ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.93 by root, Wed Oct 1 14:49:23 2008 UTC vs.
Revision 1.182 by root, Thu Sep 3 12:35:01 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.3;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
64=head2 SIGPIPE is not handled by this module 51=cut
65 52
66SIGPIPE is not handled by this module, so one of the practical 53package AnyEvent::Handle;
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} = 54
68'IGNORE'>). At least, this is highly recommend in a networked program: If 55use Scalar::Util ();
69you use AnyEvent::Handle in a filter program (like sort), exiting on 56use List::Util ();
70SIGPIPE is probably the right thing to do. 57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
71 64
72=head1 METHODS 65=head1 METHODS
73 66
74=over 4 67=over 4
75 68
76=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 70
78The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
79 72
80=over 4 73=over 4
81 74
82=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 76
84The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 80that mode.
89 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
90=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
91 100
92Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
94connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
95 106
96For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 109timeout is to be used).
99down.
100 110
101While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 112
105If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
108=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
109 138
110This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 141connect or a read error.
113 142
114Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
119 155
120Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 160
125On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
127 164
128While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
130C<croak>. 167C<croak>.
131 168
135and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
137read buffer). 174read buffer).
138 175
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
141 180
142When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
146 206
147=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
148 208
149This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
157memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty. 218the file when the write queue becomes empty.
159 219
160=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
161 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
162If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
163seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
164handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
165missing, a non-fatal C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
166 237
167Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
214accomplishd by setting this option to a true value. 285accomplishd by setting this option to a true value.
215 286
216The default is your opertaing system's default behaviour (most likely 287The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
218 289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag gives you
312the most portable way of getting urgent data, by putting it into the
313stream.
314
219=item read_size => <bytes> 315=item read_size => <bytes>
220 316
221The default read block size (the amount of bytes this module will 317The default read block size (the amount of bytes this module will
222try to read during each loop iteration, which affects memory 318try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>. 319requirements). Default: C<8192>.
243 339
244This will not work for partial TLS data that could not be encoded 340This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might 341yet. This data will be lost. Calling the C<stoptls> method in time might
246help. 342help.
247 343
344=item peername => $string
345
346A string used to identify the remote site - usually the DNS hostname
347(I<not> IDN!) used to create the connection, rarely the IP address.
348
349Apart from being useful in error messages, this string is also used in TLS
350peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
351verification will be skipped when C<peername> is not specified or
352C<undef>.
353
248=item tls => "accept" | "connect" | Net::SSLeay::SSL object 354=item tls => "accept" | "connect" | Net::SSLeay::SSL object
249 355
250When this parameter is given, it enables TLS (SSL) mode, that means 356When this parameter is given, it enables TLS (SSL) mode, that means
251AnyEvent will start a TLS handshake as soon as the conenction has been 357AnyEvent will start a TLS handshake as soon as the conenction has been
252established and will transparently encrypt/decrypt data afterwards. 358established and will transparently encrypt/decrypt data afterwards.
359
360All TLS protocol errors will be signalled as C<EPROTO>, with an
361appropriate error message.
253 362
254TLS mode requires Net::SSLeay to be installed (it will be loaded 363TLS mode requires Net::SSLeay to be installed (it will be loaded
255automatically when you try to create a TLS handle): this module doesn't 364automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have 365have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself. 366to add the dependency yourself.
261mode. 370mode.
262 371
263You can also provide your own TLS connection object, but you have 372You can also provide your own TLS connection object, but you have
264to make sure that you call either C<Net::SSLeay::set_connect_state> 373to make sure that you call either C<Net::SSLeay::set_connect_state>
265or C<Net::SSLeay::set_accept_state> on it before you pass it to 374or C<Net::SSLeay::set_accept_state> on it before you pass it to
266AnyEvent::Handle. 375AnyEvent::Handle. Also, this module will take ownership of this connection
376object.
377
378At some future point, AnyEvent::Handle might switch to another TLS
379implementation, then the option to use your own session object will go
380away.
381
382B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
383passing in the wrong integer will lead to certain crash. This most often
384happens when one uses a stylish C<< tls => 1 >> and is surprised about the
385segmentation fault.
267 386
268See the C<< ->starttls >> method for when need to start TLS negotiation later. 387See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 388
270=item tls_ctx => $ssl_ctx 389=item tls_ctx => $anyevent_tls
271 390
272Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 391Use the given C<AnyEvent::TLS> object to create the new TLS connection
273(unless a connection object was specified directly). If this parameter is 392(unless a connection object was specified directly). If this parameter is
274missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 393missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
394
395Instead of an object, you can also specify a hash reference with C<< key
396=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
397new TLS context object.
398
399=item on_starttls => $cb->($handle, $success[, $error_message])
400
401This callback will be invoked when the TLS/SSL handshake has finished. If
402C<$success> is true, then the TLS handshake succeeded, otherwise it failed
403(C<on_stoptls> will not be called in this case).
404
405The session in C<< $handle->{tls} >> can still be examined in this
406callback, even when the handshake was not successful.
407
408TLS handshake failures will not cause C<on_error> to be invoked when this
409callback is in effect, instead, the error message will be passed to C<on_starttls>.
410
411Without this callback, handshake failures lead to C<on_error> being
412called, as normal.
413
414Note that you cannot call C<starttls> right again in this callback. If you
415need to do that, start an zero-second timer instead whose callback can
416then call C<< ->starttls >> again.
417
418=item on_stoptls => $cb->($handle)
419
420When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
421set, then it will be invoked after freeing the TLS session. If it is not,
422then a TLS shutdown condition will be treated like a normal EOF condition
423on the handle.
424
425The session in C<< $handle->{tls} >> can still be examined in this
426callback.
427
428This callback will only be called on TLS shutdowns, not when the
429underlying handle signals EOF.
275 430
276=item json => JSON or JSON::XS object 431=item json => JSON or JSON::XS object
277 432
278This is the json coder object used by the C<json> read and write types. 433This is the json coder object used by the C<json> read and write types.
279 434
288 443
289=cut 444=cut
290 445
291sub new { 446sub new {
292 my $class = shift; 447 my $class = shift;
293
294 my $self = bless { @_ }, $class; 448 my $self = bless { @_ }, $class;
295 449
296 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 450 if ($self->{fh}) {
451 $self->_start;
452 return unless $self->{fh}; # could be gone by now
453
454 } elsif ($self->{connect}) {
455 require AnyEvent::Socket;
456
457 $self->{peername} = $self->{connect}[0]
458 unless exists $self->{peername};
459
460 $self->{_skip_drain_rbuf} = 1;
461
462 {
463 Scalar::Util::weaken (my $self = $self);
464
465 $self->{_connect} =
466 AnyEvent::Socket::tcp_connect (
467 $self->{connect}[0],
468 $self->{connect}[1],
469 sub {
470 my ($fh, $host, $port, $retry) = @_;
471
472 if ($fh) {
473 $self->{fh} = $fh;
474
475 delete $self->{_skip_drain_rbuf};
476 $self->_start;
477
478 $self->{on_connect}
479 and $self->{on_connect}($self, $host, $port, sub {
480 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
481 $self->{_skip_drain_rbuf} = 1;
482 &$retry;
483 });
484
485 } else {
486 if ($self->{on_connect_error}) {
487 $self->{on_connect_error}($self, "$!");
488 $self->destroy;
489 } else {
490 $self->_error ($!, 1);
491 }
492 }
493 },
494 sub {
495 local $self->{fh} = $_[0];
496
497 $self->{on_prepare}
498 ? $self->{on_prepare}->($self)
499 : ()
500 }
501 );
502 }
503
504 } else {
505 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
506 }
507
508 $self
509}
510
511sub _start {
512 my ($self) = @_;
297 513
298 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 514 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
299 515
300 if ($self->{tls}) { 516 $self->{_activity} =
301 require Net::SSLeay; 517 $self->{_ractivity} =
302 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
303 }
304
305 $self->{_activity} = AnyEvent->now; 518 $self->{_wactivity} = AE::now;
306 $self->_timeout;
307 519
308 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 520 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
521 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
522 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
523
309 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 524 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay};
525 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive};
526 $self->oobinline (delete $self->{oobinline}) if exists $self->{oobinline};
527
528 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
529 if $self->{tls};
530
531 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
310 532
311 $self->start_read 533 $self->start_read
312 if $self->{on_read}; 534 if $self->{on_read} || @{ $self->{_queue} };
313 535
314 $self 536 $self->_drain_wbuf;
315}
316
317sub _shutdown {
318 my ($self) = @_;
319
320 delete $self->{_tw};
321 delete $self->{_rw};
322 delete $self->{_ww};
323 delete $self->{fh};
324
325 &_freetls;
326
327 delete $self->{on_read};
328 delete $self->{_queue};
329} 537}
330 538
331sub _error { 539sub _error {
332 my ($self, $errno, $fatal) = @_; 540 my ($self, $errno, $fatal, $message) = @_;
333
334 $self->_shutdown
335 if $fatal;
336 541
337 $! = $errno; 542 $! = $errno;
543 $message ||= "$!";
338 544
339 if ($self->{on_error}) { 545 if ($self->{on_error}) {
340 $self->{on_error}($self, $fatal); 546 $self->{on_error}($self, $fatal, $message);
341 } else { 547 $self->destroy if $fatal;
548 } elsif ($self->{fh}) {
549 $self->destroy;
342 Carp::croak "AnyEvent::Handle uncaught error: $!"; 550 Carp::croak "AnyEvent::Handle uncaught error: $message";
343 } 551 }
344} 552}
345 553
346=item $fh = $handle->fh 554=item $fh = $handle->fh
347 555
371 $_[0]{on_eof} = $_[1]; 579 $_[0]{on_eof} = $_[1];
372} 580}
373 581
374=item $handle->on_timeout ($cb) 582=item $handle->on_timeout ($cb)
375 583
376Replace the current C<on_timeout> callback, or disables the callback (but 584=item $handle->on_rtimeout ($cb)
377not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
378argument and method.
379 585
380=cut 586=item $handle->on_wtimeout ($cb)
381 587
382sub on_timeout { 588Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
383 $_[0]{on_timeout} = $_[1]; 589callback, or disables the callback (but not the timeout) if C<$cb> =
384} 590C<undef>. See the C<timeout> constructor argument and method.
591
592=cut
593
594# see below
385 595
386=item $handle->autocork ($boolean) 596=item $handle->autocork ($boolean)
387 597
388Enables or disables the current autocork behaviour (see C<autocork> 598Enables or disables the current autocork behaviour (see C<autocork>
389constructor argument). 599constructor argument). Changes will only take effect on the next write.
390 600
391=cut 601=cut
602
603sub autocork {
604 $_[0]{autocork} = $_[1];
605}
392 606
393=item $handle->no_delay ($boolean) 607=item $handle->no_delay ($boolean)
394 608
395Enables or disables the C<no_delay> setting (see constructor argument of 609Enables or disables the C<no_delay> setting (see constructor argument of
396the same name for details). 610the same name for details).
400sub no_delay { 614sub no_delay {
401 $_[0]{no_delay} = $_[1]; 615 $_[0]{no_delay} = $_[1];
402 616
403 eval { 617 eval {
404 local $SIG{__DIE__}; 618 local $SIG{__DIE__};
405 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 619 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
620 if $_[0]{fh};
406 }; 621 };
407} 622}
408 623
624=item $handle->keepalive ($boolean)
625
626Enables or disables the C<keepalive> setting (see constructor argument of
627the same name for details).
628
629=cut
630
631sub keepalive {
632 $_[0]{keepalive} = $_[1];
633
634 eval {
635 local $SIG{__DIE__};
636 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
637 if $_[0]{fh};
638 };
639}
640
641=item $handle->oobinline ($boolean)
642
643Enables or disables the C<oobinline> setting (see constructor argument of
644the same name for details).
645
646=cut
647
648sub oobinline {
649 $_[0]{oobinline} = $_[1];
650
651 eval {
652 local $SIG{__DIE__};
653 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
654 if $_[0]{fh};
655 };
656}
657
658=item $handle->keepalive ($boolean)
659
660Enables or disables the C<keepalive> setting (see constructor argument of
661the same name for details).
662
663=cut
664
665sub keepalive {
666 $_[0]{keepalive} = $_[1];
667
668 eval {
669 local $SIG{__DIE__};
670 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
671 if $_[0]{fh};
672 };
673}
674
675=item $handle->on_starttls ($cb)
676
677Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
678
679=cut
680
681sub on_starttls {
682 $_[0]{on_starttls} = $_[1];
683}
684
685=item $handle->on_stoptls ($cb)
686
687Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
688
689=cut
690
691sub on_starttls {
692 $_[0]{on_stoptls} = $_[1];
693}
694
695=item $handle->rbuf_max ($max_octets)
696
697Configures the C<rbuf_max> setting (C<undef> disables it).
698
699=cut
700
701sub rbuf_max {
702 $_[0]{rbuf_max} = $_[1];
703}
704
409############################################################################# 705#############################################################################
410 706
411=item $handle->timeout ($seconds) 707=item $handle->timeout ($seconds)
412 708
709=item $handle->rtimeout ($seconds)
710
711=item $handle->wtimeout ($seconds)
712
413Configures (or disables) the inactivity timeout. 713Configures (or disables) the inactivity timeout.
414 714
415=cut 715=item $handle->timeout_reset
416 716
417sub timeout { 717=item $handle->rtimeout_reset
718
719=item $handle->wtimeout_reset
720
721Reset the activity timeout, as if data was received or sent.
722
723These methods are cheap to call.
724
725=cut
726
727for my $dir ("", "r", "w") {
728 my $timeout = "${dir}timeout";
729 my $tw = "_${dir}tw";
730 my $on_timeout = "on_${dir}timeout";
731 my $activity = "_${dir}activity";
732 my $cb;
733
734 *$on_timeout = sub {
735 $_[0]{$on_timeout} = $_[1];
736 };
737
738 *$timeout = sub {
418 my ($self, $timeout) = @_; 739 my ($self, $new_value) = @_;
419 740
420 $self->{timeout} = $timeout; 741 $self->{$timeout} = $new_value;
421 $self->_timeout; 742 delete $self->{$tw}; &$cb;
422} 743 };
423 744
745 *{"${dir}timeout_reset"} = sub {
746 $_[0]{$activity} = AE::now;
747 };
748
749 # main workhorse:
424# reset the timeout watcher, as neccessary 750 # reset the timeout watcher, as neccessary
425# also check for time-outs 751 # also check for time-outs
426sub _timeout { 752 $cb = sub {
427 my ($self) = @_; 753 my ($self) = @_;
428 754
429 if ($self->{timeout}) { 755 if ($self->{$timeout} && $self->{fh}) {
430 my $NOW = AnyEvent->now; 756 my $NOW = AE::now;
431 757
432 # when would the timeout trigger? 758 # when would the timeout trigger?
433 my $after = $self->{_activity} + $self->{timeout} - $NOW; 759 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
434 760
435 # now or in the past already? 761 # now or in the past already?
436 if ($after <= 0) { 762 if ($after <= 0) {
437 $self->{_activity} = $NOW; 763 $self->{$activity} = $NOW;
438 764
439 if ($self->{on_timeout}) { 765 if ($self->{$on_timeout}) {
440 $self->{on_timeout}($self); 766 $self->{$on_timeout}($self);
441 } else { 767 } else {
442 $self->_error (&Errno::ETIMEDOUT); 768 $self->_error (Errno::ETIMEDOUT);
769 }
770
771 # callback could have changed timeout value, optimise
772 return unless $self->{$timeout};
773
774 # calculate new after
775 $after = $self->{$timeout};
443 } 776 }
444 777
445 # callback could have changed timeout value, optimise 778 Scalar::Util::weaken $self;
446 return unless $self->{timeout}; 779 return unless $self; # ->error could have destroyed $self
447 780
448 # calculate new after 781 $self->{$tw} ||= AE::timer $after, 0, sub {
449 $after = $self->{timeout}; 782 delete $self->{$tw};
783 $cb->($self);
784 };
785 } else {
786 delete $self->{$tw};
450 } 787 }
451
452 Scalar::Util::weaken $self;
453 return unless $self; # ->error could have destroyed $self
454
455 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
456 delete $self->{_tw};
457 $self->_timeout;
458 });
459 } else {
460 delete $self->{_tw};
461 } 788 }
462} 789}
463 790
464############################################################################# 791#############################################################################
465 792
510 Scalar::Util::weaken $self; 837 Scalar::Util::weaken $self;
511 838
512 my $cb = sub { 839 my $cb = sub {
513 my $len = syswrite $self->{fh}, $self->{wbuf}; 840 my $len = syswrite $self->{fh}, $self->{wbuf};
514 841
515 if ($len >= 0) { 842 if (defined $len) {
516 substr $self->{wbuf}, 0, $len, ""; 843 substr $self->{wbuf}, 0, $len, "";
517 844
518 $self->{_activity} = AnyEvent->now; 845 $self->{_activity} = $self->{_wactivity} = AE::now;
519 846
520 $self->{on_drain}($self) 847 $self->{on_drain}($self)
521 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf}) 848 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
522 && $self->{on_drain}; 849 && $self->{on_drain};
523 850
529 856
530 # try to write data immediately 857 # try to write data immediately
531 $cb->() unless $self->{autocork}; 858 $cb->() unless $self->{autocork};
532 859
533 # if still data left in wbuf, we need to poll 860 # if still data left in wbuf, we need to poll
534 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 861 $self->{_ww} = AE::io $self->{fh}, 1, $cb
535 if length $self->{wbuf}; 862 if length $self->{wbuf};
536 }; 863 };
537} 864}
538 865
539our %WH; 866our %WH;
552 ->($self, @_); 879 ->($self, @_);
553 } 880 }
554 881
555 if ($self->{tls}) { 882 if ($self->{tls}) {
556 $self->{_tls_wbuf} .= $_[0]; 883 $self->{_tls_wbuf} .= $_[0];
557 &_dotls ($self); 884 &_dotls ($self) if $self->{fh};
558 } else { 885 } else {
559 $self->{wbuf} .= $_[0]; 886 $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 887 $self->_drain_wbuf if $self->{fh};
561 } 888 }
562} 889}
563 890
564=item $handle->push_write (type => @args) 891=item $handle->push_write (type => @args)
565 892
579=cut 906=cut
580 907
581register_write_type netstring => sub { 908register_write_type netstring => sub {
582 my ($self, $string) = @_; 909 my ($self, $string) = @_;
583 910
584 sprintf "%d:%s,", (length $string), $string 911 (length $string) . ":$string,"
585}; 912};
586 913
587=item packstring => $format, $data 914=item packstring => $format, $data
588 915
589An octet string prefixed with an encoded length. The encoding C<$format> 916An octet string prefixed with an encoded length. The encoding C<$format>
629Other languages could read single lines terminated by a newline and pass 956Other languages could read single lines terminated by a newline and pass
630this line into their JSON decoder of choice. 957this line into their JSON decoder of choice.
631 958
632=cut 959=cut
633 960
961sub json_coder() {
962 eval { require JSON::XS; JSON::XS->new->utf8 }
963 || do { require JSON; JSON->new->utf8 }
964}
965
634register_write_type json => sub { 966register_write_type json => sub {
635 my ($self, $ref) = @_; 967 my ($self, $ref) = @_;
636 968
637 require JSON; 969 my $json = $self->{json} ||= json_coder;
638 970
639 $self->{json} ? $self->{json}->encode ($ref) 971 $json->encode ($ref)
640 : JSON::encode_json ($ref)
641}; 972};
642 973
643=item storable => $reference 974=item storable => $reference
644 975
645Freezes the given reference using L<Storable> and writes it to the 976Freezes the given reference using L<Storable> and writes it to the
654 985
655 pack "w/a*", Storable::nfreeze ($ref) 986 pack "w/a*", Storable::nfreeze ($ref)
656}; 987};
657 988
658=back 989=back
990
991=item $handle->push_shutdown
992
993Sometimes you know you want to close the socket after writing your data
994before it was actually written. One way to do that is to replace your
995C<on_drain> handler by a callback that shuts down the socket (and set
996C<low_water_mark> to C<0>). This method is a shorthand for just that, and
997replaces the C<on_drain> callback with:
998
999 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1000
1001This simply shuts down the write side and signals an EOF condition to the
1002the peer.
1003
1004You can rely on the normal read queue and C<on_eof> handling
1005afterwards. This is the cleanest way to close a connection.
1006
1007=cut
1008
1009sub push_shutdown {
1010 my ($self) = @_;
1011
1012 delete $self->{low_water_mark};
1013 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1014}
659 1015
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1016=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 1017
662This function (not method) lets you add your own types to C<push_write>. 1018This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 1019Whenever the given C<type> is used, C<push_write> will invoke the code
757=cut 1113=cut
758 1114
759sub _drain_rbuf { 1115sub _drain_rbuf {
760 my ($self) = @_; 1116 my ($self) = @_;
761 1117
1118 # avoid recursion
1119 return if $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 1120 local $self->{_skip_drain_rbuf} = 1;
763
764 if (
765 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf}
767 ) {
768 $self->_error (&Errno::ENOSPC, 1), return;
769 }
770 1121
771 while () { 1122 while () {
1123 # we need to use a separate tls read buffer, as we must not receive data while
1124 # we are draining the buffer, and this can only happen with TLS.
1125 $self->{rbuf} .= delete $self->{_tls_rbuf}
1126 if exists $self->{_tls_rbuf};
1127
772 my $len = length $self->{rbuf}; 1128 my $len = length $self->{rbuf};
773 1129
774 if (my $cb = shift @{ $self->{_queue} }) { 1130 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1131 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1132 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1133 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1134 $self->_error (Errno::EPIPE, 1), return
779 } 1135 if $self->{_eof};
780 1136
781 unshift @{ $self->{_queue} }, $cb; 1137 unshift @{ $self->{_queue} }, $cb;
782 last; 1138 last;
783 } 1139 }
784 } elsif ($self->{on_read}) { 1140 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1147 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1148 && $self->{on_read} # but we still have on_read
793 ) { 1149 ) {
794 # no further data will arrive 1150 # no further data will arrive
795 # so no progress can be made 1151 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1152 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1153 if $self->{_eof};
798 1154
799 last; # more data might arrive 1155 last; # more data might arrive
800 } 1156 }
801 } else { 1157 } else {
804 last; 1160 last;
805 } 1161 }
806 } 1162 }
807 1163
808 if ($self->{_eof}) { 1164 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1165 $self->{on_eof}
810 $self->{on_eof}($self) 1166 ? $self->{on_eof}($self)
811 } else { 1167 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1168
813 } 1169 return;
1170 }
1171
1172 if (
1173 defined $self->{rbuf_max}
1174 && $self->{rbuf_max} < length $self->{rbuf}
1175 ) {
1176 $self->_error (Errno::ENOSPC, 1), return;
814 } 1177 }
815 1178
816 # may need to restart read watcher 1179 # may need to restart read watcher
817 unless ($self->{_rw}) { 1180 unless ($self->{_rw}) {
818 $self->start_read 1181 $self->start_read
830 1193
831sub on_read { 1194sub on_read {
832 my ($self, $cb) = @_; 1195 my ($self, $cb) = @_;
833 1196
834 $self->{on_read} = $cb; 1197 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1198 $self->_drain_rbuf if $cb;
836} 1199}
837 1200
838=item $handle->rbuf 1201=item $handle->rbuf
839 1202
840Returns the read buffer (as a modifiable lvalue). 1203Returns the read buffer (as a modifiable lvalue).
841 1204
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1205You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 1206member, if you want. However, the only operation allowed on the
1207read buffer (apart from looking at it) is removing data from its
1208beginning. Otherwise modifying or appending to it is not allowed and will
1209lead to hard-to-track-down bugs.
844 1210
845NOTE: The read buffer should only be used or modified if the C<on_read>, 1211NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 1212C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 1213automatically manage the read buffer.
848 1214
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1255 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_); 1256 ->($self, $cb, @_);
891 } 1257 }
892 1258
893 push @{ $self->{_queue} }, $cb; 1259 push @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1260 $self->_drain_rbuf;
895} 1261}
896 1262
897sub unshift_read { 1263sub unshift_read {
898 my $self = shift; 1264 my $self = shift;
899 my $cb = pop; 1265 my $cb = pop;
903 1269
904 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1270 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905 ->($self, $cb, @_); 1271 ->($self, $cb, @_);
906 } 1272 }
907 1273
908
909 unshift @{ $self->{_queue} }, $cb; 1274 unshift @{ $self->{_queue} }, $cb;
910 $self->_drain_rbuf unless $self->{_in_drain}; 1275 $self->_drain_rbuf;
911} 1276}
912 1277
913=item $handle->push_read (type => @args, $cb) 1278=item $handle->push_read (type => @args, $cb)
914 1279
915=item $handle->unshift_read (type => @args, $cb) 1280=item $handle->unshift_read (type => @args, $cb)
1048 return 1; 1413 return 1;
1049 } 1414 }
1050 1415
1051 # reject 1416 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1417 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1418 $self->_error (Errno::EBADMSG);
1054 } 1419 }
1055 1420
1056 # skip 1421 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1422 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1423 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1439 my ($self, $cb) = @_;
1075 1440
1076 sub { 1441 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1442 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1443 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1444 $self->_error (Errno::EBADMSG);
1080 } 1445 }
1081 return; 1446 return;
1082 } 1447 }
1083 1448
1084 my $len = $1; 1449 my $len = $1;
1087 my $string = $_[1]; 1452 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1453 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1454 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1455 $cb->($_[0], $string);
1091 } else { 1456 } else {
1092 $self->_error (&Errno::EBADMSG); 1457 $self->_error (Errno::EBADMSG);
1093 } 1458 }
1094 }); 1459 });
1095 }); 1460 });
1096 1461
1097 1 1462 1
1103An octet string prefixed with an encoded length. The encoding C<$format> 1468An octet string prefixed with an encoded length. The encoding C<$format>
1104uses the same format as a Perl C<pack> format, but must specify a single 1469uses the same format as a Perl C<pack> format, but must specify a single
1105integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1470integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106optional C<!>, C<< < >> or C<< > >> modifier). 1471optional C<!>, C<< < >> or C<< > >> modifier).
1107 1472
1108DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1473For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1474EPP uses a prefix of C<N> (4 octtes).
1109 1475
1110Example: read a block of data prefixed by its length in BER-encoded 1476Example: read a block of data prefixed by its length in BER-encoded
1111format (very efficient). 1477format (very efficient).
1112 1478
1113 $handle->push_read (packstring => "w", sub { 1479 $handle->push_read (packstring => "w", sub {
1143 } 1509 }
1144}; 1510};
1145 1511
1146=item json => $cb->($handle, $hash_or_arrayref) 1512=item json => $cb->($handle, $hash_or_arrayref)
1147 1513
1148Reads a JSON object or array, decodes it and passes it to the callback. 1514Reads a JSON object or array, decodes it and passes it to the
1515callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1149 1516
1150If a C<json> object was passed to the constructor, then that will be used 1517If a C<json> object was passed to the constructor, then that will be used
1151for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1518for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152 1519
1153This read type uses the incremental parser available with JSON version 1520This read type uses the incremental parser available with JSON version
1162=cut 1529=cut
1163 1530
1164register_read_type json => sub { 1531register_read_type json => sub {
1165 my ($self, $cb) = @_; 1532 my ($self, $cb) = @_;
1166 1533
1167 require JSON; 1534 my $json = $self->{json} ||= json_coder;
1168 1535
1169 my $data; 1536 my $data;
1170 my $rbuf = \$self->{rbuf}; 1537 my $rbuf = \$self->{rbuf};
1171 1538
1172 my $json = $self->{json} ||= JSON->new->utf8;
1173
1174 sub { 1539 sub {
1175 my $ref = $json->incr_parse ($self->{rbuf}); 1540 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1176 1541
1177 if ($ref) { 1542 if ($ref) {
1178 $self->{rbuf} = $json->incr_text; 1543 $self->{rbuf} = $json->incr_text;
1179 $json->incr_text = ""; 1544 $json->incr_text = "";
1180 $cb->($self, $ref); 1545 $cb->($self, $ref);
1181 1546
1182 1 1547 1
1548 } elsif ($@) {
1549 # error case
1550 $json->incr_skip;
1551
1552 $self->{rbuf} = $json->incr_text;
1553 $json->incr_text = "";
1554
1555 $self->_error (Errno::EBADMSG);
1556
1557 ()
1183 } else { 1558 } else {
1184 $self->{rbuf} = ""; 1559 $self->{rbuf} = "";
1560
1185 () 1561 ()
1186 } 1562 }
1187 } 1563 }
1188}; 1564};
1189 1565
1221 # read remaining chunk 1597 # read remaining chunk
1222 $_[0]->unshift_read (chunk => $len, sub { 1598 $_[0]->unshift_read (chunk => $len, sub {
1223 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1599 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224 $cb->($_[0], $ref); 1600 $cb->($_[0], $ref);
1225 } else { 1601 } else {
1226 $self->_error (&Errno::EBADMSG); 1602 $self->_error (Errno::EBADMSG);
1227 } 1603 }
1228 }); 1604 });
1229 } 1605 }
1230 1606
1231 1 1607 1
1283 my ($self) = @_; 1659 my ($self) = @_;
1284 1660
1285 unless ($self->{_rw} || $self->{_eof}) { 1661 unless ($self->{_rw} || $self->{_eof}) {
1286 Scalar::Util::weaken $self; 1662 Scalar::Util::weaken $self;
1287 1663
1288 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1664 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1289 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf}); 1665 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1290 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1666 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1291 1667
1292 if ($len > 0) { 1668 if ($len > 0) {
1293 $self->{_activity} = AnyEvent->now; 1669 $self->{_activity} = $self->{_ractivity} = AE::now;
1294 1670
1295 if ($self->{tls}) { 1671 if ($self->{tls}) {
1296 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1672 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1673
1297 &_dotls ($self); 1674 &_dotls ($self);
1298 } else { 1675 } else {
1299 $self->_drain_rbuf unless $self->{_in_drain}; 1676 $self->_drain_rbuf;
1300 } 1677 }
1301 1678
1302 } elsif (defined $len) { 1679 } elsif (defined $len) {
1303 delete $self->{_rw}; 1680 delete $self->{_rw};
1304 $self->{_eof} = 1; 1681 $self->{_eof} = 1;
1305 $self->_drain_rbuf unless $self->{_in_drain}; 1682 $self->_drain_rbuf;
1306 1683
1307 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1684 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1308 return $self->_error ($!, 1); 1685 return $self->_error ($!, 1);
1309 } 1686 }
1310 }); 1687 };
1311 } 1688 }
1312} 1689}
1313 1690
1691our $ERROR_SYSCALL;
1692our $ERROR_WANT_READ;
1693
1694sub _tls_error {
1695 my ($self, $err) = @_;
1696
1697 return $self->_error ($!, 1)
1698 if $err == Net::SSLeay::ERROR_SYSCALL ();
1699
1700 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1701
1702 # reduce error string to look less scary
1703 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1704
1705 if ($self->{_on_starttls}) {
1706 (delete $self->{_on_starttls})->($self, undef, $err);
1707 &_freetls;
1708 } else {
1709 &_freetls;
1710 $self->_error (Errno::EPROTO, 1, $err);
1711 }
1712}
1713
1714# poll the write BIO and send the data if applicable
1715# also decode read data if possible
1716# this is basiclaly our TLS state machine
1717# more efficient implementations are possible with openssl,
1718# but not with the buggy and incomplete Net::SSLeay.
1314sub _dotls { 1719sub _dotls {
1315 my ($self) = @_; 1720 my ($self) = @_;
1316 1721
1317 my $buf; 1722 my $tmp;
1318 1723
1319 if (length $self->{_tls_wbuf}) { 1724 if (length $self->{_tls_wbuf}) {
1320 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1725 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1321 substr $self->{_tls_wbuf}, 0, $len, ""; 1726 substr $self->{_tls_wbuf}, 0, $tmp, "";
1322 } 1727 }
1323 }
1324 1728
1729 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1730 return $self->_tls_error ($tmp)
1731 if $tmp != $ERROR_WANT_READ
1732 && ($tmp != $ERROR_SYSCALL || $!);
1733 }
1734
1325 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1735 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1326 unless (length $buf) { 1736 unless (length $tmp) {
1327 # let's treat SSL-eof as we treat normal EOF 1737 $self->{_on_starttls}
1328 delete $self->{_rw}; 1738 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1329 $self->{_eof} = 1;
1330 &_freetls; 1739 &_freetls;
1740
1741 if ($self->{on_stoptls}) {
1742 $self->{on_stoptls}($self);
1743 return;
1744 } else {
1745 # let's treat SSL-eof as we treat normal EOF
1746 delete $self->{_rw};
1747 $self->{_eof} = 1;
1748 }
1331 } 1749 }
1332 1750
1333 $self->{rbuf} .= $buf; 1751 $self->{_tls_rbuf} .= $tmp;
1334 $self->_drain_rbuf unless $self->{_in_drain}; 1752 $self->_drain_rbuf;
1335 $self->{tls} or return; # tls session might have gone away in callback 1753 $self->{tls} or return; # tls session might have gone away in callback
1336 } 1754 }
1337 1755
1338 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1756 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1339
1340 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1341 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1342 return $self->_error ($!, 1); 1757 return $self->_tls_error ($tmp)
1343 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1758 if $tmp != $ERROR_WANT_READ
1344 return $self->_error (&Errno::EIO, 1); 1759 && ($tmp != $ERROR_SYSCALL || $!);
1345 }
1346 1760
1347 # all others are fine for our purposes
1348 }
1349
1350 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1761 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1351 $self->{wbuf} .= $buf; 1762 $self->{wbuf} .= $tmp;
1352 $self->_drain_wbuf; 1763 $self->_drain_wbuf;
1353 } 1764 }
1765
1766 $self->{_on_starttls}
1767 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1768 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1354} 1769}
1355 1770
1356=item $handle->starttls ($tls[, $tls_ctx]) 1771=item $handle->starttls ($tls[, $tls_ctx])
1357 1772
1358Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1773Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1359object is created, you can also do that at a later time by calling 1774object is created, you can also do that at a later time by calling
1360C<starttls>. 1775C<starttls>.
1361 1776
1777Starting TLS is currently an asynchronous operation - when you push some
1778write data and then call C<< ->starttls >> then TLS negotiation will start
1779immediately, after which the queued write data is then sent.
1780
1362The first argument is the same as the C<tls> constructor argument (either 1781The first argument is the same as the C<tls> constructor argument (either
1363C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1782C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1364 1783
1365The second argument is the optional C<Net::SSLeay::CTX> object that is 1784The second argument is the optional C<AnyEvent::TLS> object that is used
1366used when AnyEvent::Handle has to create its own TLS connection object. 1785when AnyEvent::Handle has to create its own TLS connection object, or
1786a hash reference with C<< key => value >> pairs that will be used to
1787construct a new context.
1367 1788
1368The TLS connection object will end up in C<< $handle->{tls} >> after this 1789The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1369call and can be used or changed to your liking. Note that the handshake 1790context in C<< $handle->{tls_ctx} >> after this call and can be used or
1370might have already started when this function returns. 1791changed to your liking. Note that the handshake might have already started
1792when this function returns.
1371 1793
1372If it an error to start a TLS handshake more than once per 1794Due to bugs in OpenSSL, it might or might not be possible to do multiple
1373AnyEvent::Handle object (this is due to bugs in OpenSSL). 1795handshakes on the same stream. Best do not attempt to use the stream after
1796stopping TLS.
1374 1797
1375=cut 1798=cut
1799
1800our %TLS_CACHE; #TODO not yet documented, should we?
1376 1801
1377sub starttls { 1802sub starttls {
1378 my ($self, $ssl, $ctx) = @_; 1803 my ($self, $tls, $ctx) = @_;
1379 1804
1380 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1805 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1381 if $self->{tls}; 1806 if $self->{tls};
1807
1808 $self->{tls} = $tls;
1809 $self->{tls_ctx} = $ctx if @_ > 2;
1810
1811 return unless $self->{fh};
1812
1813 require Net::SSLeay;
1814
1815 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1816 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1817
1818 $tls = delete $self->{tls};
1819 $ctx = $self->{tls_ctx};
1820
1821 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1822
1823 if ("HASH" eq ref $ctx) {
1824 require AnyEvent::TLS;
1825
1826 if ($ctx->{cache}) {
1827 my $key = $ctx+0;
1828 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1829 } else {
1830 $ctx = new AnyEvent::TLS %$ctx;
1831 }
1832 }
1382 1833
1383 if ($ssl eq "accept") { 1834 $self->{tls_ctx} = $ctx || TLS_CTX ();
1384 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1835 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1385 Net::SSLeay::set_accept_state ($ssl);
1386 } elsif ($ssl eq "connect") {
1387 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388 Net::SSLeay::set_connect_state ($ssl);
1389 }
1390
1391 $self->{tls} = $ssl;
1392 1836
1393 # basically, this is deep magic (because SSL_read should have the same issues) 1837 # basically, this is deep magic (because SSL_read should have the same issues)
1394 # but the openssl maintainers basically said: "trust us, it just works". 1838 # but the openssl maintainers basically said: "trust us, it just works".
1395 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1839 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396 # and mismaintained ssleay-module doesn't even offer them). 1840 # and mismaintained ssleay-module doesn't even offer them).
1400 # 1844 #
1401 # note that we do not try to keep the length constant between writes as we are required to do. 1845 # note that we do not try to keep the length constant between writes as we are required to do.
1402 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1846 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1847 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404 # have identity issues in that area. 1848 # have identity issues in that area.
1405 Net::SSLeay::CTX_set_mode ($self->{tls}, 1849# Net::SSLeay::CTX_set_mode ($ssl,
1406 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1850# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1851# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1852 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1408 1853
1409 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1854 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1855 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 1856
1857 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1858
1412 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1859 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1860
1861 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1862 if $self->{on_starttls};
1413 1863
1414 &_dotls; # need to trigger the initial handshake 1864 &_dotls; # need to trigger the initial handshake
1415 $self->start_read; # make sure we actually do read 1865 $self->start_read; # make sure we actually do read
1416} 1866}
1417 1867
1418=item $handle->stoptls 1868=item $handle->stoptls
1419 1869
1420Shuts down the SSL connection - this makes a proper EOF handshake by 1870Shuts down the SSL connection - this makes a proper EOF handshake by
1421sending a close notify to the other side, but since OpenSSL doesn't 1871sending a close notify to the other side, but since OpenSSL doesn't
1422support non-blocking shut downs, it is not possible to re-use the stream 1872support non-blocking shut downs, it is not guarenteed that you can re-use
1423afterwards. 1873the stream afterwards.
1424 1874
1425=cut 1875=cut
1426 1876
1427sub stoptls { 1877sub stoptls {
1428 my ($self) = @_; 1878 my ($self) = @_;
1429 1879
1430 if ($self->{tls}) { 1880 if ($self->{tls}) {
1431 Net::SSLeay::shutdown $self->{tls}; 1881 Net::SSLeay::shutdown ($self->{tls});
1432 1882
1433 &_dotls; 1883 &_dotls;
1434 1884
1435 # we don't give a shit. no, we do, but we can't. no... 1885# # we don't give a shit. no, we do, but we can't. no...#d#
1436 # we, we... have to use openssl :/ 1886# # we, we... have to use openssl :/#d#
1437 &_freetls; 1887# &_freetls;#d#
1438 } 1888 }
1439} 1889}
1440 1890
1441sub _freetls { 1891sub _freetls {
1442 my ($self) = @_; 1892 my ($self) = @_;
1443 1893
1444 return unless $self->{tls}; 1894 return unless $self->{tls};
1445 1895
1446 Net::SSLeay::free (delete $self->{tls}); 1896 $self->{tls_ctx}->_put_session (delete $self->{tls})
1897 if $self->{tls} > 0;
1447 1898
1448 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1899 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1449} 1900}
1450 1901
1451sub DESTROY { 1902sub DESTROY {
1452 my $self = shift; 1903 my ($self) = @_;
1453 1904
1454 &_freetls; 1905 &_freetls;
1455 1906
1456 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1907 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457 1908
1458 if ($linger && length $self->{wbuf}) { 1909 if ($linger && length $self->{wbuf} && $self->{fh}) {
1459 my $fh = delete $self->{fh}; 1910 my $fh = delete $self->{fh};
1460 my $wbuf = delete $self->{wbuf}; 1911 my $wbuf = delete $self->{wbuf};
1461 1912
1462 my @linger; 1913 my @linger;
1463 1914
1464 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1915 push @linger, AE::io $fh, 1, sub {
1465 my $len = syswrite $fh, $wbuf, length $wbuf; 1916 my $len = syswrite $fh, $wbuf, length $wbuf;
1466 1917
1467 if ($len > 0) { 1918 if ($len > 0) {
1468 substr $wbuf, 0, $len, ""; 1919 substr $wbuf, 0, $len, "";
1469 } else { 1920 } else {
1470 @linger = (); # end 1921 @linger = (); # end
1471 } 1922 }
1472 }); 1923 };
1473 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1924 push @linger, AE::timer $linger, 0, sub {
1474 @linger = (); 1925 @linger = ();
1475 }); 1926 };
1476 } 1927 }
1928}
1929
1930=item $handle->destroy
1931
1932Shuts down the handle object as much as possible - this call ensures that
1933no further callbacks will be invoked and as many resources as possible
1934will be freed. Any method you will call on the handle object after
1935destroying it in this way will be silently ignored (and it will return the
1936empty list).
1937
1938Normally, you can just "forget" any references to an AnyEvent::Handle
1939object and it will simply shut down. This works in fatal error and EOF
1940callbacks, as well as code outside. It does I<NOT> work in a read or write
1941callback, so when you want to destroy the AnyEvent::Handle object from
1942within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1943that case.
1944
1945Destroying the handle object in this way has the advantage that callbacks
1946will be removed as well, so if those are the only reference holders (as
1947is common), then one doesn't need to do anything special to break any
1948reference cycles.
1949
1950The handle might still linger in the background and write out remaining
1951data, as specified by the C<linger> option, however.
1952
1953=cut
1954
1955sub destroy {
1956 my ($self) = @_;
1957
1958 $self->DESTROY;
1959 %$self = ();
1960 bless $self, "AnyEvent::Handle::destroyed";
1961}
1962
1963sub AnyEvent::Handle::destroyed::AUTOLOAD {
1964 #nop
1477} 1965}
1478 1966
1479=item AnyEvent::Handle::TLS_CTX 1967=item AnyEvent::Handle::TLS_CTX
1480 1968
1481This function creates and returns the Net::SSLeay::CTX object used by 1969This function creates and returns the AnyEvent::TLS object used by default
1482default for TLS mode. 1970for TLS mode.
1483 1971
1484The context is created like this: 1972The context is created by calling L<AnyEvent::TLS> without any arguments.
1485
1486 Net::SSLeay::load_error_strings;
1487 Net::SSLeay::SSLeay_add_ssl_algorithms;
1488 Net::SSLeay::randomize;
1489
1490 my $CTX = Net::SSLeay::CTX_new;
1491
1492 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493 1973
1494=cut 1974=cut
1495 1975
1496our $TLS_CTX; 1976our $TLS_CTX;
1497 1977
1498sub TLS_CTX() { 1978sub TLS_CTX() {
1499 $TLS_CTX || do { 1979 $TLS_CTX ||= do {
1500 require Net::SSLeay; 1980 require AnyEvent::TLS;
1501 1981
1502 Net::SSLeay::load_error_strings (); 1982 new AnyEvent::TLS
1503 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504 Net::SSLeay::randomize ();
1505
1506 $TLS_CTX = Net::SSLeay::CTX_new ();
1507
1508 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509
1510 $TLS_CTX
1511 } 1983 }
1512} 1984}
1513 1985
1514=back 1986=back
1987
1988
1989=head1 NONFREQUENTLY ASKED QUESTIONS
1990
1991=over 4
1992
1993=item I C<undef> the AnyEvent::Handle reference inside my callback and
1994still get further invocations!
1995
1996That's because AnyEvent::Handle keeps a reference to itself when handling
1997read or write callbacks.
1998
1999It is only safe to "forget" the reference inside EOF or error callbacks,
2000from within all other callbacks, you need to explicitly call the C<<
2001->destroy >> method.
2002
2003=item I get different callback invocations in TLS mode/Why can't I pause
2004reading?
2005
2006Unlike, say, TCP, TLS connections do not consist of two independent
2007communication channels, one for each direction. Or put differently. The
2008read and write directions are not independent of each other: you cannot
2009write data unless you are also prepared to read, and vice versa.
2010
2011This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2012callback invocations when you are not expecting any read data - the reason
2013is that AnyEvent::Handle always reads in TLS mode.
2014
2015During the connection, you have to make sure that you always have a
2016non-empty read-queue, or an C<on_read> watcher. At the end of the
2017connection (or when you no longer want to use it) you can call the
2018C<destroy> method.
2019
2020=item How do I read data until the other side closes the connection?
2021
2022If you just want to read your data into a perl scalar, the easiest way
2023to achieve this is by setting an C<on_read> callback that does nothing,
2024clearing the C<on_eof> callback and in the C<on_error> callback, the data
2025will be in C<$_[0]{rbuf}>:
2026
2027 $handle->on_read (sub { });
2028 $handle->on_eof (undef);
2029 $handle->on_error (sub {
2030 my $data = delete $_[0]{rbuf};
2031 });
2032
2033The reason to use C<on_error> is that TCP connections, due to latencies
2034and packets loss, might get closed quite violently with an error, when in
2035fact, all data has been received.
2036
2037It is usually better to use acknowledgements when transferring data,
2038to make sure the other side hasn't just died and you got the data
2039intact. This is also one reason why so many internet protocols have an
2040explicit QUIT command.
2041
2042=item I don't want to destroy the handle too early - how do I wait until
2043all data has been written?
2044
2045After writing your last bits of data, set the C<on_drain> callback
2046and destroy the handle in there - with the default setting of
2047C<low_water_mark> this will be called precisely when all data has been
2048written to the socket:
2049
2050 $handle->push_write (...);
2051 $handle->on_drain (sub {
2052 warn "all data submitted to the kernel\n";
2053 undef $handle;
2054 });
2055
2056If you just want to queue some data and then signal EOF to the other side,
2057consider using C<< ->push_shutdown >> instead.
2058
2059=item I want to contact a TLS/SSL server, I don't care about security.
2060
2061If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2062simply connect to it and then create the AnyEvent::Handle with the C<tls>
2063parameter:
2064
2065 tcp_connect $host, $port, sub {
2066 my ($fh) = @_;
2067
2068 my $handle = new AnyEvent::Handle
2069 fh => $fh,
2070 tls => "connect",
2071 on_error => sub { ... };
2072
2073 $handle->push_write (...);
2074 };
2075
2076=item I want to contact a TLS/SSL server, I do care about security.
2077
2078Then you should additionally enable certificate verification, including
2079peername verification, if the protocol you use supports it (see
2080L<AnyEvent::TLS>, C<verify_peername>).
2081
2082E.g. for HTTPS:
2083
2084 tcp_connect $host, $port, sub {
2085 my ($fh) = @_;
2086
2087 my $handle = new AnyEvent::Handle
2088 fh => $fh,
2089 peername => $host,
2090 tls => "connect",
2091 tls_ctx => { verify => 1, verify_peername => "https" },
2092 ...
2093
2094Note that you must specify the hostname you connected to (or whatever
2095"peername" the protocol needs) as the C<peername> argument, otherwise no
2096peername verification will be done.
2097
2098The above will use the system-dependent default set of trusted CA
2099certificates. If you want to check against a specific CA, add the
2100C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2101
2102 tls_ctx => {
2103 verify => 1,
2104 verify_peername => "https",
2105 ca_file => "my-ca-cert.pem",
2106 },
2107
2108=item I want to create a TLS/SSL server, how do I do that?
2109
2110Well, you first need to get a server certificate and key. You have
2111three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2112self-signed certificate (cheap. check the search engine of your choice,
2113there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2114nice program for that purpose).
2115
2116Then create a file with your private key (in PEM format, see
2117L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2118file should then look like this:
2119
2120 -----BEGIN RSA PRIVATE KEY-----
2121 ...header data
2122 ... lots of base64'y-stuff
2123 -----END RSA PRIVATE KEY-----
2124
2125 -----BEGIN CERTIFICATE-----
2126 ... lots of base64'y-stuff
2127 -----END CERTIFICATE-----
2128
2129The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2130specify this file as C<cert_file>:
2131
2132 tcp_server undef, $port, sub {
2133 my ($fh) = @_;
2134
2135 my $handle = new AnyEvent::Handle
2136 fh => $fh,
2137 tls => "accept",
2138 tls_ctx => { cert_file => "my-server-keycert.pem" },
2139 ...
2140
2141When you have intermediate CA certificates that your clients might not
2142know about, just append them to the C<cert_file>.
2143
2144=back
2145
1515 2146
1516=head1 SUBCLASSING AnyEvent::Handle 2147=head1 SUBCLASSING AnyEvent::Handle
1517 2148
1518In many cases, you might want to subclass AnyEvent::Handle. 2149In many cases, you might want to subclass AnyEvent::Handle.
1519 2150

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines