ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.42 by root, Tue May 27 06:23:15 2008 UTC vs.
Revision 1.143 by root, Mon Jul 6 21:02:34 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = '0.04'; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
81 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
82While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
83otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
84waiting for data. 95waiting for data.
85 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
86=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal, $message)
87 101
88This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
90or a read error. 104connect or a read error.
91 105
92The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
117Non-fatal errors can be retried by simply returning, but it is recommended
118to simply ignore this parameter and instead abondon the handle object
119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 121
95On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 124C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 125
101While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
103die. 128C<croak>.
104 129
105=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
106 131
107This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
109 136
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
112 141
113When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
120This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
122 151
123To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
124 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
160=item timeout => $fractional_seconds
161
162If non-zero, then this enables an "inactivity" timeout: whenever this many
163seconds pass without a successful read or write on the underlying file
164handle, the C<on_timeout> callback will be invoked (and if that one is
165missing, a non-fatal C<ETIMEDOUT> error will be raised).
166
167Note that timeout processing is also active when you currently do not have
168any outstanding read or write requests: If you plan to keep the connection
169idle then you should disable the timout temporarily or ignore the timeout
170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
172
173Zero (the default) disables this timeout.
174
175=item on_timeout => $cb->($handle)
176
177Called whenever the inactivity timeout passes. If you return from this
178callback, then the timeout will be reset as if some activity had happened,
179so this condition is not fatal in any way.
180
125=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
126 182
127If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
128when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
129avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
130 186
131For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
132be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
133(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
134amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
135isn't finished). 191isn't finished).
136 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
137=item read_size => <bytes> 219=item read_size => <bytes>
138 220
139The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
140on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
141 224
142=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
143 226
144Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
145buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
146considered empty. 229considered empty.
147 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>).
255
148=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
149 257
150When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
151will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
152data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
153 264
154TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
155automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
156 269
157For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
158connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
159 273
160You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
161to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
162or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
163AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
164 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
165See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
166 290
167=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
168 292
169Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
170(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
171missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
172 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
301=item on_starttls => $cb->($handle, $success[, $error_message])
302
303This callback will be invoked when the TLS/SSL handshake has finished. If
304C<$success> is true, then the TLS handshake succeeded, otherwise it failed
305(C<on_stoptls> will not be called in this case).
306
307The session in C<< $handle->{tls} >> can still be examined in this
308callback, even when the handshake was not successful.
309
310TLS handshake failures will not cause C<on_error> to be invoked when this
311callback is in effect, instead, the error message will be passed to C<on_starttls>.
312
313Without this callback, handshake failures lead to C<on_error> being
314called, as normal.
315
316Note that you cannot call C<starttls> right again in this callback. If you
317need to do that, start an zero-second timer instead whose callback can
318then call C<< ->starttls >> again.
319
320=item on_stoptls => $cb->($handle)
321
322When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
323set, then it will be invoked after freeing the TLS session. If it is not,
324then a TLS shutdown condition will be treated like a normal EOF condition
325on the handle.
326
327The session in C<< $handle->{tls} >> can still be examined in this
328callback.
329
330This callback will only be called on TLS shutdowns, not when the
331underlying handle signals EOF.
332
173=item json => JSON or JSON::XS object 333=item json => JSON or JSON::XS object
174 334
175This is the json coder object used by the C<json> read and write types. 335This is the json coder object used by the C<json> read and write types.
176 336
177If you don't supply it, then AnyEvent::Handle will create and use a 337If you don't supply it, then AnyEvent::Handle will create and use a
178suitable one, which will write and expect UTF-8 encoded JSON texts. 338suitable one (on demand), which will write and expect UTF-8 encoded JSON
339texts.
179 340
180Note that you are responsible to depend on the JSON module if you want to 341Note that you are responsible to depend on the JSON module if you want to
181use this functionality, as AnyEvent does not have a dependency itself. 342use this functionality, as AnyEvent does not have a dependency itself.
182 343
183=item filter_r => $cb
184
185=item filter_w => $cb
186
187These exist, but are undocumented at this time.
188
189=back 344=back
190 345
191=cut 346=cut
192 347
193sub new { 348sub new {
194 my $class = shift; 349 my $class = shift;
195
196 my $self = bless { @_ }, $class; 350 my $self = bless { @_ }, $class;
197 351
198 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 352 $self->{fh} or Carp::croak "mandatory argument fh is missing";
199 353
200 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 354 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
201 355
202 if ($self->{tls}) { 356 $self->{_activity} = AnyEvent->now;
203 require Net::SSLeay; 357 $self->_timeout;
358
359 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
360
204 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 361 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
205 } 362 if $self->{tls};
206 363
207 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
208 $self->on_error (delete $self->{on_error}) if $self->{on_error};
209 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 364 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
210 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
211 365
212 $self->start_read; 366 $self->start_read
367 if $self->{on_read};
213 368
214 $self 369 $self->{fh} && $self
215} 370}
216 371
217sub _shutdown { 372sub _shutdown {
218 my ($self) = @_; 373 my ($self) = @_;
219 374
220 delete $self->{_rw}; 375 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
221 delete $self->{_ww}; 376 $self->{_eof} = 1; # tell starttls et. al to stop trying
222 delete $self->{fh};
223}
224 377
378 &_freetls;
379}
380
225sub error { 381sub _error {
226 my ($self) = @_; 382 my ($self, $errno, $fatal, $message) = @_;
227 383
228 {
229 local $!;
230 $self->_shutdown; 384 $self->_shutdown
231 } 385 if $fatal;
232 386
233 $self->{on_error}($self) 387 $! = $errno;
388 $message ||= "$!";
389
234 if $self->{on_error}; 390 if ($self->{on_error}) {
235 391 $self->{on_error}($self, $fatal, $message);
392 } elsif ($self->{fh}) {
236 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 393 Carp::croak "AnyEvent::Handle uncaught error: $message";
394 }
237} 395}
238 396
239=item $fh = $handle->fh 397=item $fh = $handle->fh
240 398
241This method returns the file handle of the L<AnyEvent::Handle> object. 399This method returns the file handle used to create the L<AnyEvent::Handle> object.
242 400
243=cut 401=cut
244 402
245sub fh { $_[0]{fh} } 403sub fh { $_[0]{fh} }
246 404
262 420
263sub on_eof { 421sub on_eof {
264 $_[0]{on_eof} = $_[1]; 422 $_[0]{on_eof} = $_[1];
265} 423}
266 424
425=item $handle->on_timeout ($cb)
426
427Replace the current C<on_timeout> callback, or disables the callback (but
428not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
429argument and method.
430
431=cut
432
433sub on_timeout {
434 $_[0]{on_timeout} = $_[1];
435}
436
437=item $handle->autocork ($boolean)
438
439Enables or disables the current autocork behaviour (see C<autocork>
440constructor argument). Changes will only take effect on the next write.
441
442=cut
443
444sub autocork {
445 $_[0]{autocork} = $_[1];
446}
447
448=item $handle->no_delay ($boolean)
449
450Enables or disables the C<no_delay> setting (see constructor argument of
451the same name for details).
452
453=cut
454
455sub no_delay {
456 $_[0]{no_delay} = $_[1];
457
458 eval {
459 local $SIG{__DIE__};
460 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
461 };
462}
463
464=item $handle->on_starttls ($cb)
465
466Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
467
468=cut
469
470sub on_starttls {
471 $_[0]{on_starttls} = $_[1];
472}
473
474=item $handle->on_stoptls ($cb)
475
476Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
477
478=cut
479
480sub on_starttls {
481 $_[0]{on_stoptls} = $_[1];
482}
483
484#############################################################################
485
486=item $handle->timeout ($seconds)
487
488Configures (or disables) the inactivity timeout.
489
490=cut
491
492sub timeout {
493 my ($self, $timeout) = @_;
494
495 $self->{timeout} = $timeout;
496 $self->_timeout;
497}
498
499# reset the timeout watcher, as neccessary
500# also check for time-outs
501sub _timeout {
502 my ($self) = @_;
503
504 if ($self->{timeout}) {
505 my $NOW = AnyEvent->now;
506
507 # when would the timeout trigger?
508 my $after = $self->{_activity} + $self->{timeout} - $NOW;
509
510 # now or in the past already?
511 if ($after <= 0) {
512 $self->{_activity} = $NOW;
513
514 if ($self->{on_timeout}) {
515 $self->{on_timeout}($self);
516 } else {
517 $self->_error (&Errno::ETIMEDOUT);
518 }
519
520 # callback could have changed timeout value, optimise
521 return unless $self->{timeout};
522
523 # calculate new after
524 $after = $self->{timeout};
525 }
526
527 Scalar::Util::weaken $self;
528 return unless $self; # ->error could have destroyed $self
529
530 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
531 delete $self->{_tw};
532 $self->_timeout;
533 });
534 } else {
535 delete $self->{_tw};
536 }
537}
538
267############################################################################# 539#############################################################################
268 540
269=back 541=back
270 542
271=head2 WRITE QUEUE 543=head2 WRITE QUEUE
292 my ($self, $cb) = @_; 564 my ($self, $cb) = @_;
293 565
294 $self->{on_drain} = $cb; 566 $self->{on_drain} = $cb;
295 567
296 $cb->($self) 568 $cb->($self)
297 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 569 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
298} 570}
299 571
300=item $handle->push_write ($data) 572=item $handle->push_write ($data)
301 573
302Queues the given scalar to be written. You can push as much data as you 574Queues the given scalar to be written. You can push as much data as you
316 my $len = syswrite $self->{fh}, $self->{wbuf}; 588 my $len = syswrite $self->{fh}, $self->{wbuf};
317 589
318 if ($len >= 0) { 590 if ($len >= 0) {
319 substr $self->{wbuf}, 0, $len, ""; 591 substr $self->{wbuf}, 0, $len, "";
320 592
593 $self->{_activity} = AnyEvent->now;
594
321 $self->{on_drain}($self) 595 $self->{on_drain}($self)
322 if $self->{low_water_mark} >= length $self->{wbuf} 596 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
323 && $self->{on_drain}; 597 && $self->{on_drain};
324 598
325 delete $self->{_ww} unless length $self->{wbuf}; 599 delete $self->{_ww} unless length $self->{wbuf};
326 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 600 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
327 $self->error; 601 $self->_error ($!, 1);
328 } 602 }
329 }; 603 };
330 604
331 # try to write data immediately 605 # try to write data immediately
332 $cb->(); 606 $cb->() unless $self->{autocork};
333 607
334 # if still data left in wbuf, we need to poll 608 # if still data left in wbuf, we need to poll
335 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 609 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
336 if length $self->{wbuf}; 610 if length $self->{wbuf};
337 }; 611 };
351 625
352 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 626 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
353 ->($self, @_); 627 ->($self, @_);
354 } 628 }
355 629
356 if ($self->{filter_w}) { 630 if ($self->{tls}) {
357 $self->{filter_w}->($self, \$_[0]); 631 $self->{_tls_wbuf} .= $_[0];
632
633 &_dotls ($self);
358 } else { 634 } else {
359 $self->{wbuf} .= $_[0]; 635 $self->{wbuf} .= $_[0];
360 $self->_drain_wbuf; 636 $self->_drain_wbuf;
361 } 637 }
362} 638}
363 639
364=item $handle->push_write (type => @args) 640=item $handle->push_write (type => @args)
365 641
366=item $handle->unshift_write (type => @args)
367
368Instead of formatting your data yourself, you can also let this module do 642Instead of formatting your data yourself, you can also let this module do
369the job by specifying a type and type-specific arguments. 643the job by specifying a type and type-specific arguments.
370 644
371Predefined types are (if you have ideas for additional types, feel free to 645Predefined types are (if you have ideas for additional types, feel free to
372drop by and tell us): 646drop by and tell us):
376=item netstring => $string 650=item netstring => $string
377 651
378Formats the given value as netstring 652Formats the given value as netstring
379(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 653(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
380 654
381=back
382
383=cut 655=cut
384 656
385register_write_type netstring => sub { 657register_write_type netstring => sub {
386 my ($self, $string) = @_; 658 my ($self, $string) = @_;
387 659
388 sprintf "%d:%s,", (length $string), $string 660 (length $string) . ":$string,"
661};
662
663=item packstring => $format, $data
664
665An octet string prefixed with an encoded length. The encoding C<$format>
666uses the same format as a Perl C<pack> format, but must specify a single
667integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
668optional C<!>, C<< < >> or C<< > >> modifier).
669
670=cut
671
672register_write_type packstring => sub {
673 my ($self, $format, $string) = @_;
674
675 pack "$format/a*", $string
389}; 676};
390 677
391=item json => $array_or_hashref 678=item json => $array_or_hashref
392 679
393Encodes the given hash or array reference into a JSON object. Unless you 680Encodes the given hash or array reference into a JSON object. Unless you
427 714
428 $self->{json} ? $self->{json}->encode ($ref) 715 $self->{json} ? $self->{json}->encode ($ref)
429 : JSON::encode_json ($ref) 716 : JSON::encode_json ($ref)
430}; 717};
431 718
719=item storable => $reference
720
721Freezes the given reference using L<Storable> and writes it to the
722handle. Uses the C<nfreeze> format.
723
724=cut
725
726register_write_type storable => sub {
727 my ($self, $ref) = @_;
728
729 require Storable;
730
731 pack "w/a*", Storable::nfreeze ($ref)
732};
733
734=back
735
736=item $handle->push_shutdown
737
738Sometimes you know you want to close the socket after writing your data
739before it was actually written. One way to do that is to replace your
740C<on_drain> handler by a callback that shuts down the socket (and set
741C<low_water_mark> to C<0>). This method is a shorthand for just that, and
742replaces the C<on_drain> callback with:
743
744 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
745
746This simply shuts down the write side and signals an EOF condition to the
747the peer.
748
749You can rely on the normal read queue and C<on_eof> handling
750afterwards. This is the cleanest way to close a connection.
751
752=cut
753
754sub push_shutdown {
755 my ($self) = @_;
756
757 delete $self->{low_water_mark};
758 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
759}
760
432=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 761=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
433 762
434This function (not method) lets you add your own types to C<push_write>. 763This function (not method) lets you add your own types to C<push_write>.
435Whenever the given C<type> is used, C<push_write> will invoke the code 764Whenever the given C<type> is used, C<push_write> will invoke the code
436reference with the handle object and the remaining arguments. 765reference with the handle object and the remaining arguments.
456ways, the "simple" way, using only C<on_read> and the "complex" way, using 785ways, the "simple" way, using only C<on_read> and the "complex" way, using
457a queue. 786a queue.
458 787
459In the simple case, you just install an C<on_read> callback and whenever 788In the simple case, you just install an C<on_read> callback and whenever
460new data arrives, it will be called. You can then remove some data (if 789new data arrives, it will be called. You can then remove some data (if
461enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 790enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
462or not. 791leave the data there if you want to accumulate more (e.g. when only a
792partial message has been received so far).
463 793
464In the more complex case, you want to queue multiple callbacks. In this 794In the more complex case, you want to queue multiple callbacks. In this
465case, AnyEvent::Handle will call the first queued callback each time new 795case, AnyEvent::Handle will call the first queued callback each time new
466data arrives and removes it when it has done its job (see C<push_read>, 796data arrives (also the first time it is queued) and removes it when it has
467below). 797done its job (see C<push_read>, below).
468 798
469This way you can, for example, push three line-reads, followed by reading 799This way you can, for example, push three line-reads, followed by reading
470a chunk of data, and AnyEvent::Handle will execute them in order. 800a chunk of data, and AnyEvent::Handle will execute them in order.
471 801
472Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 802Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
473the specified number of bytes which give an XML datagram. 803the specified number of bytes which give an XML datagram.
474 804
475 # in the default state, expect some header bytes 805 # in the default state, expect some header bytes
476 $handle->on_read (sub { 806 $handle->on_read (sub {
477 # some data is here, now queue the length-header-read (4 octets) 807 # some data is here, now queue the length-header-read (4 octets)
478 shift->unshift_read_chunk (4, sub { 808 shift->unshift_read (chunk => 4, sub {
479 # header arrived, decode 809 # header arrived, decode
480 my $len = unpack "N", $_[1]; 810 my $len = unpack "N", $_[1];
481 811
482 # now read the payload 812 # now read the payload
483 shift->unshift_read_chunk ($len, sub { 813 shift->unshift_read (chunk => $len, sub {
484 my $xml = $_[1]; 814 my $xml = $_[1];
485 # handle xml 815 # handle xml
486 }); 816 });
487 }); 817 });
488 }); 818 });
489 819
490Example 2: Implement a client for a protocol that replies either with 820Example 2: Implement a client for a protocol that replies either with "OK"
491"OK" and another line or "ERROR" for one request, and 64 bytes for the 821and another line or "ERROR" for the first request that is sent, and 64
492second request. Due tot he availability of a full queue, we can just 822bytes for the second request. Due to the availability of a queue, we can
493pipeline sending both requests and manipulate the queue as necessary in 823just pipeline sending both requests and manipulate the queue as necessary
494the callbacks: 824in the callbacks.
495 825
496 # request one 826When the first callback is called and sees an "OK" response, it will
827C<unshift> another line-read. This line-read will be queued I<before> the
82864-byte chunk callback.
829
830 # request one, returns either "OK + extra line" or "ERROR"
497 $handle->push_write ("request 1\015\012"); 831 $handle->push_write ("request 1\015\012");
498 832
499 # we expect "ERROR" or "OK" as response, so push a line read 833 # we expect "ERROR" or "OK" as response, so push a line read
500 $handle->push_read_line (sub { 834 $handle->push_read (line => sub {
501 # if we got an "OK", we have to _prepend_ another line, 835 # if we got an "OK", we have to _prepend_ another line,
502 # so it will be read before the second request reads its 64 bytes 836 # so it will be read before the second request reads its 64 bytes
503 # which are already in the queue when this callback is called 837 # which are already in the queue when this callback is called
504 # we don't do this in case we got an error 838 # we don't do this in case we got an error
505 if ($_[1] eq "OK") { 839 if ($_[1] eq "OK") {
506 $_[0]->unshift_read_line (sub { 840 $_[0]->unshift_read (line => sub {
507 my $response = $_[1]; 841 my $response = $_[1];
508 ... 842 ...
509 }); 843 });
510 } 844 }
511 }); 845 });
512 846
513 # request two 847 # request two, simply returns 64 octets
514 $handle->push_write ("request 2\015\012"); 848 $handle->push_write ("request 2\015\012");
515 849
516 # simply read 64 bytes, always 850 # simply read 64 bytes, always
517 $handle->push_read_chunk (64, sub { 851 $handle->push_read (chunk => 64, sub {
518 my $response = $_[1]; 852 my $response = $_[1];
519 ... 853 ...
520 }); 854 });
521 855
522=over 4 856=over 4
523 857
524=cut 858=cut
525 859
526sub _drain_rbuf { 860sub _drain_rbuf {
527 my ($self) = @_; 861 my ($self) = @_;
862
863 local $self->{_in_drain} = 1;
528 864
529 if ( 865 if (
530 defined $self->{rbuf_max} 866 defined $self->{rbuf_max}
531 && $self->{rbuf_max} < length $self->{rbuf} 867 && $self->{rbuf_max} < length $self->{rbuf}
532 ) { 868 ) {
533 $! = &Errno::ENOSPC; 869 $self->_error (&Errno::ENOSPC, 1), return;
534 $self->error;
535 } 870 }
536 871
537 return if $self->{in_drain}; 872 while () {
538 local $self->{in_drain} = 1; 873 # we need to use a separate tls read buffer, as we must not receive data while
874 # we are draining the buffer, and this can only happen with TLS.
875 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
539 876
540 while (my $len = length $self->{rbuf}) { 877 my $len = length $self->{rbuf};
541 no strict 'refs'; 878
542 if (my $cb = shift @{ $self->{_queue} }) { 879 if (my $cb = shift @{ $self->{_queue} }) {
543 unless ($cb->($self)) { 880 unless ($cb->($self)) {
544 if ($self->{_eof}) { 881 if ($self->{_eof}) {
545 # no progress can be made (not enough data and no data forthcoming) 882 # no progress can be made (not enough data and no data forthcoming)
546 $! = &Errno::EPIPE; 883 $self->_error (&Errno::EPIPE, 1), return;
547 $self->error;
548 } 884 }
549 885
550 unshift @{ $self->{_queue} }, $cb; 886 unshift @{ $self->{_queue} }, $cb;
551 return; 887 last;
552 } 888 }
553 } elsif ($self->{on_read}) { 889 } elsif ($self->{on_read}) {
890 last unless $len;
891
554 $self->{on_read}($self); 892 $self->{on_read}($self);
555 893
556 if ( 894 if (
557 $self->{_eof} # if no further data will arrive
558 && $len == length $self->{rbuf} # and no data has been consumed 895 $len == length $self->{rbuf} # if no data has been consumed
559 && !@{ $self->{_queue} } # and the queue is still empty 896 && !@{ $self->{_queue} } # and the queue is still empty
560 && $self->{on_read} # and we still want to read data 897 && $self->{on_read} # but we still have on_read
561 ) { 898 ) {
899 # no further data will arrive
562 # then no progress can be made 900 # so no progress can be made
563 $! = &Errno::EPIPE; 901 $self->_error (&Errno::EPIPE, 1), return
564 $self->error; 902 if $self->{_eof};
903
904 last; # more data might arrive
565 } 905 }
566 } else { 906 } else {
567 # read side becomes idle 907 # read side becomes idle
568 delete $self->{_rw}; 908 delete $self->{_rw} unless $self->{tls};
569 return; 909 last;
570 } 910 }
571 } 911 }
572 912
573 if ($self->{_eof}) { 913 if ($self->{_eof}) {
574 $self->_shutdown; 914 if ($self->{on_eof}) {
575 $self->{on_eof}($self) 915 $self->{on_eof}($self)
576 if $self->{on_eof}; 916 } else {
917 $self->_error (0, 1, "Unexpected end-of-file");
918 }
919 }
920
921 # may need to restart read watcher
922 unless ($self->{_rw}) {
923 $self->start_read
924 if $self->{on_read} || @{ $self->{_queue} };
577 } 925 }
578} 926}
579 927
580=item $handle->on_read ($cb) 928=item $handle->on_read ($cb)
581 929
587 935
588sub on_read { 936sub on_read {
589 my ($self, $cb) = @_; 937 my ($self, $cb) = @_;
590 938
591 $self->{on_read} = $cb; 939 $self->{on_read} = $cb;
940 $self->_drain_rbuf if $cb && !$self->{_in_drain};
592} 941}
593 942
594=item $handle->rbuf 943=item $handle->rbuf
595 944
596Returns the read buffer (as a modifiable lvalue). 945Returns the read buffer (as a modifiable lvalue).
597 946
598You can access the read buffer directly as the C<< ->{rbuf} >> member, if 947You can access the read buffer directly as the C<< ->{rbuf} >>
599you want. 948member, if you want. However, the only operation allowed on the
949read buffer (apart from looking at it) is removing data from its
950beginning. Otherwise modifying or appending to it is not allowed and will
951lead to hard-to-track-down bugs.
600 952
601NOTE: The read buffer should only be used or modified if the C<on_read>, 953NOTE: The read buffer should only be used or modified if the C<on_read>,
602C<push_read> or C<unshift_read> methods are used. The other read methods 954C<push_read> or C<unshift_read> methods are used. The other read methods
603automatically manage the read buffer. 955automatically manage the read buffer.
604 956
645 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 997 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
646 ->($self, $cb, @_); 998 ->($self, $cb, @_);
647 } 999 }
648 1000
649 push @{ $self->{_queue} }, $cb; 1001 push @{ $self->{_queue} }, $cb;
650 $self->_drain_rbuf; 1002 $self->_drain_rbuf unless $self->{_in_drain};
651} 1003}
652 1004
653sub unshift_read { 1005sub unshift_read {
654 my $self = shift; 1006 my $self = shift;
655 my $cb = pop; 1007 my $cb = pop;
661 ->($self, $cb, @_); 1013 ->($self, $cb, @_);
662 } 1014 }
663 1015
664 1016
665 unshift @{ $self->{_queue} }, $cb; 1017 unshift @{ $self->{_queue} }, $cb;
666 $self->_drain_rbuf; 1018 $self->_drain_rbuf unless $self->{_in_drain};
667} 1019}
668 1020
669=item $handle->push_read (type => @args, $cb) 1021=item $handle->push_read (type => @args, $cb)
670 1022
671=item $handle->unshift_read (type => @args, $cb) 1023=item $handle->unshift_read (type => @args, $cb)
701 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1053 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
702 1 1054 1
703 } 1055 }
704}; 1056};
705 1057
706# compatibility with older API
707sub push_read_chunk {
708 $_[0]->push_read (chunk => $_[1], $_[2]);
709}
710
711sub unshift_read_chunk {
712 $_[0]->unshift_read (chunk => $_[1], $_[2]);
713}
714
715=item line => [$eol, ]$cb->($handle, $line, $eol) 1058=item line => [$eol, ]$cb->($handle, $line, $eol)
716 1059
717The callback will be called only once a full line (including the end of 1060The callback will be called only once a full line (including the end of
718line marker, C<$eol>) has been read. This line (excluding the end of line 1061line marker, C<$eol>) has been read. This line (excluding the end of line
719marker) will be passed to the callback as second argument (C<$line>), and 1062marker) will be passed to the callback as second argument (C<$line>), and
734=cut 1077=cut
735 1078
736register_read_type line => sub { 1079register_read_type line => sub {
737 my ($self, $cb, $eol) = @_; 1080 my ($self, $cb, $eol) = @_;
738 1081
739 $eol = qr|(\015?\012)| if @_ < 3; 1082 if (@_ < 3) {
740 $eol = quotemeta $eol unless ref $eol; 1083 # this is more than twice as fast as the generic code below
741 $eol = qr|^(.*?)($eol)|s;
742
743 sub { 1084 sub {
744 $_[0]{rbuf} =~ s/$eol// or return; 1085 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
745 1086
746 $cb->($_[0], $1, $2); 1087 $cb->($_[0], $1, $2);
747 1
748 }
749};
750
751# compatibility with older API
752sub push_read_line {
753 my $self = shift;
754 $self->push_read (line => @_);
755}
756
757sub unshift_read_line {
758 my $self = shift;
759 $self->unshift_read (line => @_);
760}
761
762=item netstring => $cb->($handle, $string)
763
764A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
765
766Throws an error with C<$!> set to EBADMSG on format violations.
767
768=cut
769
770register_read_type netstring => sub {
771 my ($self, $cb) = @_;
772
773 sub {
774 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
775 if ($_[0]{rbuf} =~ /[^0-9]/) {
776 $! = &Errno::EBADMSG;
777 $self->error;
778 } 1088 1
779 return;
780 } 1089 }
1090 } else {
1091 $eol = quotemeta $eol unless ref $eol;
1092 $eol = qr|^(.*?)($eol)|s;
781 1093
782 my $len = $1; 1094 sub {
1095 $_[0]{rbuf} =~ s/$eol// or return;
783 1096
784 $self->unshift_read (chunk => $len, sub { 1097 $cb->($_[0], $1, $2);
785 my $string = $_[1];
786 $_[0]->unshift_read (chunk => 1, sub {
787 if ($_[1] eq ",") {
788 $cb->($_[0], $string);
789 } else {
790 $! = &Errno::EBADMSG;
791 $self->error;
792 }
793 }); 1098 1
794 }); 1099 }
795
796 1
797 } 1100 }
798}; 1101};
799 1102
800=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1103=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
801 1104
853 return 1; 1156 return 1;
854 } 1157 }
855 1158
856 # reject 1159 # reject
857 if ($reject && $$rbuf =~ $reject) { 1160 if ($reject && $$rbuf =~ $reject) {
858 $! = &Errno::EBADMSG; 1161 $self->_error (&Errno::EBADMSG);
859 $self->error;
860 } 1162 }
861 1163
862 # skip 1164 # skip
863 if ($skip && $$rbuf =~ $skip) { 1165 if ($skip && $$rbuf =~ $skip) {
864 $data .= substr $$rbuf, 0, $+[0], ""; 1166 $data .= substr $$rbuf, 0, $+[0], "";
866 1168
867 () 1169 ()
868 } 1170 }
869}; 1171};
870 1172
1173=item netstring => $cb->($handle, $string)
1174
1175A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1176
1177Throws an error with C<$!> set to EBADMSG on format violations.
1178
1179=cut
1180
1181register_read_type netstring => sub {
1182 my ($self, $cb) = @_;
1183
1184 sub {
1185 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1186 if ($_[0]{rbuf} =~ /[^0-9]/) {
1187 $self->_error (&Errno::EBADMSG);
1188 }
1189 return;
1190 }
1191
1192 my $len = $1;
1193
1194 $self->unshift_read (chunk => $len, sub {
1195 my $string = $_[1];
1196 $_[0]->unshift_read (chunk => 1, sub {
1197 if ($_[1] eq ",") {
1198 $cb->($_[0], $string);
1199 } else {
1200 $self->_error (&Errno::EBADMSG);
1201 }
1202 });
1203 });
1204
1205 1
1206 }
1207};
1208
1209=item packstring => $format, $cb->($handle, $string)
1210
1211An octet string prefixed with an encoded length. The encoding C<$format>
1212uses the same format as a Perl C<pack> format, but must specify a single
1213integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1214optional C<!>, C<< < >> or C<< > >> modifier).
1215
1216For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1217EPP uses a prefix of C<N> (4 octtes).
1218
1219Example: read a block of data prefixed by its length in BER-encoded
1220format (very efficient).
1221
1222 $handle->push_read (packstring => "w", sub {
1223 my ($handle, $data) = @_;
1224 });
1225
1226=cut
1227
1228register_read_type packstring => sub {
1229 my ($self, $cb, $format) = @_;
1230
1231 sub {
1232 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1233 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1234 or return;
1235
1236 $format = length pack $format, $len;
1237
1238 # bypass unshift if we already have the remaining chunk
1239 if ($format + $len <= length $_[0]{rbuf}) {
1240 my $data = substr $_[0]{rbuf}, $format, $len;
1241 substr $_[0]{rbuf}, 0, $format + $len, "";
1242 $cb->($_[0], $data);
1243 } else {
1244 # remove prefix
1245 substr $_[0]{rbuf}, 0, $format, "";
1246
1247 # read remaining chunk
1248 $_[0]->unshift_read (chunk => $len, $cb);
1249 }
1250
1251 1
1252 }
1253};
1254
871=item json => $cb->($handle, $hash_or_arrayref) 1255=item json => $cb->($handle, $hash_or_arrayref)
872 1256
873Reads a JSON object or array, decodes it and passes it to the callback. 1257Reads a JSON object or array, decodes it and passes it to the
1258callback. When a parse error occurs, an C<EBADMSG> error will be raised.
874 1259
875If a C<json> object was passed to the constructor, then that will be used 1260If a C<json> object was passed to the constructor, then that will be used
876for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1261for the final decode, otherwise it will create a JSON coder expecting UTF-8.
877 1262
878This read type uses the incremental parser available with JSON version 1263This read type uses the incremental parser available with JSON version
885the C<json> write type description, above, for an actual example. 1270the C<json> write type description, above, for an actual example.
886 1271
887=cut 1272=cut
888 1273
889register_read_type json => sub { 1274register_read_type json => sub {
890 my ($self, $cb, $accept, $reject, $skip) = @_; 1275 my ($self, $cb) = @_;
891 1276
892 require JSON; 1277 my $json = $self->{json} ||=
1278 eval { require JSON::XS; JSON::XS->new->utf8 }
1279 || do { require JSON; JSON->new->utf8 };
893 1280
894 my $data; 1281 my $data;
895 my $rbuf = \$self->{rbuf}; 1282 my $rbuf = \$self->{rbuf};
896 1283
897 my $json = $self->{json} ||= JSON->new->utf8;
898
899 sub { 1284 sub {
900 my $ref = $json->incr_parse ($self->{rbuf}); 1285 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
901 1286
902 if ($ref) { 1287 if ($ref) {
903 $self->{rbuf} = $json->incr_text; 1288 $self->{rbuf} = $json->incr_text;
904 $json->incr_text = ""; 1289 $json->incr_text = "";
905 $cb->($self, $ref); 1290 $cb->($self, $ref);
906 1291
907 1 1292 1
1293 } elsif ($@) {
1294 # error case
1295 $json->incr_skip;
1296
1297 $self->{rbuf} = $json->incr_text;
1298 $json->incr_text = "";
1299
1300 $self->_error (&Errno::EBADMSG);
1301
1302 ()
908 } else { 1303 } else {
909 $self->{rbuf} = ""; 1304 $self->{rbuf} = "";
1305
910 () 1306 ()
911 } 1307 }
1308 }
1309};
1310
1311=item storable => $cb->($handle, $ref)
1312
1313Deserialises a L<Storable> frozen representation as written by the
1314C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1315data).
1316
1317Raises C<EBADMSG> error if the data could not be decoded.
1318
1319=cut
1320
1321register_read_type storable => sub {
1322 my ($self, $cb) = @_;
1323
1324 require Storable;
1325
1326 sub {
1327 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1328 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1329 or return;
1330
1331 my $format = length pack "w", $len;
1332
1333 # bypass unshift if we already have the remaining chunk
1334 if ($format + $len <= length $_[0]{rbuf}) {
1335 my $data = substr $_[0]{rbuf}, $format, $len;
1336 substr $_[0]{rbuf}, 0, $format + $len, "";
1337 $cb->($_[0], Storable::thaw ($data));
1338 } else {
1339 # remove prefix
1340 substr $_[0]{rbuf}, 0, $format, "";
1341
1342 # read remaining chunk
1343 $_[0]->unshift_read (chunk => $len, sub {
1344 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1345 $cb->($_[0], $ref);
1346 } else {
1347 $self->_error (&Errno::EBADMSG);
1348 }
1349 });
1350 }
1351
1352 1
912 } 1353 }
913}; 1354};
914 1355
915=back 1356=back
916 1357
937=item $handle->stop_read 1378=item $handle->stop_read
938 1379
939=item $handle->start_read 1380=item $handle->start_read
940 1381
941In rare cases you actually do not want to read anything from the 1382In rare cases you actually do not want to read anything from the
942socket. In this case you can call C<stop_read>. Neither C<on_read> no 1383socket. In this case you can call C<stop_read>. Neither C<on_read> nor
943any queued callbacks will be executed then. To start reading again, call 1384any queued callbacks will be executed then. To start reading again, call
944C<start_read>. 1385C<start_read>.
945 1386
1387Note that AnyEvent::Handle will automatically C<start_read> for you when
1388you change the C<on_read> callback or push/unshift a read callback, and it
1389will automatically C<stop_read> for you when neither C<on_read> is set nor
1390there are any read requests in the queue.
1391
1392These methods will have no effect when in TLS mode (as TLS doesn't support
1393half-duplex connections).
1394
946=cut 1395=cut
947 1396
948sub stop_read { 1397sub stop_read {
949 my ($self) = @_; 1398 my ($self) = @_;
950 1399
951 delete $self->{_rw}; 1400 delete $self->{_rw} unless $self->{tls};
952} 1401}
953 1402
954sub start_read { 1403sub start_read {
955 my ($self) = @_; 1404 my ($self) = @_;
956 1405
957 unless ($self->{_rw} || $self->{_eof}) { 1406 unless ($self->{_rw} || $self->{_eof}) {
958 Scalar::Util::weaken $self; 1407 Scalar::Util::weaken $self;
959 1408
960 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1409 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
961 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1410 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
962 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1411 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
963 1412
964 if ($len > 0) { 1413 if ($len > 0) {
965 $self->{filter_r} 1414 $self->{_activity} = AnyEvent->now;
966 ? $self->{filter_r}->($self, $rbuf) 1415
967 : $self->_drain_rbuf; 1416 if ($self->{tls}) {
1417 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1418
1419 &_dotls ($self);
1420 } else {
1421 $self->_drain_rbuf unless $self->{_in_drain};
1422 }
968 1423
969 } elsif (defined $len) { 1424 } elsif (defined $len) {
970 delete $self->{_rw}; 1425 delete $self->{_rw};
971 $self->{_eof} = 1; 1426 $self->{_eof} = 1;
972 $self->_drain_rbuf; 1427 $self->_drain_rbuf unless $self->{_in_drain};
973 1428
974 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1429 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
975 return $self->error; 1430 return $self->_error ($!, 1);
976 } 1431 }
977 }); 1432 });
978 } 1433 }
979} 1434}
980 1435
1436our $ERROR_SYSCALL;
1437our $ERROR_WANT_READ;
1438
1439sub _tls_error {
1440 my ($self, $err) = @_;
1441
1442 return $self->_error ($!, 1)
1443 if $err == Net::SSLeay::ERROR_SYSCALL ();
1444
1445 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1446
1447 # reduce error string to look less scary
1448 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1449
1450 if ($self->{_on_starttls}) {
1451 (delete $self->{_on_starttls})->($self, undef, $err);
1452 &_freetls;
1453 } else {
1454 &_freetls;
1455 $self->_error (&Errno::EPROTO, 1, $err);
1456 }
1457}
1458
1459# poll the write BIO and send the data if applicable
1460# also decode read data if possible
1461# this is basiclaly our TLS state machine
1462# more efficient implementations are possible with openssl,
1463# but not with the buggy and incomplete Net::SSLeay.
981sub _dotls { 1464sub _dotls {
982 my ($self) = @_; 1465 my ($self) = @_;
983 1466
1467 my $tmp;
1468
984 if (length $self->{_tls_wbuf}) { 1469 if (length $self->{_tls_wbuf}) {
985 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1470 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
986 substr $self->{_tls_wbuf}, 0, $len, ""; 1471 substr $self->{_tls_wbuf}, 0, $tmp, "";
987 } 1472 }
988 }
989 1473
1474 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1475 return $self->_tls_error ($tmp)
1476 if $tmp != $ERROR_WANT_READ
1477 && ($tmp != $ERROR_SYSCALL || $!);
1478 }
1479
1480 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1481 unless (length $tmp) {
1482 $self->{_on_starttls}
1483 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1484 &_freetls;
1485
1486 if ($self->{on_stoptls}) {
1487 $self->{on_stoptls}($self);
1488 return;
1489 } else {
1490 # let's treat SSL-eof as we treat normal EOF
1491 delete $self->{_rw};
1492 $self->{_eof} = 1;
1493 }
1494 }
1495
1496 $self->{_tls_rbuf} .= $tmp;
1497 $self->_drain_rbuf unless $self->{_in_drain};
1498 $self->{tls} or return; # tls session might have gone away in callback
1499 }
1500
1501 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1502 return $self->_tls_error ($tmp)
1503 if $tmp != $ERROR_WANT_READ
1504 && ($tmp != $ERROR_SYSCALL || $!);
1505
990 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1506 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
991 $self->{wbuf} .= $buf; 1507 $self->{wbuf} .= $tmp;
992 $self->_drain_wbuf; 1508 $self->_drain_wbuf;
993 } 1509 }
994 1510
995 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1511 $self->{_on_starttls}
996 $self->{rbuf} .= $buf; 1512 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
997 $self->_drain_rbuf; 1513 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
998 }
999
1000 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1001
1002 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1003 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1004 $self->error;
1005 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1006 $! = &Errno::EIO;
1007 $self->error;
1008 }
1009
1010 # all others are fine for our purposes
1011 }
1012} 1514}
1013 1515
1014=item $handle->starttls ($tls[, $tls_ctx]) 1516=item $handle->starttls ($tls[, $tls_ctx])
1015 1517
1016Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1518Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1018C<starttls>. 1520C<starttls>.
1019 1521
1020The first argument is the same as the C<tls> constructor argument (either 1522The first argument is the same as the C<tls> constructor argument (either
1021C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1523C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1022 1524
1023The second argument is the optional C<Net::SSLeay::CTX> object that is 1525The second argument is the optional C<AnyEvent::TLS> object that is used
1024used when AnyEvent::Handle has to create its own TLS connection object. 1526when AnyEvent::Handle has to create its own TLS connection object, or
1527a hash reference with C<< key => value >> pairs that will be used to
1528construct a new context.
1025 1529
1026The TLS connection object will end up in C<< $handle->{tls} >> after this 1530The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1027call and can be used or changed to your liking. Note that the handshake 1531context in C<< $handle->{tls_ctx} >> after this call and can be used or
1028might have already started when this function returns. 1532changed to your liking. Note that the handshake might have already started
1533when this function returns.
1029 1534
1030=cut 1535If it an error to start a TLS handshake more than once per
1536AnyEvent::Handle object (this is due to bugs in OpenSSL).
1031 1537
1032# TODO: maybe document... 1538=cut
1539
1540our %TLS_CACHE; #TODO not yet documented, should we?
1541
1033sub starttls { 1542sub starttls {
1034 my ($self, $ssl, $ctx) = @_; 1543 my ($self, $ssl, $ctx) = @_;
1035 1544
1036 $self->stoptls; 1545 require Net::SSLeay;
1037 1546
1038 if ($ssl eq "accept") { 1547 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1039 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1548 if $self->{tls};
1040 Net::SSLeay::set_accept_state ($ssl); 1549
1041 } elsif ($ssl eq "connect") { 1550 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1042 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1043 Net::SSLeay::set_connect_state ($ssl); 1552
1553 $ctx ||= $self->{tls_ctx};
1554
1555 if ("HASH" eq ref $ctx) {
1556 require AnyEvent::TLS;
1557
1558 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1559
1560 if ($ctx->{cache}) {
1561 my $key = $ctx+0;
1562 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1563 } else {
1564 $ctx = new AnyEvent::TLS %$ctx;
1565 }
1566 }
1044 } 1567
1045 1568 $self->{tls_ctx} = $ctx || TLS_CTX ();
1046 $self->{tls} = $ssl; 1569 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1047 1570
1048 # basically, this is deep magic (because SSL_read should have the same issues) 1571 # basically, this is deep magic (because SSL_read should have the same issues)
1049 # but the openssl maintainers basically said: "trust us, it just works". 1572 # but the openssl maintainers basically said: "trust us, it just works".
1050 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1573 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1051 # and mismaintained ssleay-module doesn't even offer them). 1574 # and mismaintained ssleay-module doesn't even offer them).
1052 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1575 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1576 #
1577 # in short: this is a mess.
1578 #
1579 # note that we do not try to keep the length constant between writes as we are required to do.
1580 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1581 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1582 # have identity issues in that area.
1053 Net::SSLeay::CTX_set_mode ($self->{tls}, 1583# Net::SSLeay::CTX_set_mode ($ssl,
1054 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1584# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1055 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1585# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1586 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1056 1587
1057 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1588 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1058 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1589 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1059 1590
1060 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1591 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1061 1592
1062 $self->{filter_w} = sub { 1593 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1063 $_[0]{_tls_wbuf} .= ${$_[1]}; 1594 if $self->{on_starttls};
1064 &_dotls; 1595
1065 }; 1596 &_dotls; # need to trigger the initial handshake
1066 $self->{filter_r} = sub { 1597 $self->start_read; # make sure we actually do read
1067 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1068 &_dotls;
1069 };
1070} 1598}
1071 1599
1072=item $handle->stoptls 1600=item $handle->stoptls
1073 1601
1074Destroys the SSL connection, if any. Partial read or write data will be 1602Shuts down the SSL connection - this makes a proper EOF handshake by
1075lost. 1603sending a close notify to the other side, but since OpenSSL doesn't
1604support non-blocking shut downs, it is not possible to re-use the stream
1605afterwards.
1076 1606
1077=cut 1607=cut
1078 1608
1079sub stoptls { 1609sub stoptls {
1080 my ($self) = @_; 1610 my ($self) = @_;
1081 1611
1082 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1612 if ($self->{tls}) {
1613 Net::SSLeay::shutdown ($self->{tls});
1083 1614
1084 delete $self->{_rbio}; 1615 &_dotls;
1085 delete $self->{_wbio}; 1616
1086 delete $self->{_tls_wbuf}; 1617# # we don't give a shit. no, we do, but we can't. no...#d#
1087 delete $self->{filter_r}; 1618# # we, we... have to use openssl :/#d#
1088 delete $self->{filter_w}; 1619# &_freetls;#d#
1620 }
1621}
1622
1623sub _freetls {
1624 my ($self) = @_;
1625
1626 return unless $self->{tls};
1627
1628 $self->{tls_ctx}->_put_session (delete $self->{tls});
1629
1630 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1089} 1631}
1090 1632
1091sub DESTROY { 1633sub DESTROY {
1092 my $self = shift; 1634 my ($self) = @_;
1093 1635
1094 $self->stoptls; 1636 &_freetls;
1637
1638 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1639
1640 if ($linger && length $self->{wbuf}) {
1641 my $fh = delete $self->{fh};
1642 my $wbuf = delete $self->{wbuf};
1643
1644 my @linger;
1645
1646 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1647 my $len = syswrite $fh, $wbuf, length $wbuf;
1648
1649 if ($len > 0) {
1650 substr $wbuf, 0, $len, "";
1651 } else {
1652 @linger = (); # end
1653 }
1654 });
1655 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1656 @linger = ();
1657 });
1658 }
1659}
1660
1661=item $handle->destroy
1662
1663Shuts down the handle object as much as possible - this call ensures that
1664no further callbacks will be invoked and as many resources as possible
1665will be freed. You must not call any methods on the object afterwards.
1666
1667Normally, you can just "forget" any references to an AnyEvent::Handle
1668object and it will simply shut down. This works in fatal error and EOF
1669callbacks, as well as code outside. It does I<NOT> work in a read or write
1670callback, so when you want to destroy the AnyEvent::Handle object from
1671within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1672that case.
1673
1674The handle might still linger in the background and write out remaining
1675data, as specified by the C<linger> option, however.
1676
1677=cut
1678
1679sub destroy {
1680 my ($self) = @_;
1681
1682 $self->DESTROY;
1683 %$self = ();
1095} 1684}
1096 1685
1097=item AnyEvent::Handle::TLS_CTX 1686=item AnyEvent::Handle::TLS_CTX
1098 1687
1099This function creates and returns the Net::SSLeay::CTX object used by 1688This function creates and returns the AnyEvent::TLS object used by default
1100default for TLS mode. 1689for TLS mode.
1101 1690
1102The context is created like this: 1691The context is created by calling L<AnyEvent::TLS> without any arguments.
1103
1104 Net::SSLeay::load_error_strings;
1105 Net::SSLeay::SSLeay_add_ssl_algorithms;
1106 Net::SSLeay::randomize;
1107
1108 my $CTX = Net::SSLeay::CTX_new;
1109
1110 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1111 1692
1112=cut 1693=cut
1113 1694
1114our $TLS_CTX; 1695our $TLS_CTX;
1115 1696
1116sub TLS_CTX() { 1697sub TLS_CTX() {
1117 $TLS_CTX || do { 1698 $TLS_CTX ||= do {
1118 require Net::SSLeay; 1699 require AnyEvent::TLS;
1119 1700
1120 Net::SSLeay::load_error_strings (); 1701 new AnyEvent::TLS
1121 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1122 Net::SSLeay::randomize ();
1123
1124 $TLS_CTX = Net::SSLeay::CTX_new ();
1125
1126 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1127
1128 $TLS_CTX
1129 } 1702 }
1130} 1703}
1131 1704
1132=back 1705=back
1706
1707
1708=head1 NONFREQUENTLY ASKED QUESTIONS
1709
1710=over 4
1711
1712=item I C<undef> the AnyEvent::Handle reference inside my callback and
1713still get further invocations!
1714
1715That's because AnyEvent::Handle keeps a reference to itself when handling
1716read or write callbacks.
1717
1718It is only safe to "forget" the reference inside EOF or error callbacks,
1719from within all other callbacks, you need to explicitly call the C<<
1720->destroy >> method.
1721
1722=item I get different callback invocations in TLS mode/Why can't I pause
1723reading?
1724
1725Unlike, say, TCP, TLS connections do not consist of two independent
1726communication channels, one for each direction. Or put differently. The
1727read and write directions are not independent of each other: you cannot
1728write data unless you are also prepared to read, and vice versa.
1729
1730This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1731callback invocations when you are not expecting any read data - the reason
1732is that AnyEvent::Handle always reads in TLS mode.
1733
1734During the connection, you have to make sure that you always have a
1735non-empty read-queue, or an C<on_read> watcher. At the end of the
1736connection (or when you no longer want to use it) you can call the
1737C<destroy> method.
1738
1739=item How do I read data until the other side closes the connection?
1740
1741If you just want to read your data into a perl scalar, the easiest way
1742to achieve this is by setting an C<on_read> callback that does nothing,
1743clearing the C<on_eof> callback and in the C<on_error> callback, the data
1744will be in C<$_[0]{rbuf}>:
1745
1746 $handle->on_read (sub { });
1747 $handle->on_eof (undef);
1748 $handle->on_error (sub {
1749 my $data = delete $_[0]{rbuf};
1750 undef $handle;
1751 });
1752
1753The reason to use C<on_error> is that TCP connections, due to latencies
1754and packets loss, might get closed quite violently with an error, when in
1755fact, all data has been received.
1756
1757It is usually better to use acknowledgements when transferring data,
1758to make sure the other side hasn't just died and you got the data
1759intact. This is also one reason why so many internet protocols have an
1760explicit QUIT command.
1761
1762=item I don't want to destroy the handle too early - how do I wait until
1763all data has been written?
1764
1765After writing your last bits of data, set the C<on_drain> callback
1766and destroy the handle in there - with the default setting of
1767C<low_water_mark> this will be called precisely when all data has been
1768written to the socket:
1769
1770 $handle->push_write (...);
1771 $handle->on_drain (sub {
1772 warn "all data submitted to the kernel\n";
1773 undef $handle;
1774 });
1775
1776If you just want to queue some data and then signal EOF to the other side,
1777consider using C<< ->push_shutdown >> instead.
1778
1779=item I want to contact a TLS/SSL server, I don't care about security.
1780
1781If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1782simply connect to it and then create the AnyEvent::Handle with the C<tls>
1783parameter:
1784
1785 my $handle = new AnyEvent::Handle
1786 fh => $fh,
1787 tls => "connect",
1788 on_error => sub { ... };
1789
1790 $handle->push_write (...);
1791
1792=item I want to contact a TLS/SSL server, I do care about security.
1793
1794Then you #x##TODO#
1795
1796
1797
1798=back
1799
1133 1800
1134=head1 SUBCLASSING AnyEvent::Handle 1801=head1 SUBCLASSING AnyEvent::Handle
1135 1802
1136In many cases, you might want to subclass AnyEvent::Handle. 1803In many cases, you might want to subclass AnyEvent::Handle.
1137 1804
1141=over 4 1808=over 4
1142 1809
1143=item * all constructor arguments become object members. 1810=item * all constructor arguments become object members.
1144 1811
1145At least initially, when you pass a C<tls>-argument to the constructor it 1812At least initially, when you pass a C<tls>-argument to the constructor it
1146will end up in C<< $handle->{tls} >>. Those members might be changes or 1813will end up in C<< $handle->{tls} >>. Those members might be changed or
1147mutated later on (for example C<tls> will hold the TLS connection object). 1814mutated later on (for example C<tls> will hold the TLS connection object).
1148 1815
1149=item * other object member names are prefixed with an C<_>. 1816=item * other object member names are prefixed with an C<_>.
1150 1817
1151All object members not explicitly documented (internal use) are prefixed 1818All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines