ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.42 by root, Tue May 27 06:23:15 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw/EAGAIN EINTR/;
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = '0.04'; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>. 41
42The L<AnyEvent::Intro> tutorial contains some well-documented
43AnyEvent::Handle examples.
53 44
54In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
57 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
58All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
59argument. 53argument.
60 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
61=head1 METHODS 67=head1 METHODS
62 68
63=over 4 69=over 4
64 70
65=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 72
67The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
68 74
69=over 4 75=over 4
70 76
71=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 78
73The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 80NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82that mode.
77 83
78=item on_eof => $cb->($handle) 84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
79 85
80Set the callback to be called on EOF. 86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
81 89
82While not mandatory, it is highly recommended to set an eof callback, 90You have to specify either this parameter, or C<fh>, above.
83otherwise you might end up with a closed socket while you are still
84waiting for data.
85 91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
86=item on_error => $cb->($handle) 101=item on_prepare => $cb->($handle)
87 102
103This (rarely used) callback is called before a new connection is
104attempted, but after the file handle has been created. It could be used to
105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
108
109The return value of this callback should be the connect timeout value in
110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
111timeout is to be used).
112
113=item on_connect => $cb->($handle, $host, $port, $retry->())
114
115This callback is called when a connection has been successfully established.
116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
139=item on_error => $cb->($handle, $fatal, $message)
140
88This is the fatal error callback, that is called when, well, a fatal error 141This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 142occured, such as not being able to resolve the hostname, failure to
90or a read error. 143connect or a read error.
91 144
92The object will not be in a usable state when this callback has been 145Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 146fatal errors the handle object will be destroyed (by a call to C<< ->
147destroy >>) after invoking the error callback (which means you are free to
148examine the handle object). Examples of fatal errors are an EOF condition
149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
157
158Non-fatal errors can be retried by simply returning, but it is recommended
159to simply ignore this parameter and instead abondon the handle object
160when this callback is invoked. Examples of non-fatal errors are timeouts
161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 162
95On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 165C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 166
101While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
103die. 169C<croak>.
104 170
105=item on_read => $cb->($handle) 171=item on_read => $cb->($handle)
106 172
107This sets the default read callback, which is called when data arrives 173This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 174and no read request is in the queue (unlike read queue callbacks, this
175callback will only be called when at least one octet of data is in the
176read buffer).
109 177
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
112 182
113When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
117 187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
208
118=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
119 210
120This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
122 213
123To append to the write buffer, use the C<< ->push_write >> method. 214To append to the write buffer, use the C<< ->push_write >> method.
124 215
216This callback is useful when you don't want to put all of your write data
217into the queue at once, for example, when you want to write the contents
218of some file to the socket you might not want to read the whole file into
219memory and push it into the queue, but instead only read more data from
220the file when the write queue becomes empty.
221
222=item timeout => $fractional_seconds
223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
228If non-zero, then these enables an "inactivity" timeout: whenever this
229many seconds pass without a successful read or write on the underlying
230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
239
240Note that timeout processing is also active when you currently do not have
241any outstanding read or write requests: If you plan to keep the connection
242idle then you should disable the timout temporarily or ignore the timeout
243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
245
246Zero (the default) disables this timeout.
247
248=item on_timeout => $cb->($handle)
249
250Called whenever the inactivity timeout passes. If you return from this
251callback, then the timeout will be reset as if some activity had happened,
252so this condition is not fatal in any way.
253
125=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
126 255
127If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
128when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
129avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
130 259
131For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
132be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
133(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
134amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
135isn't finished). 264isn't finished).
136 265
266=item autocork => <boolean>
267
268When disabled (the default), then C<push_write> will try to immediately
269write the data to the handle, if possible. This avoids having to register
270a write watcher and wait for the next event loop iteration, but can
271be inefficient if you write multiple small chunks (on the wire, this
272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
274
275When enabled, then writes will always be queued till the next event loop
276iteration. This is efficient when you do many small writes per iteration,
277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
279
280=item no_delay => <boolean>
281
282When doing small writes on sockets, your operating system kernel might
283wait a bit for more data before actually sending it out. This is called
284the Nagle algorithm, and usually it is beneficial.
285
286In some situations you want as low a delay as possible, which can be
287accomplishd by setting this option to a true value.
288
289The default is your opertaing system's default behaviour (most likely
290enabled), this option explicitly enables or disables it, if possible.
291
137=item read_size => <bytes> 292=item read_size => <bytes>
138 293
139The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
140on each [loop iteration). Default: C<4096>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
141 297
142=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
143 299
144Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
145buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
146considered empty. 302considered empty.
147 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
309=item linger => <seconds>
310
311If non-zero (default: C<3600>), then the destructor of the
312AnyEvent::Handle object will check whether there is still outstanding
313write data and will install a watcher that will write this data to the
314socket. No errors will be reported (this mostly matches how the operating
315system treats outstanding data at socket close time).
316
317This will not work for partial TLS data that could not be encoded
318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
330
148=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
149 332
150When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
151will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
152data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
153 339
154TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
155automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
156 344
157For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
158connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
159 348
160You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
161to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
162or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
163AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
164 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
165See the C<starttls> method if you need to start TLs negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
166 365
167=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
168 367
169Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
170(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
171missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
172 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
173=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
174 409
175This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
176 411
177If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
178suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
179 415
180Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
181use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
182 418
183=item filter_r => $cb
184
185=item filter_w => $cb
186
187These exist, but are undocumented at this time.
188
189=back 419=back
190 420
191=cut 421=cut
192 422
193sub new { 423sub new {
194 my $class = shift; 424 my $class = shift;
195
196 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
197 426
198 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
199 490
200 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
201 492
202 if ($self->{tls}) { 493 $self->{_activity} =
203 require Net::SSLeay; 494 $self->{_ractivity} =
495 $self->{_wactivity} = AE::now;
496
497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
502
204 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
205 } 504 if $self->{tls};
206 505
207 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
208 $self->on_error (delete $self->{on_error}) if $self->{on_error};
209 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
210 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
211 507
212 $self->start_read; 508 $self->start_read
509 if $self->{on_read} || @{ $self->{_queue} };
213 510
214 $self 511 $self->_drain_wbuf;
215} 512}
216 513
217sub _shutdown { 514#sub _shutdown {
218 my ($self) = @_; 515# my ($self) = @_;
516#
517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
518# $self->{_eof} = 1; # tell starttls et. al to stop trying
519#
520# &_freetls;
521#}
219 522
220 delete $self->{_rw};
221 delete $self->{_ww};
222 delete $self->{fh};
223}
224
225sub error { 523sub _error {
226 my ($self) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
227 525
228 { 526 $! = $errno;
229 local $!; 527 $message ||= "$!";
230 $self->_shutdown;
231 }
232 528
233 $self->{on_error}($self)
234 if $self->{on_error}; 529 if ($self->{on_error}) {
235 530 $self->{on_error}($self, $fatal, $message);
531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
236 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
535 }
237} 536}
238 537
239=item $fh = $handle->fh 538=item $fh = $handle->fh
240 539
241This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
242 541
243=cut 542=cut
244 543
245sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
246 545
262 561
263sub on_eof { 562sub on_eof {
264 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
265} 564}
266 565
566=item $handle->on_timeout ($cb)
567
568=item $handle->on_rtimeout ($cb)
569
570=item $handle->on_wtimeout ($cb)
571
572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
573callback, or disables the callback (but not the timeout) if C<$cb> =
574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
579
580=item $handle->autocork ($boolean)
581
582Enables or disables the current autocork behaviour (see C<autocork>
583constructor argument). Changes will only take effect on the next write.
584
585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
590
591=item $handle->no_delay ($boolean)
592
593Enables or disables the C<no_delay> setting (see constructor argument of
594the same name for details).
595
596=cut
597
598sub no_delay {
599 $_[0]{no_delay} = $_[1];
600
601 eval {
602 local $SIG{__DIE__};
603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
605 };
606}
607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
636}
637
638#############################################################################
639
640=item $handle->timeout ($seconds)
641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
646Configures (or disables) the inactivity timeout.
647
648=item $handle->timeout_reset
649
650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
672 my ($self, $new_value) = @_;
673
674 $self->{$timeout} = $new_value;
675 delete $self->{$tw}; &$cb;
676 };
677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
683 # reset the timeout watcher, as neccessary
684 # also check for time-outs
685 $cb = sub {
686 my ($self) = @_;
687
688 if ($self->{$timeout} && $self->{fh}) {
689 my $NOW = AE::now;
690
691 # when would the timeout trigger?
692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
693
694 # now or in the past already?
695 if ($after <= 0) {
696 $self->{$activity} = $NOW;
697
698 if ($self->{$on_timeout}) {
699 $self->{$on_timeout}($self);
700 } else {
701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
709 }
710
711 Scalar::Util::weaken $self;
712 return unless $self; # ->error could have destroyed $self
713
714 $self->{$tw} ||= AE::timer $after, 0, sub {
715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
720 }
721 }
722}
723
267############################################################################# 724#############################################################################
268 725
269=back 726=back
270 727
271=head2 WRITE QUEUE 728=head2 WRITE QUEUE
292 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
293 750
294 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
295 752
296 $cb->($self) 753 $cb->($self)
297 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
298} 755}
299 756
300=item $handle->push_write ($data) 757=item $handle->push_write ($data)
301 758
302Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
313 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
314 771
315 my $cb = sub { 772 my $cb = sub {
316 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
317 774
318 if ($len >= 0) { 775 if (defined $len) {
319 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
320 777
778 $self->{_activity} = $self->{_wactivity} = AE::now;
779
321 $self->{on_drain}($self) 780 $self->{on_drain}($self)
322 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
323 && $self->{on_drain}; 782 && $self->{on_drain};
324 783
325 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
326 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
327 $self->error; 786 $self->_error ($!, 1);
328 } 787 }
329 }; 788 };
330 789
331 # try to write data immediately 790 # try to write data immediately
332 $cb->(); 791 $cb->() unless $self->{autocork};
333 792
334 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
335 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
336 if length $self->{wbuf}; 795 if length $self->{wbuf};
337 }; 796 };
338} 797}
339 798
340our %WH; 799our %WH;
351 810
352 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
353 ->($self, @_); 812 ->($self, @_);
354 } 813 }
355 814
356 if ($self->{filter_w}) { 815 if ($self->{tls}) {
357 $self->{filter_w}->($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
358 } else { 818 } else {
359 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
360 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
361 } 821 }
362} 822}
363 823
364=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
365
366=item $handle->unshift_write (type => @args)
367 825
368Instead of formatting your data yourself, you can also let this module do 826Instead of formatting your data yourself, you can also let this module do
369the job by specifying a type and type-specific arguments. 827the job by specifying a type and type-specific arguments.
370 828
371Predefined types are (if you have ideas for additional types, feel free to 829Predefined types are (if you have ideas for additional types, feel free to
376=item netstring => $string 834=item netstring => $string
377 835
378Formats the given value as netstring 836Formats the given value as netstring
379(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 837(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
380 838
381=back
382
383=cut 839=cut
384 840
385register_write_type netstring => sub { 841register_write_type netstring => sub {
386 my ($self, $string) = @_; 842 my ($self, $string) = @_;
387 843
388 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
845};
846
847=item packstring => $format, $data
848
849An octet string prefixed with an encoded length. The encoding C<$format>
850uses the same format as a Perl C<pack> format, but must specify a single
851integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
852optional C<!>, C<< < >> or C<< > >> modifier).
853
854=cut
855
856register_write_type packstring => sub {
857 my ($self, $format, $string) = @_;
858
859 pack "$format/a*", $string
389}; 860};
390 861
391=item json => $array_or_hashref 862=item json => $array_or_hashref
392 863
393Encodes the given hash or array reference into a JSON object. Unless you 864Encodes the given hash or array reference into a JSON object. Unless you
427 898
428 $self->{json} ? $self->{json}->encode ($ref) 899 $self->{json} ? $self->{json}->encode ($ref)
429 : JSON::encode_json ($ref) 900 : JSON::encode_json ($ref)
430}; 901};
431 902
903=item storable => $reference
904
905Freezes the given reference using L<Storable> and writes it to the
906handle. Uses the C<nfreeze> format.
907
908=cut
909
910register_write_type storable => sub {
911 my ($self, $ref) = @_;
912
913 require Storable;
914
915 pack "w/a*", Storable::nfreeze ($ref)
916};
917
918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
944
432=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
433 946
434This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
435Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
436reference with the handle object and the remaining arguments. 949reference with the handle object and the remaining arguments.
456ways, the "simple" way, using only C<on_read> and the "complex" way, using 969ways, the "simple" way, using only C<on_read> and the "complex" way, using
457a queue. 970a queue.
458 971
459In the simple case, you just install an C<on_read> callback and whenever 972In the simple case, you just install an C<on_read> callback and whenever
460new data arrives, it will be called. You can then remove some data (if 973new data arrives, it will be called. You can then remove some data (if
461enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 974enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
462or not. 975leave the data there if you want to accumulate more (e.g. when only a
976partial message has been received so far).
463 977
464In the more complex case, you want to queue multiple callbacks. In this 978In the more complex case, you want to queue multiple callbacks. In this
465case, AnyEvent::Handle will call the first queued callback each time new 979case, AnyEvent::Handle will call the first queued callback each time new
466data arrives and removes it when it has done its job (see C<push_read>, 980data arrives (also the first time it is queued) and removes it when it has
467below). 981done its job (see C<push_read>, below).
468 982
469This way you can, for example, push three line-reads, followed by reading 983This way you can, for example, push three line-reads, followed by reading
470a chunk of data, and AnyEvent::Handle will execute them in order. 984a chunk of data, and AnyEvent::Handle will execute them in order.
471 985
472Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 986Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
473the specified number of bytes which give an XML datagram. 987the specified number of bytes which give an XML datagram.
474 988
475 # in the default state, expect some header bytes 989 # in the default state, expect some header bytes
476 $handle->on_read (sub { 990 $handle->on_read (sub {
477 # some data is here, now queue the length-header-read (4 octets) 991 # some data is here, now queue the length-header-read (4 octets)
478 shift->unshift_read_chunk (4, sub { 992 shift->unshift_read (chunk => 4, sub {
479 # header arrived, decode 993 # header arrived, decode
480 my $len = unpack "N", $_[1]; 994 my $len = unpack "N", $_[1];
481 995
482 # now read the payload 996 # now read the payload
483 shift->unshift_read_chunk ($len, sub { 997 shift->unshift_read (chunk => $len, sub {
484 my $xml = $_[1]; 998 my $xml = $_[1];
485 # handle xml 999 # handle xml
486 }); 1000 });
487 }); 1001 });
488 }); 1002 });
489 1003
490Example 2: Implement a client for a protocol that replies either with 1004Example 2: Implement a client for a protocol that replies either with "OK"
491"OK" and another line or "ERROR" for one request, and 64 bytes for the 1005and another line or "ERROR" for the first request that is sent, and 64
492second request. Due tot he availability of a full queue, we can just 1006bytes for the second request. Due to the availability of a queue, we can
493pipeline sending both requests and manipulate the queue as necessary in 1007just pipeline sending both requests and manipulate the queue as necessary
494the callbacks: 1008in the callbacks.
495 1009
496 # request one 1010When the first callback is called and sees an "OK" response, it will
1011C<unshift> another line-read. This line-read will be queued I<before> the
101264-byte chunk callback.
1013
1014 # request one, returns either "OK + extra line" or "ERROR"
497 $handle->push_write ("request 1\015\012"); 1015 $handle->push_write ("request 1\015\012");
498 1016
499 # we expect "ERROR" or "OK" as response, so push a line read 1017 # we expect "ERROR" or "OK" as response, so push a line read
500 $handle->push_read_line (sub { 1018 $handle->push_read (line => sub {
501 # if we got an "OK", we have to _prepend_ another line, 1019 # if we got an "OK", we have to _prepend_ another line,
502 # so it will be read before the second request reads its 64 bytes 1020 # so it will be read before the second request reads its 64 bytes
503 # which are already in the queue when this callback is called 1021 # which are already in the queue when this callback is called
504 # we don't do this in case we got an error 1022 # we don't do this in case we got an error
505 if ($_[1] eq "OK") { 1023 if ($_[1] eq "OK") {
506 $_[0]->unshift_read_line (sub { 1024 $_[0]->unshift_read (line => sub {
507 my $response = $_[1]; 1025 my $response = $_[1];
508 ... 1026 ...
509 }); 1027 });
510 } 1028 }
511 }); 1029 });
512 1030
513 # request two 1031 # request two, simply returns 64 octets
514 $handle->push_write ("request 2\015\012"); 1032 $handle->push_write ("request 2\015\012");
515 1033
516 # simply read 64 bytes, always 1034 # simply read 64 bytes, always
517 $handle->push_read_chunk (64, sub { 1035 $handle->push_read (chunk => 64, sub {
518 my $response = $_[1]; 1036 my $response = $_[1];
519 ... 1037 ...
520 }); 1038 });
521 1039
522=over 4 1040=over 4
523 1041
524=cut 1042=cut
525 1043
526sub _drain_rbuf { 1044sub _drain_rbuf {
527 my ($self) = @_; 1045 my ($self) = @_;
1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
1049 local $self->{_skip_drain_rbuf} = 1;
1050
1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
1057 my $len = length $self->{rbuf};
1058
1059 if (my $cb = shift @{ $self->{_queue} }) {
1060 unless ($cb->($self)) {
1061 # no progress can be made
1062 # (not enough data and no data forthcoming)
1063 $self->_error (Errno::EPIPE, 1), return
1064 if $self->{_eof};
1065
1066 unshift @{ $self->{_queue} }, $cb;
1067 last;
1068 }
1069 } elsif ($self->{on_read}) {
1070 last unless $len;
1071
1072 $self->{on_read}($self);
1073
1074 if (
1075 $len == length $self->{rbuf} # if no data has been consumed
1076 && !@{ $self->{_queue} } # and the queue is still empty
1077 && $self->{on_read} # but we still have on_read
1078 ) {
1079 # no further data will arrive
1080 # so no progress can be made
1081 $self->_error (Errno::EPIPE, 1), return
1082 if $self->{_eof};
1083
1084 last; # more data might arrive
1085 }
1086 } else {
1087 # read side becomes idle
1088 delete $self->{_rw} unless $self->{tls};
1089 last;
1090 }
1091 }
1092
1093 if ($self->{_eof}) {
1094 $self->{on_eof}
1095 ? $self->{on_eof}($self)
1096 : $self->_error (0, 1, "Unexpected end-of-file");
1097
1098 return;
1099 }
528 1100
529 if ( 1101 if (
530 defined $self->{rbuf_max} 1102 defined $self->{rbuf_max}
531 && $self->{rbuf_max} < length $self->{rbuf} 1103 && $self->{rbuf_max} < length $self->{rbuf}
532 ) { 1104 ) {
533 $! = &Errno::ENOSPC; 1105 $self->_error (Errno::ENOSPC, 1), return;
534 $self->error;
535 } 1106 }
536 1107
537 return if $self->{in_drain}; 1108 # may need to restart read watcher
538 local $self->{in_drain} = 1; 1109 unless ($self->{_rw}) {
539 1110 $self->start_read
540 while (my $len = length $self->{rbuf}) { 1111 if $self->{on_read} || @{ $self->{_queue} };
541 no strict 'refs';
542 if (my $cb = shift @{ $self->{_queue} }) {
543 unless ($cb->($self)) {
544 if ($self->{_eof}) {
545 # no progress can be made (not enough data and no data forthcoming)
546 $! = &Errno::EPIPE;
547 $self->error;
548 }
549
550 unshift @{ $self->{_queue} }, $cb;
551 return;
552 }
553 } elsif ($self->{on_read}) {
554 $self->{on_read}($self);
555
556 if (
557 $self->{_eof} # if no further data will arrive
558 && $len == length $self->{rbuf} # and no data has been consumed
559 && !@{ $self->{_queue} } # and the queue is still empty
560 && $self->{on_read} # and we still want to read data
561 ) {
562 # then no progress can be made
563 $! = &Errno::EPIPE;
564 $self->error;
565 }
566 } else {
567 # read side becomes idle
568 delete $self->{_rw};
569 return;
570 }
571 }
572
573 if ($self->{_eof}) {
574 $self->_shutdown;
575 $self->{on_eof}($self)
576 if $self->{on_eof};
577 } 1112 }
578} 1113}
579 1114
580=item $handle->on_read ($cb) 1115=item $handle->on_read ($cb)
581 1116
587 1122
588sub on_read { 1123sub on_read {
589 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
590 1125
591 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
1127 $self->_drain_rbuf if $cb;
592} 1128}
593 1129
594=item $handle->rbuf 1130=item $handle->rbuf
595 1131
596Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
597 1133
598You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
599you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
600 1139
601NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
602C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
603automatically manage the read buffer. 1142automatically manage the read buffer.
604 1143
701 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1240 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
702 1 1241 1
703 } 1242 }
704}; 1243};
705 1244
706# compatibility with older API
707sub push_read_chunk {
708 $_[0]->push_read (chunk => $_[1], $_[2]);
709}
710
711sub unshift_read_chunk {
712 $_[0]->unshift_read (chunk => $_[1], $_[2]);
713}
714
715=item line => [$eol, ]$cb->($handle, $line, $eol) 1245=item line => [$eol, ]$cb->($handle, $line, $eol)
716 1246
717The callback will be called only once a full line (including the end of 1247The callback will be called only once a full line (including the end of
718line marker, C<$eol>) has been read. This line (excluding the end of line 1248line marker, C<$eol>) has been read. This line (excluding the end of line
719marker) will be passed to the callback as second argument (C<$line>), and 1249marker) will be passed to the callback as second argument (C<$line>), and
734=cut 1264=cut
735 1265
736register_read_type line => sub { 1266register_read_type line => sub {
737 my ($self, $cb, $eol) = @_; 1267 my ($self, $cb, $eol) = @_;
738 1268
739 $eol = qr|(\015?\012)| if @_ < 3; 1269 if (@_ < 3) {
740 $eol = quotemeta $eol unless ref $eol; 1270 # this is more than twice as fast as the generic code below
741 $eol = qr|^(.*?)($eol)|s;
742
743 sub { 1271 sub {
744 $_[0]{rbuf} =~ s/$eol// or return; 1272 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
745 1273
746 $cb->($_[0], $1, $2); 1274 $cb->($_[0], $1, $2);
747 1
748 }
749};
750
751# compatibility with older API
752sub push_read_line {
753 my $self = shift;
754 $self->push_read (line => @_);
755}
756
757sub unshift_read_line {
758 my $self = shift;
759 $self->unshift_read (line => @_);
760}
761
762=item netstring => $cb->($handle, $string)
763
764A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
765
766Throws an error with C<$!> set to EBADMSG on format violations.
767
768=cut
769
770register_read_type netstring => sub {
771 my ($self, $cb) = @_;
772
773 sub {
774 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
775 if ($_[0]{rbuf} =~ /[^0-9]/) {
776 $! = &Errno::EBADMSG;
777 $self->error;
778 } 1275 1
779 return;
780 } 1276 }
1277 } else {
1278 $eol = quotemeta $eol unless ref $eol;
1279 $eol = qr|^(.*?)($eol)|s;
781 1280
782 my $len = $1; 1281 sub {
1282 $_[0]{rbuf} =~ s/$eol// or return;
783 1283
784 $self->unshift_read (chunk => $len, sub { 1284 $cb->($_[0], $1, $2);
785 my $string = $_[1];
786 $_[0]->unshift_read (chunk => 1, sub {
787 if ($_[1] eq ",") {
788 $cb->($_[0], $string);
789 } else {
790 $! = &Errno::EBADMSG;
791 $self->error;
792 }
793 }); 1285 1
794 }); 1286 }
795
796 1
797 } 1287 }
798}; 1288};
799 1289
800=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1290=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
801 1291
853 return 1; 1343 return 1;
854 } 1344 }
855 1345
856 # reject 1346 # reject
857 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
858 $! = &Errno::EBADMSG; 1348 $self->_error (Errno::EBADMSG);
859 $self->error;
860 } 1349 }
861 1350
862 # skip 1351 # skip
863 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
864 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
866 1355
867 () 1356 ()
868 } 1357 }
869}; 1358};
870 1359
1360=item netstring => $cb->($handle, $string)
1361
1362A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1363
1364Throws an error with C<$!> set to EBADMSG on format violations.
1365
1366=cut
1367
1368register_read_type netstring => sub {
1369 my ($self, $cb) = @_;
1370
1371 sub {
1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1374 $self->_error (Errno::EBADMSG);
1375 }
1376 return;
1377 }
1378
1379 my $len = $1;
1380
1381 $self->unshift_read (chunk => $len, sub {
1382 my $string = $_[1];
1383 $_[0]->unshift_read (chunk => 1, sub {
1384 if ($_[1] eq ",") {
1385 $cb->($_[0], $string);
1386 } else {
1387 $self->_error (Errno::EBADMSG);
1388 }
1389 });
1390 });
1391
1392 1
1393 }
1394};
1395
1396=item packstring => $format, $cb->($handle, $string)
1397
1398An octet string prefixed with an encoded length. The encoding C<$format>
1399uses the same format as a Perl C<pack> format, but must specify a single
1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1401optional C<!>, C<< < >> or C<< > >> modifier).
1402
1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1405
1406Example: read a block of data prefixed by its length in BER-encoded
1407format (very efficient).
1408
1409 $handle->push_read (packstring => "w", sub {
1410 my ($handle, $data) = @_;
1411 });
1412
1413=cut
1414
1415register_read_type packstring => sub {
1416 my ($self, $cb, $format) = @_;
1417
1418 sub {
1419 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1420 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1421 or return;
1422
1423 $format = length pack $format, $len;
1424
1425 # bypass unshift if we already have the remaining chunk
1426 if ($format + $len <= length $_[0]{rbuf}) {
1427 my $data = substr $_[0]{rbuf}, $format, $len;
1428 substr $_[0]{rbuf}, 0, $format + $len, "";
1429 $cb->($_[0], $data);
1430 } else {
1431 # remove prefix
1432 substr $_[0]{rbuf}, 0, $format, "";
1433
1434 # read remaining chunk
1435 $_[0]->unshift_read (chunk => $len, $cb);
1436 }
1437
1438 1
1439 }
1440};
1441
871=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
872 1443
873Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
874 1446
875If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
876for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
877 1449
878This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
885the C<json> write type description, above, for an actual example. 1457the C<json> write type description, above, for an actual example.
886 1458
887=cut 1459=cut
888 1460
889register_read_type json => sub { 1461register_read_type json => sub {
890 my ($self, $cb, $accept, $reject, $skip) = @_; 1462 my ($self, $cb) = @_;
891 1463
892 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
893 1467
894 my $data; 1468 my $data;
895 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
896 1470
897 my $json = $self->{json} ||= JSON->new->utf8;
898
899 sub { 1471 sub {
900 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
901 1473
902 if ($ref) { 1474 if ($ref) {
903 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
904 $json->incr_text = ""; 1476 $json->incr_text = "";
905 $cb->($self, $ref); 1477 $cb->($self, $ref);
906 1478
907 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
908 } else { 1490 } else {
909 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
910 () 1493 ()
911 } 1494 }
1495 }
1496};
1497
1498=item storable => $cb->($handle, $ref)
1499
1500Deserialises a L<Storable> frozen representation as written by the
1501C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1502data).
1503
1504Raises C<EBADMSG> error if the data could not be decoded.
1505
1506=cut
1507
1508register_read_type storable => sub {
1509 my ($self, $cb) = @_;
1510
1511 require Storable;
1512
1513 sub {
1514 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1515 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1516 or return;
1517
1518 my $format = length pack "w", $len;
1519
1520 # bypass unshift if we already have the remaining chunk
1521 if ($format + $len <= length $_[0]{rbuf}) {
1522 my $data = substr $_[0]{rbuf}, $format, $len;
1523 substr $_[0]{rbuf}, 0, $format + $len, "";
1524 $cb->($_[0], Storable::thaw ($data));
1525 } else {
1526 # remove prefix
1527 substr $_[0]{rbuf}, 0, $format, "";
1528
1529 # read remaining chunk
1530 $_[0]->unshift_read (chunk => $len, sub {
1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1532 $cb->($_[0], $ref);
1533 } else {
1534 $self->_error (Errno::EBADMSG);
1535 }
1536 });
1537 }
1538
1539 1
912 } 1540 }
913}; 1541};
914 1542
915=back 1543=back
916 1544
937=item $handle->stop_read 1565=item $handle->stop_read
938 1566
939=item $handle->start_read 1567=item $handle->start_read
940 1568
941In rare cases you actually do not want to read anything from the 1569In rare cases you actually do not want to read anything from the
942socket. In this case you can call C<stop_read>. Neither C<on_read> no 1570socket. In this case you can call C<stop_read>. Neither C<on_read> nor
943any queued callbacks will be executed then. To start reading again, call 1571any queued callbacks will be executed then. To start reading again, call
944C<start_read>. 1572C<start_read>.
945 1573
1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1575you change the C<on_read> callback or push/unshift a read callback, and it
1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1577there are any read requests in the queue.
1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
946=cut 1582=cut
947 1583
948sub stop_read { 1584sub stop_read {
949 my ($self) = @_; 1585 my ($self) = @_;
950 1586
951 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
952} 1588}
953 1589
954sub start_read { 1590sub start_read {
955 my ($self) = @_; 1591 my ($self) = @_;
956 1592
957 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
958 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
959 1595
960 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
961 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
962 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
963 1599
964 if ($len > 0) { 1600 if ($len > 0) {
965 $self->{filter_r} 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
966 ? $self->{filter_r}->($self, $rbuf) 1602
1603 if ($self->{tls}) {
1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1605
1606 &_dotls ($self);
1607 } else {
967 : $self->_drain_rbuf; 1608 $self->_drain_rbuf;
1609 }
968 1610
969 } elsif (defined $len) { 1611 } elsif (defined $len) {
970 delete $self->{_rw}; 1612 delete $self->{_rw};
971 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
972 $self->_drain_rbuf; 1614 $self->_drain_rbuf;
973 1615
974 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
975 return $self->error; 1617 return $self->_error ($!, 1);
976 } 1618 }
977 }); 1619 };
978 } 1620 }
979} 1621}
980 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
981sub _dotls { 1651sub _dotls {
982 my ($self) = @_; 1652 my ($self) = @_;
983 1653
1654 my $tmp;
1655
984 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
985 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
986 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
987 } 1659 }
988 }
989 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
990 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
991 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
992 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
993 } 1696 }
994 1697
995 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
996 $self->{rbuf} .= $buf; 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
997 $self->_drain_rbuf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
998 }
999
1000 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1001
1002 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1003 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1004 $self->error;
1005 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1006 $! = &Errno::EIO;
1007 $self->error;
1008 }
1009
1010 # all others are fine for our purposes
1011 }
1012} 1701}
1013 1702
1014=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1015 1704
1016Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1017object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1018C<starttls>. 1707C<starttls>.
1019 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1020The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1021C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1022 1715
1023The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1024used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1025 1720
1026The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1027call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1028might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1029 1725
1030=cut 1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1031 1729
1032# TODO: maybe document... 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1733
1033sub starttls { 1734sub starttls {
1034 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1035 1736
1036 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1037 1739
1038 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1039 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1040 Net::SSLeay::set_accept_state ($ssl); 1742
1041 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1042 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1043 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1044 } 1765
1045 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1046 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1047 1768
1048 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1049 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1050 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1051 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1052 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1053 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1054 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1055 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1056 1785
1057 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1058 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1059 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1060 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1061 1792
1062 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1063 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1064 &_dotls; 1795
1065 }; 1796 &_dotls; # need to trigger the initial handshake
1066 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1067 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1068 &_dotls;
1069 };
1070} 1798}
1071 1799
1072=item $handle->stoptls 1800=item $handle->stoptls
1073 1801
1074Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1075lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1076 1806
1077=cut 1807=cut
1078 1808
1079sub stoptls { 1809sub stoptls {
1080 my ($self) = @_; 1810 my ($self) = @_;
1081 1811
1082 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1083 1814
1084 delete $self->{_rbio}; 1815 &_dotls;
1085 delete $self->{_wbio}; 1816
1086 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1087 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1088 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1089} 1832}
1090 1833
1091sub DESTROY { 1834sub DESTROY {
1092 my $self = shift; 1835 my ($self) = @_;
1093 1836
1094 $self->stoptls; 1837 &_freetls;
1838
1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1840
1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1842 my $fh = delete $self->{fh};
1843 my $wbuf = delete $self->{wbuf};
1844
1845 my @linger;
1846
1847 push @linger, AE::io $fh, 1, sub {
1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1849
1850 if ($len > 0) {
1851 substr $wbuf, 0, $len, "";
1852 } else {
1853 @linger = (); # end
1854 }
1855 };
1856 push @linger, AE::timer $linger, 0, sub {
1857 @linger = ();
1858 };
1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1095} 1897}
1096 1898
1097=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1098 1900
1099This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1100default for TLS mode. 1902for TLS mode.
1101 1903
1102The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1103
1104 Net::SSLeay::load_error_strings;
1105 Net::SSLeay::SSLeay_add_ssl_algorithms;
1106 Net::SSLeay::randomize;
1107
1108 my $CTX = Net::SSLeay::CTX_new;
1109
1110 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1111 1905
1112=cut 1906=cut
1113 1907
1114our $TLS_CTX; 1908our $TLS_CTX;
1115 1909
1116sub TLS_CTX() { 1910sub TLS_CTX() {
1117 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1118 require Net::SSLeay; 1912 require AnyEvent::TLS;
1119 1913
1120 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1121 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1122 Net::SSLeay::randomize ();
1123
1124 $TLS_CTX = Net::SSLeay::CTX_new ();
1125
1126 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1127
1128 $TLS_CTX
1129 } 1915 }
1130} 1916}
1131 1917
1132=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1133 2078
1134=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1135 2080
1136In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1137 2082
1141=over 4 2086=over 4
1142 2087
1143=item * all constructor arguments become object members. 2088=item * all constructor arguments become object members.
1144 2089
1145At least initially, when you pass a C<tls>-argument to the constructor it 2090At least initially, when you pass a C<tls>-argument to the constructor it
1146will end up in C<< $handle->{tls} >>. Those members might be changes or 2091will end up in C<< $handle->{tls} >>. Those members might be changed or
1147mutated later on (for example C<tls> will hold the TLS connection object). 2092mutated later on (for example C<tls> will hold the TLS connection object).
1148 2093
1149=item * other object member names are prefixed with an C<_>. 2094=item * other object member names are prefixed with an C<_>.
1150 2095
1151All object members not explicitly documented (internal use) are prefixed 2096All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines