arguments become object members.
1403 1896
1404At least initially, when you pass a C<tls>-argument to the constructor it 1897At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 1898will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 1899mutated later on (for example C<tls> will hold the TLS connection object).
1407 1900
1408=item * other object member names are prefixed with an C<_>. 1901=item * other object member names are prefixed with an C<_>.
1409 1902
1410All object members not explicitly documented (internal use) are prefixed 1903All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines