ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.56 by root, Wed Jun 4 09:55:16 2008 UTC vs.
Revision 1.150 by root, Thu Jul 16 04:16:25 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.12; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 warn "got error $_[2]\n";
33 }, 32 $cv->send;
34 ); 33 );
35 34
36 # send some request line 35 # send some request line
37 $handle->push_write ("getinfo\015\012"); 36 $hdl->push_write ("getinfo\015\012");
38 37
39 # read the response line 38 # read the response line
40 $handle->push_read (line => sub { 39 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 40 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 41 warn "got line <$line>\n";
43 $cv->send; 42 $cv->send;
44 }); 43 });
45 44
46 $cv->recv; 45 $cv->recv;
47 46
49 48
50This module is a helper module to make it easier to do event-based I/O on 49This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 50filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 51on sockets see L<AnyEvent::Util>.
53 52
53The L<AnyEvent::Intro> tutorial contains some well-documented
54AnyEvent::Handle examples.
55
54In the following, when the documentation refers to of "bytes" then this 56In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 57means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 58treatment of characters applies to this module as well.
57 59
58All callbacks will be invoked with the handle object as their first 60All callbacks will be invoked with the handle object as their first
60 62
61=head1 METHODS 63=head1 METHODS
62 64
63=over 4 65=over 4
64 66
65=item B<new (%args)> 67=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 68
67The constructor supports these arguments (all as key => value pairs). 69The constructor supports these arguments (all as C<< key => value >> pairs).
68 70
69=over 4 71=over 4
70 72
71=item fh => $filehandle [MANDATORY] 73=item fh => $filehandle [MANDATORY]
72 74
73The filehandle this L<AnyEvent::Handle> object will operate on. 75The filehandle this L<AnyEvent::Handle> object will operate on.
74 76
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
78=item on_eof => $cb->($handle) 81=item on_eof => $cb->($handle)
79 82
80Set the callback to be called when an end-of-file condition is detcted, 83Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 84i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 85connection cleanly, and there are no outstanding read requests in the
86queue (if there are read requests, then an EOF counts as an unexpected
87connection close and will be flagged as an error).
83 88
84While not mandatory, it is highly recommended to set an eof callback, 89For sockets, this just means that the other side has stopped sending data,
85otherwise you might end up with a closed socket while you are still 90you can still try to write data, and, in fact, one can return from the EOF
86waiting for data. 91callback and continue writing data, as only the read part has been shut
92down.
87 93
94If an EOF condition has been detected but no C<on_eof> callback has been
95set, then a fatal error will be raised with C<$!> set to <0>.
96
88=item on_error => $cb->($handle, $fatal) 97=item on_error => $cb->($handle, $fatal, $message)
89 98
90This is the error callback, which is called when, well, some error 99This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 100occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 101connect or a read error.
93 102
94Some errors are fatal (which is indicated by C<$fatal> being true). On 103Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 104fatal errors the handle object will be destroyed (by a call to C<< ->
105destroy >>) after invoking the error callback (which means you are free to
106examine the handle object). Examples of fatal errors are an EOF condition
107with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
108
109AnyEvent::Handle tries to find an appropriate error code for you to check
110against, but in some cases (TLS errors), this does not work well. It is
111recommended to always output the C<$message> argument in human-readable
112error messages (it's usually the same as C<"$!">).
113
96usable. Non-fatal errors can be retried by simply returning, but it is 114Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 115to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 116when this callback is invoked. Examples of non-fatal errors are timeouts
117C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 118
100On callback entrance, the value of C<$!> contains the operating system 119On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 120error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
121C<EPROTO>).
102 122
103While not mandatory, it is I<highly> recommended to set this callback, as 123While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 124you will not be notified of errors otherwise. The default simply calls
105C<croak>. 125C<croak>.
106 126
107=item on_read => $cb->($handle) 127=item on_read => $cb->($handle)
108 128
109This sets the default read callback, which is called when data arrives 129This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 130and no read request is in the queue (unlike read queue callbacks, this
131callback will only be called when at least one octet of data is in the
132read buffer).
111 133
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 134To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 135method or access the C<< $handle->{rbuf} >> member directly. Note that you
136must not enlarge or modify the read buffer, you can only remove data at
137the beginning from it.
114 138
115When an EOF condition is detected then AnyEvent::Handle will first try to 139When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 140feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 141calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 142error will be raised (with C<$!> set to C<EPIPE>).
119 143
144Note that, unlike requests in the read queue, an C<on_read> callback
145doesn't mean you I<require> some data: if there is an EOF and there
146are outstanding read requests then an error will be flagged. With an
147C<on_read> callback, the C<on_eof> callback will be invoked.
148
120=item on_drain => $cb->($handle) 149=item on_drain => $cb->($handle)
121 150
122This sets the callback that is called when the write buffer becomes empty 151This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 152(or when the callback is set and the buffer is empty already).
124 153
125To append to the write buffer, use the C<< ->push_write >> method. 154To append to the write buffer, use the C<< ->push_write >> method.
155
156This callback is useful when you don't want to put all of your write data
157into the queue at once, for example, when you want to write the contents
158of some file to the socket you might not want to read the whole file into
159memory and push it into the queue, but instead only read more data from
160the file when the write queue becomes empty.
126 161
127=item timeout => $fractional_seconds 162=item timeout => $fractional_seconds
128 163
129If non-zero, then this enables an "inactivity" timeout: whenever this many 164If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 165seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 166handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 167missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 168
134Note that timeout processing is also active when you currently do not have 169Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 170any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 171idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 172in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
173restart the timeout.
138 174
139Zero (the default) disables this timeout. 175Zero (the default) disables this timeout.
140 176
141=item on_timeout => $cb->($handle) 177=item on_timeout => $cb->($handle)
142 178
146 182
147=item rbuf_max => <bytes> 183=item rbuf_max => <bytes>
148 184
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 185If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 186when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 187avoid some forms of denial-of-service attacks.
152 188
153For example, a server accepting connections from untrusted sources should 189For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 190be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 191(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 192amount of data without a callback ever being called as long as the line
157isn't finished). 193isn't finished).
158 194
195=item autocork => <boolean>
196
197When disabled (the default), then C<push_write> will try to immediately
198write the data to the handle, if possible. This avoids having to register
199a write watcher and wait for the next event loop iteration, but can
200be inefficient if you write multiple small chunks (on the wire, this
201disadvantage is usually avoided by your kernel's nagle algorithm, see
202C<no_delay>, but this option can save costly syscalls).
203
204When enabled, then writes will always be queued till the next event loop
205iteration. This is efficient when you do many small writes per iteration,
206but less efficient when you do a single write only per iteration (or when
207the write buffer often is full). It also increases write latency.
208
209=item no_delay => <boolean>
210
211When doing small writes on sockets, your operating system kernel might
212wait a bit for more data before actually sending it out. This is called
213the Nagle algorithm, and usually it is beneficial.
214
215In some situations you want as low a delay as possible, which can be
216accomplishd by setting this option to a true value.
217
218The default is your opertaing system's default behaviour (most likely
219enabled), this option explicitly enables or disables it, if possible.
220
159=item read_size => <bytes> 221=item read_size => <bytes>
160 222
161The default read block size (the amount of bytes this module will try to read 223The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 224try to read during each loop iteration, which affects memory
225requirements). Default: C<8192>.
163 226
164=item low_water_mark => <bytes> 227=item low_water_mark => <bytes>
165 228
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 229Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 230buffer: If the write reaches this size or gets even samller it is
168considered empty. 231considered empty.
169 232
233Sometimes it can be beneficial (for performance reasons) to add data to
234the write buffer before it is fully drained, but this is a rare case, as
235the operating system kernel usually buffers data as well, so the default
236is good in almost all cases.
237
238=item linger => <seconds>
239
240If non-zero (default: C<3600>), then the destructor of the
241AnyEvent::Handle object will check whether there is still outstanding
242write data and will install a watcher that will write this data to the
243socket. No errors will be reported (this mostly matches how the operating
244system treats outstanding data at socket close time).
245
246This will not work for partial TLS data that could not be encoded
247yet. This data will be lost. Calling the C<stoptls> method in time might
248help.
249
250=item peername => $string
251
252A string used to identify the remote site - usually the DNS hostname
253(I<not> IDN!) used to create the connection, rarely the IP address.
254
255Apart from being useful in error messages, this string is also used in TLS
256peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
257verification will be skipped when C<peername> is not specified or
258C<undef>.
259
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 260=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 261
172When this parameter is given, it enables TLS (SSL) mode, that means it 262When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 263AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 264established and will transparently encrypt/decrypt data afterwards.
265
266All TLS protocol errors will be signalled as C<EPROTO>, with an
267appropriate error message.
175 268
176TLS mode requires Net::SSLeay to be installed (it will be loaded 269TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 270automatically when you try to create a TLS handle): this module doesn't
271have a dependency on that module, so if your module requires it, you have
272to add the dependency yourself.
178 273
179For the TLS server side, use C<accept>, and for the TLS client side of a 274Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 275C<accept>, and for the TLS client side of a connection, use C<connect>
276mode.
181 277
182You can also provide your own TLS connection object, but you have 278You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 279to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 280or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 281AnyEvent::Handle. Also, this module will take ownership of this connection
282object.
186 283
284At some future point, AnyEvent::Handle might switch to another TLS
285implementation, then the option to use your own session object will go
286away.
287
288B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
289passing in the wrong integer will lead to certain crash. This most often
290happens when one uses a stylish C<< tls => 1 >> and is surprised about the
291segmentation fault.
292
187See the C<starttls> method if you need to start TLs negotiation later. 293See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 294
189=item tls_ctx => $ssl_ctx 295=item tls_ctx => $anyevent_tls
190 296
191Use the given Net::SSLeay::CTX object to create the new TLS connection 297Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 298(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 299missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 300
301Instead of an object, you can also specify a hash reference with C<< key
302=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
303new TLS context object.
304
305=item on_starttls => $cb->($handle, $success[, $error_message])
306
307This callback will be invoked when the TLS/SSL handshake has finished. If
308C<$success> is true, then the TLS handshake succeeded, otherwise it failed
309(C<on_stoptls> will not be called in this case).
310
311The session in C<< $handle->{tls} >> can still be examined in this
312callback, even when the handshake was not successful.
313
314TLS handshake failures will not cause C<on_error> to be invoked when this
315callback is in effect, instead, the error message will be passed to C<on_starttls>.
316
317Without this callback, handshake failures lead to C<on_error> being
318called, as normal.
319
320Note that you cannot call C<starttls> right again in this callback. If you
321need to do that, start an zero-second timer instead whose callback can
322then call C<< ->starttls >> again.
323
324=item on_stoptls => $cb->($handle)
325
326When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
327set, then it will be invoked after freeing the TLS session. If it is not,
328then a TLS shutdown condition will be treated like a normal EOF condition
329on the handle.
330
331The session in C<< $handle->{tls} >> can still be examined in this
332callback.
333
334This callback will only be called on TLS shutdowns, not when the
335underlying handle signals EOF.
336
195=item json => JSON or JSON::XS object 337=item json => JSON or JSON::XS object
196 338
197This is the json coder object used by the C<json> read and write types. 339This is the json coder object used by the C<json> read and write types.
198 340
199If you don't supply it, then AnyEvent::Handle will create and use a 341If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 342suitable one (on demand), which will write and expect UTF-8 encoded JSON
343texts.
201 344
202Note that you are responsible to depend on the JSON module if you want to 345Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 346use this functionality, as AnyEvent does not have a dependency itself.
204 347
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 348=back
212 349
213=cut 350=cut
214 351
215sub new { 352sub new {
216 my $class = shift; 353 my $class = shift;
217
218 my $self = bless { @_ }, $class; 354 my $self = bless { @_ }, $class;
219 355
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 356 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 357
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 358 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 359
234 $self->{_activity} = AnyEvent->now; 360 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 361 $self->_timeout;
236 362
363 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
364
365 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
366 if $self->{tls};
367
368 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
369
237 $self->start_read; 370 $self->start_read
371 if $self->{on_read};
238 372
239 $self 373 $self->{fh} && $self
240} 374}
241 375
242sub _shutdown { 376#sub _shutdown {
243 my ($self) = @_; 377# my ($self) = @_;
244 378#
245 delete $self->{_tw}; 379# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 380# $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww}; 381#
248 delete $self->{fh}; 382# &_freetls;
249 383#}
250 $self->stoptls;
251}
252 384
253sub _error { 385sub _error {
254 my ($self, $errno, $fatal) = @_; 386 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 387
259 $! = $errno; 388 $! = $errno;
389 $message ||= "$!";
260 390
261 if ($self->{on_error}) { 391 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 392 $self->{on_error}($self, $fatal, $message);
263 } else { 393 $self->destroy;
394 } elsif ($self->{fh}) {
395 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 396 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 397 }
266} 398}
267 399
268=item $fh = $handle->fh 400=item $fh = $handle->fh
269 401
270This method returns the file handle of the L<AnyEvent::Handle> object. 402This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 403
272=cut 404=cut
273 405
274sub fh { $_[0]{fh} } 406sub fh { $_[0]{fh} }
275 407
293 $_[0]{on_eof} = $_[1]; 425 $_[0]{on_eof} = $_[1];
294} 426}
295 427
296=item $handle->on_timeout ($cb) 428=item $handle->on_timeout ($cb)
297 429
298Replace the current C<on_timeout> callback, or disables the callback 430Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 431not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 432argument and method.
301 433
302=cut 434=cut
303 435
304sub on_timeout { 436sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 437 $_[0]{on_timeout} = $_[1];
438}
439
440=item $handle->autocork ($boolean)
441
442Enables or disables the current autocork behaviour (see C<autocork>
443constructor argument). Changes will only take effect on the next write.
444
445=cut
446
447sub autocork {
448 $_[0]{autocork} = $_[1];
449}
450
451=item $handle->no_delay ($boolean)
452
453Enables or disables the C<no_delay> setting (see constructor argument of
454the same name for details).
455
456=cut
457
458sub no_delay {
459 $_[0]{no_delay} = $_[1];
460
461 eval {
462 local $SIG{__DIE__};
463 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
464 };
465}
466
467=item $handle->on_starttls ($cb)
468
469Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
470
471=cut
472
473sub on_starttls {
474 $_[0]{on_starttls} = $_[1];
475}
476
477=item $handle->on_stoptls ($cb)
478
479Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
480
481=cut
482
483sub on_starttls {
484 $_[0]{on_stoptls} = $_[1];
306} 485}
307 486
308############################################################################# 487#############################################################################
309 488
310=item $handle->timeout ($seconds) 489=item $handle->timeout ($seconds)
336 $self->{_activity} = $NOW; 515 $self->{_activity} = $NOW;
337 516
338 if ($self->{on_timeout}) { 517 if ($self->{on_timeout}) {
339 $self->{on_timeout}($self); 518 $self->{on_timeout}($self);
340 } else { 519 } else {
341 $self->_error (&Errno::ETIMEDOUT); 520 $self->_error (Errno::ETIMEDOUT);
342 } 521 }
343 522
344 # callback could have changed timeout value, optimise 523 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 524 return unless $self->{timeout};
346 525
388 my ($self, $cb) = @_; 567 my ($self, $cb) = @_;
389 568
390 $self->{on_drain} = $cb; 569 $self->{on_drain} = $cb;
391 570
392 $cb->($self) 571 $cb->($self)
393 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 572 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
394} 573}
395 574
396=item $handle->push_write ($data) 575=item $handle->push_write ($data)
397 576
398Queues the given scalar to be written. You can push as much data as you 577Queues the given scalar to be written. You can push as much data as you
409 Scalar::Util::weaken $self; 588 Scalar::Util::weaken $self;
410 589
411 my $cb = sub { 590 my $cb = sub {
412 my $len = syswrite $self->{fh}, $self->{wbuf}; 591 my $len = syswrite $self->{fh}, $self->{wbuf};
413 592
414 if ($len >= 0) { 593 if (defined $len) {
415 substr $self->{wbuf}, 0, $len, ""; 594 substr $self->{wbuf}, 0, $len, "";
416 595
417 $self->{_activity} = AnyEvent->now; 596 $self->{_activity} = AnyEvent->now;
418 597
419 $self->{on_drain}($self) 598 $self->{on_drain}($self)
420 if $self->{low_water_mark} >= length $self->{wbuf} 599 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
421 && $self->{on_drain}; 600 && $self->{on_drain};
422 601
423 delete $self->{_ww} unless length $self->{wbuf}; 602 delete $self->{_ww} unless length $self->{wbuf};
424 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 603 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 $self->_error ($!, 1); 604 $self->_error ($!, 1);
426 } 605 }
427 }; 606 };
428 607
429 # try to write data immediately 608 # try to write data immediately
430 $cb->(); 609 $cb->() unless $self->{autocork};
431 610
432 # if still data left in wbuf, we need to poll 611 # if still data left in wbuf, we need to poll
433 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 612 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
434 if length $self->{wbuf}; 613 if length $self->{wbuf};
435 }; 614 };
449 628
450 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 629 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451 ->($self, @_); 630 ->($self, @_);
452 } 631 }
453 632
454 if ($self->{filter_w}) { 633 if ($self->{tls}) {
455 $self->{filter_w}($self, \$_[0]); 634 $self->{_tls_wbuf} .= $_[0];
635
636 &_dotls ($self);
456 } else { 637 } else {
457 $self->{wbuf} .= $_[0]; 638 $self->{wbuf} .= $_[0];
458 $self->_drain_wbuf; 639 $self->_drain_wbuf;
459 } 640 }
460} 641}
477=cut 658=cut
478 659
479register_write_type netstring => sub { 660register_write_type netstring => sub {
480 my ($self, $string) = @_; 661 my ($self, $string) = @_;
481 662
482 sprintf "%d:%s,", (length $string), $string 663 (length $string) . ":$string,"
664};
665
666=item packstring => $format, $data
667
668An octet string prefixed with an encoded length. The encoding C<$format>
669uses the same format as a Perl C<pack> format, but must specify a single
670integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
671optional C<!>, C<< < >> or C<< > >> modifier).
672
673=cut
674
675register_write_type packstring => sub {
676 my ($self, $format, $string) = @_;
677
678 pack "$format/a*", $string
483}; 679};
484 680
485=item json => $array_or_hashref 681=item json => $array_or_hashref
486 682
487Encodes the given hash or array reference into a JSON object. Unless you 683Encodes the given hash or array reference into a JSON object. Unless you
521 717
522 $self->{json} ? $self->{json}->encode ($ref) 718 $self->{json} ? $self->{json}->encode ($ref)
523 : JSON::encode_json ($ref) 719 : JSON::encode_json ($ref)
524}; 720};
525 721
722=item storable => $reference
723
724Freezes the given reference using L<Storable> and writes it to the
725handle. Uses the C<nfreeze> format.
726
727=cut
728
729register_write_type storable => sub {
730 my ($self, $ref) = @_;
731
732 require Storable;
733
734 pack "w/a*", Storable::nfreeze ($ref)
735};
736
526=back 737=back
738
739=item $handle->push_shutdown
740
741Sometimes you know you want to close the socket after writing your data
742before it was actually written. One way to do that is to replace your
743C<on_drain> handler by a callback that shuts down the socket (and set
744C<low_water_mark> to C<0>). This method is a shorthand for just that, and
745replaces the C<on_drain> callback with:
746
747 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
748
749This simply shuts down the write side and signals an EOF condition to the
750the peer.
751
752You can rely on the normal read queue and C<on_eof> handling
753afterwards. This is the cleanest way to close a connection.
754
755=cut
756
757sub push_shutdown {
758 my ($self) = @_;
759
760 delete $self->{low_water_mark};
761 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
762}
527 763
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 764=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 765
530This function (not method) lets you add your own types to C<push_write>. 766This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 767Whenever the given C<type> is used, C<push_write> will invoke the code
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 788ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 789a queue.
554 790
555In the simple case, you just install an C<on_read> callback and whenever 791In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 792new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 793enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 794leave the data there if you want to accumulate more (e.g. when only a
795partial message has been received so far).
559 796
560In the more complex case, you want to queue multiple callbacks. In this 797In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 798case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 799data arrives (also the first time it is queued) and removes it when it has
563below). 800done its job (see C<push_read>, below).
564 801
565This way you can, for example, push three line-reads, followed by reading 802This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 803a chunk of data, and AnyEvent::Handle will execute them in order.
567 804
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 805Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 # handle xml 818 # handle xml
582 }); 819 });
583 }); 820 });
584 }); 821 });
585 822
586Example 2: Implement a client for a protocol that replies either with 823Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 824and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 825bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 826just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 827in the callbacks.
591 828
592 # request one 829When the first callback is called and sees an "OK" response, it will
830C<unshift> another line-read. This line-read will be queued I<before> the
83164-byte chunk callback.
832
833 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 834 $handle->push_write ("request 1\015\012");
594 835
595 # we expect "ERROR" or "OK" as response, so push a line read 836 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read (line => sub { 837 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 838 # if we got an "OK", we have to _prepend_ another line,
604 ... 845 ...
605 }); 846 });
606 } 847 }
607 }); 848 });
608 849
609 # request two 850 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 851 $handle->push_write ("request 2\015\012");
611 852
612 # simply read 64 bytes, always 853 # simply read 64 bytes, always
613 $handle->push_read (chunk => 64, sub { 854 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 855 my $response = $_[1];
620=cut 861=cut
621 862
622sub _drain_rbuf { 863sub _drain_rbuf {
623 my ($self) = @_; 864 my ($self) = @_;
624 865
866 local $self->{_in_drain} = 1;
867
625 if ( 868 if (
626 defined $self->{rbuf_max} 869 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 870 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 871 ) {
629 return $self->_error (&Errno::ENOSPC, 1); 872 $self->_error (Errno::ENOSPC, 1), return;
630 } 873 }
631 874
632 return if $self->{in_drain}; 875 while () {
633 local $self->{in_drain} = 1; 876 # we need to use a separate tls read buffer, as we must not receive data while
877 # we are draining the buffer, and this can only happen with TLS.
878 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
634 879
635 while (my $len = length $self->{rbuf}) { 880 my $len = length $self->{rbuf};
636 no strict 'refs'; 881
637 if (my $cb = shift @{ $self->{_queue} }) { 882 if (my $cb = shift @{ $self->{_queue} }) {
638 unless ($cb->($self)) { 883 unless ($cb->($self)) {
639 if ($self->{_eof}) { 884 if ($self->{_eof}) {
640 # no progress can be made (not enough data and no data forthcoming) 885 # no progress can be made (not enough data and no data forthcoming)
641 return $self->_error (&Errno::EPIPE, 1); 886 $self->_error (Errno::EPIPE, 1), return;
642 } 887 }
643 888
644 unshift @{ $self->{_queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
645 last; 890 last;
646 } 891 }
647 } elsif ($self->{on_read}) { 892 } elsif ($self->{on_read}) {
893 last unless $len;
894
648 $self->{on_read}($self); 895 $self->{on_read}($self);
649 896
650 if ( 897 if (
651 $len == length $self->{rbuf} # if no data has been consumed 898 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 899 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # but we still have on_read 900 && $self->{on_read} # but we still have on_read
654 ) { 901 ) {
655 # no further data will arrive 902 # no further data will arrive
656 # so no progress can be made 903 # so no progress can be made
657 return $self->_error (&Errno::EPIPE, 1) 904 $self->_error (Errno::EPIPE, 1), return
658 if $self->{_eof}; 905 if $self->{_eof};
659 906
660 last; # more data might arrive 907 last; # more data might arrive
661 } 908 }
662 } else { 909 } else {
663 # read side becomes idle 910 # read side becomes idle
664 delete $self->{_rw}; 911 delete $self->{_rw} unless $self->{tls};
665 last; 912 last;
666 } 913 }
667 } 914 }
668 915
916 if ($self->{_eof}) {
917 if ($self->{on_eof}) {
669 $self->{on_eof}($self) 918 $self->{on_eof}($self)
670 if $self->{_eof} && $self->{on_eof}; 919 } else {
920 $self->_error (0, 1, "Unexpected end-of-file");
921 }
922 }
671 923
672 # may need to restart read watcher 924 # may need to restart read watcher
673 unless ($self->{_rw}) { 925 unless ($self->{_rw}) {
674 $self->start_read 926 $self->start_read
675 if $self->{on_read} || @{ $self->{_queue} }; 927 if $self->{on_read} || @{ $self->{_queue} };
686 938
687sub on_read { 939sub on_read {
688 my ($self, $cb) = @_; 940 my ($self, $cb) = @_;
689 941
690 $self->{on_read} = $cb; 942 $self->{on_read} = $cb;
943 $self->_drain_rbuf if $cb && !$self->{_in_drain};
691} 944}
692 945
693=item $handle->rbuf 946=item $handle->rbuf
694 947
695Returns the read buffer (as a modifiable lvalue). 948Returns the read buffer (as a modifiable lvalue).
696 949
697You can access the read buffer directly as the C<< ->{rbuf} >> member, if 950You can access the read buffer directly as the C<< ->{rbuf} >>
698you want. 951member, if you want. However, the only operation allowed on the
952read buffer (apart from looking at it) is removing data from its
953beginning. Otherwise modifying or appending to it is not allowed and will
954lead to hard-to-track-down bugs.
699 955
700NOTE: The read buffer should only be used or modified if the C<on_read>, 956NOTE: The read buffer should only be used or modified if the C<on_read>,
701C<push_read> or C<unshift_read> methods are used. The other read methods 957C<push_read> or C<unshift_read> methods are used. The other read methods
702automatically manage the read buffer. 958automatically manage the read buffer.
703 959
744 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1000 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
745 ->($self, $cb, @_); 1001 ->($self, $cb, @_);
746 } 1002 }
747 1003
748 push @{ $self->{_queue} }, $cb; 1004 push @{ $self->{_queue} }, $cb;
749 $self->_drain_rbuf; 1005 $self->_drain_rbuf unless $self->{_in_drain};
750} 1006}
751 1007
752sub unshift_read { 1008sub unshift_read {
753 my $self = shift; 1009 my $self = shift;
754 my $cb = pop; 1010 my $cb = pop;
760 ->($self, $cb, @_); 1016 ->($self, $cb, @_);
761 } 1017 }
762 1018
763 1019
764 unshift @{ $self->{_queue} }, $cb; 1020 unshift @{ $self->{_queue} }, $cb;
765 $self->_drain_rbuf; 1021 $self->_drain_rbuf unless $self->{_in_drain};
766} 1022}
767 1023
768=item $handle->push_read (type => @args, $cb) 1024=item $handle->push_read (type => @args, $cb)
769 1025
770=item $handle->unshift_read (type => @args, $cb) 1026=item $handle->unshift_read (type => @args, $cb)
800 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1056 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 1 1057 1
802 } 1058 }
803}; 1059};
804 1060
805# compatibility with older API
806sub push_read_chunk {
807 $_[0]->push_read (chunk => $_[1], $_[2]);
808}
809
810sub unshift_read_chunk {
811 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812}
813
814=item line => [$eol, ]$cb->($handle, $line, $eol) 1061=item line => [$eol, ]$cb->($handle, $line, $eol)
815 1062
816The callback will be called only once a full line (including the end of 1063The callback will be called only once a full line (including the end of
817line marker, C<$eol>) has been read. This line (excluding the end of line 1064line marker, C<$eol>) has been read. This line (excluding the end of line
818marker) will be passed to the callback as second argument (C<$line>), and 1065marker) will be passed to the callback as second argument (C<$line>), and
833=cut 1080=cut
834 1081
835register_read_type line => sub { 1082register_read_type line => sub {
836 my ($self, $cb, $eol) = @_; 1083 my ($self, $cb, $eol) = @_;
837 1084
838 $eol = qr|(\015?\012)| if @_ < 3; 1085 if (@_ < 3) {
839 $eol = quotemeta $eol unless ref $eol; 1086 # this is more than twice as fast as the generic code below
840 $eol = qr|^(.*?)($eol)|s;
841
842 sub { 1087 sub {
843 $_[0]{rbuf} =~ s/$eol// or return; 1088 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
844 1089
845 $cb->($_[0], $1, $2); 1090 $cb->($_[0], $1, $2);
846 1
847 }
848};
849
850# compatibility with older API
851sub push_read_line {
852 my $self = shift;
853 $self->push_read (line => @_);
854}
855
856sub unshift_read_line {
857 my $self = shift;
858 $self->unshift_read (line => @_);
859}
860
861=item netstring => $cb->($handle, $string)
862
863A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864
865Throws an error with C<$!> set to EBADMSG on format violations.
866
867=cut
868
869register_read_type netstring => sub {
870 my ($self, $cb) = @_;
871
872 sub {
873 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874 if ($_[0]{rbuf} =~ /[^0-9]/) {
875 $self->_error (&Errno::EBADMSG);
876 } 1091 1
877 return;
878 } 1092 }
1093 } else {
1094 $eol = quotemeta $eol unless ref $eol;
1095 $eol = qr|^(.*?)($eol)|s;
879 1096
880 my $len = $1; 1097 sub {
1098 $_[0]{rbuf} =~ s/$eol// or return;
881 1099
882 $self->unshift_read (chunk => $len, sub { 1100 $cb->($_[0], $1, $2);
883 my $string = $_[1];
884 $_[0]->unshift_read (chunk => 1, sub {
885 if ($_[1] eq ",") {
886 $cb->($_[0], $string);
887 } else {
888 $self->_error (&Errno::EBADMSG);
889 }
890 }); 1101 1
891 }); 1102 }
892
893 1
894 } 1103 }
895}; 1104};
896 1105
897=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1106=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 1107
950 return 1; 1159 return 1;
951 } 1160 }
952 1161
953 # reject 1162 # reject
954 if ($reject && $$rbuf =~ $reject) { 1163 if ($reject && $$rbuf =~ $reject) {
955 $self->_error (&Errno::EBADMSG); 1164 $self->_error (Errno::EBADMSG);
956 } 1165 }
957 1166
958 # skip 1167 # skip
959 if ($skip && $$rbuf =~ $skip) { 1168 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1169 $data .= substr $$rbuf, 0, $+[0], "";
962 1171
963 () 1172 ()
964 } 1173 }
965}; 1174};
966 1175
1176=item netstring => $cb->($handle, $string)
1177
1178A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1179
1180Throws an error with C<$!> set to EBADMSG on format violations.
1181
1182=cut
1183
1184register_read_type netstring => sub {
1185 my ($self, $cb) = @_;
1186
1187 sub {
1188 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1189 if ($_[0]{rbuf} =~ /[^0-9]/) {
1190 $self->_error (Errno::EBADMSG);
1191 }
1192 return;
1193 }
1194
1195 my $len = $1;
1196
1197 $self->unshift_read (chunk => $len, sub {
1198 my $string = $_[1];
1199 $_[0]->unshift_read (chunk => 1, sub {
1200 if ($_[1] eq ",") {
1201 $cb->($_[0], $string);
1202 } else {
1203 $self->_error (Errno::EBADMSG);
1204 }
1205 });
1206 });
1207
1208 1
1209 }
1210};
1211
1212=item packstring => $format, $cb->($handle, $string)
1213
1214An octet string prefixed with an encoded length. The encoding C<$format>
1215uses the same format as a Perl C<pack> format, but must specify a single
1216integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1217optional C<!>, C<< < >> or C<< > >> modifier).
1218
1219For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1220EPP uses a prefix of C<N> (4 octtes).
1221
1222Example: read a block of data prefixed by its length in BER-encoded
1223format (very efficient).
1224
1225 $handle->push_read (packstring => "w", sub {
1226 my ($handle, $data) = @_;
1227 });
1228
1229=cut
1230
1231register_read_type packstring => sub {
1232 my ($self, $cb, $format) = @_;
1233
1234 sub {
1235 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1236 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1237 or return;
1238
1239 $format = length pack $format, $len;
1240
1241 # bypass unshift if we already have the remaining chunk
1242 if ($format + $len <= length $_[0]{rbuf}) {
1243 my $data = substr $_[0]{rbuf}, $format, $len;
1244 substr $_[0]{rbuf}, 0, $format + $len, "";
1245 $cb->($_[0], $data);
1246 } else {
1247 # remove prefix
1248 substr $_[0]{rbuf}, 0, $format, "";
1249
1250 # read remaining chunk
1251 $_[0]->unshift_read (chunk => $len, $cb);
1252 }
1253
1254 1
1255 }
1256};
1257
967=item json => $cb->($handle, $hash_or_arrayref) 1258=item json => $cb->($handle, $hash_or_arrayref)
968 1259
969Reads a JSON object or array, decodes it and passes it to the callback. 1260Reads a JSON object or array, decodes it and passes it to the
1261callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1262
971If a C<json> object was passed to the constructor, then that will be used 1263If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1264for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1265
974This read type uses the incremental parser available with JSON version 1266This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1273the C<json> write type description, above, for an actual example.
982 1274
983=cut 1275=cut
984 1276
985register_read_type json => sub { 1277register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1278 my ($self, $cb) = @_;
987 1279
988 require JSON; 1280 my $json = $self->{json} ||=
1281 eval { require JSON::XS; JSON::XS->new->utf8 }
1282 || do { require JSON; JSON->new->utf8 };
989 1283
990 my $data; 1284 my $data;
991 my $rbuf = \$self->{rbuf}; 1285 my $rbuf = \$self->{rbuf};
992 1286
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1287 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1288 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1289
998 if ($ref) { 1290 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1291 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1292 $json->incr_text = "";
1001 $cb->($self, $ref); 1293 $cb->($self, $ref);
1002 1294
1003 1 1295 1
1296 } elsif ($@) {
1297 # error case
1298 $json->incr_skip;
1299
1300 $self->{rbuf} = $json->incr_text;
1301 $json->incr_text = "";
1302
1303 $self->_error (Errno::EBADMSG);
1304
1305 ()
1004 } else { 1306 } else {
1005 $self->{rbuf} = ""; 1307 $self->{rbuf} = "";
1308
1006 () 1309 ()
1007 } 1310 }
1311 }
1312};
1313
1314=item storable => $cb->($handle, $ref)
1315
1316Deserialises a L<Storable> frozen representation as written by the
1317C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1318data).
1319
1320Raises C<EBADMSG> error if the data could not be decoded.
1321
1322=cut
1323
1324register_read_type storable => sub {
1325 my ($self, $cb) = @_;
1326
1327 require Storable;
1328
1329 sub {
1330 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1331 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1332 or return;
1333
1334 my $format = length pack "w", $len;
1335
1336 # bypass unshift if we already have the remaining chunk
1337 if ($format + $len <= length $_[0]{rbuf}) {
1338 my $data = substr $_[0]{rbuf}, $format, $len;
1339 substr $_[0]{rbuf}, 0, $format + $len, "";
1340 $cb->($_[0], Storable::thaw ($data));
1341 } else {
1342 # remove prefix
1343 substr $_[0]{rbuf}, 0, $format, "";
1344
1345 # read remaining chunk
1346 $_[0]->unshift_read (chunk => $len, sub {
1347 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1348 $cb->($_[0], $ref);
1349 } else {
1350 $self->_error (Errno::EBADMSG);
1351 }
1352 });
1353 }
1354
1355 1
1008 } 1356 }
1009}; 1357};
1010 1358
1011=back 1359=back
1012 1360
1033=item $handle->stop_read 1381=item $handle->stop_read
1034 1382
1035=item $handle->start_read 1383=item $handle->start_read
1036 1384
1037In rare cases you actually do not want to read anything from the 1385In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1386socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1387any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1388C<start_read>.
1041 1389
1042Note that AnyEvent::Handle will automatically C<start_read> for you when 1390Note that AnyEvent::Handle will automatically C<start_read> for you when
1043you change the C<on_read> callback or push/unshift a read callback, and it 1391you change the C<on_read> callback or push/unshift a read callback, and it
1044will automatically C<stop_read> for you when neither C<on_read> is set nor 1392will automatically C<stop_read> for you when neither C<on_read> is set nor
1045there are any read requests in the queue. 1393there are any read requests in the queue.
1046 1394
1395These methods will have no effect when in TLS mode (as TLS doesn't support
1396half-duplex connections).
1397
1047=cut 1398=cut
1048 1399
1049sub stop_read { 1400sub stop_read {
1050 my ($self) = @_; 1401 my ($self) = @_;
1051 1402
1052 delete $self->{_rw}; 1403 delete $self->{_rw} unless $self->{tls};
1053} 1404}
1054 1405
1055sub start_read { 1406sub start_read {
1056 my ($self) = @_; 1407 my ($self) = @_;
1057 1408
1058 unless ($self->{_rw} || $self->{_eof}) { 1409 unless ($self->{_rw} || $self->{_eof}) {
1059 Scalar::Util::weaken $self; 1410 Scalar::Util::weaken $self;
1060 1411
1061 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1412 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1062 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1413 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1063 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1414 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 1415
1065 if ($len > 0) { 1416 if ($len > 0) {
1066 $self->{_activity} = AnyEvent->now; 1417 $self->{_activity} = AnyEvent->now;
1067 1418
1068 $self->{filter_r} 1419 if ($self->{tls}) {
1069 ? $self->{filter_r}($self, $rbuf) 1420 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1070 : $self->_drain_rbuf; 1421
1422 &_dotls ($self);
1423 } else {
1424 $self->_drain_rbuf unless $self->{_in_drain};
1425 }
1071 1426
1072 } elsif (defined $len) { 1427 } elsif (defined $len) {
1073 delete $self->{_rw}; 1428 delete $self->{_rw};
1074 $self->{_eof} = 1; 1429 $self->{_eof} = 1;
1075 $self->_drain_rbuf; 1430 $self->_drain_rbuf unless $self->{_in_drain};
1076 1431
1077 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 return $self->_error ($!, 1); 1433 return $self->_error ($!, 1);
1079 } 1434 }
1080 }); 1435 });
1081 } 1436 }
1082} 1437}
1083 1438
1439our $ERROR_SYSCALL;
1440our $ERROR_WANT_READ;
1441
1442sub _tls_error {
1443 my ($self, $err) = @_;
1444
1445 return $self->_error ($!, 1)
1446 if $err == Net::SSLeay::ERROR_SYSCALL ();
1447
1448 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1449
1450 # reduce error string to look less scary
1451 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1452
1453 if ($self->{_on_starttls}) {
1454 (delete $self->{_on_starttls})->($self, undef, $err);
1455 &_freetls;
1456 } else {
1457 &_freetls;
1458 $self->_error (Errno::EPROTO, 1, $err);
1459 }
1460}
1461
1462# poll the write BIO and send the data if applicable
1463# also decode read data if possible
1464# this is basiclaly our TLS state machine
1465# more efficient implementations are possible with openssl,
1466# but not with the buggy and incomplete Net::SSLeay.
1084sub _dotls { 1467sub _dotls {
1085 my ($self) = @_; 1468 my ($self) = @_;
1086 1469
1087 my $buf; 1470 my $tmp;
1088 1471
1089 if (length $self->{_tls_wbuf}) { 1472 if (length $self->{_tls_wbuf}) {
1090 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1473 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091 substr $self->{_tls_wbuf}, 0, $len, ""; 1474 substr $self->{_tls_wbuf}, 0, $tmp, "";
1092 } 1475 }
1093 }
1094 1476
1477 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1478 return $self->_tls_error ($tmp)
1479 if $tmp != $ERROR_WANT_READ
1480 && ($tmp != $ERROR_SYSCALL || $!);
1481 }
1482
1483 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1484 unless (length $tmp) {
1485 $self->{_on_starttls}
1486 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1487 &_freetls;
1488
1489 if ($self->{on_stoptls}) {
1490 $self->{on_stoptls}($self);
1491 return;
1492 } else {
1493 # let's treat SSL-eof as we treat normal EOF
1494 delete $self->{_rw};
1495 $self->{_eof} = 1;
1496 }
1497 }
1498
1499 $self->{_tls_rbuf} .= $tmp;
1500 $self->_drain_rbuf unless $self->{_in_drain};
1501 $self->{tls} or return; # tls session might have gone away in callback
1502 }
1503
1504 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1505 return $self->_tls_error ($tmp)
1506 if $tmp != $ERROR_WANT_READ
1507 && ($tmp != $ERROR_SYSCALL || $!);
1508
1095 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1509 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 $self->{wbuf} .= $buf; 1510 $self->{wbuf} .= $tmp;
1097 $self->_drain_wbuf; 1511 $self->_drain_wbuf;
1098 } 1512 }
1099 1513
1100 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1514 $self->{_on_starttls}
1101 if (length $buf) { 1515 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1102 $self->{rbuf} .= $buf; 1516 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1103 $self->_drain_rbuf;
1104 } else {
1105 # let's treat SSL-eof as we treat normal EOF
1106 $self->{_eof} = 1;
1107 $self->_shutdown;
1108 return;
1109 }
1110 }
1111
1112 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1113
1114 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1115 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1116 return $self->_error ($!, 1);
1117 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1118 return $self->_error (&Errno::EIO, 1);
1119 }
1120
1121 # all others are fine for our purposes
1122 }
1123} 1517}
1124 1518
1125=item $handle->starttls ($tls[, $tls_ctx]) 1519=item $handle->starttls ($tls[, $tls_ctx])
1126 1520
1127Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1521Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1129C<starttls>. 1523C<starttls>.
1130 1524
1131The first argument is the same as the C<tls> constructor argument (either 1525The first argument is the same as the C<tls> constructor argument (either
1132C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1526C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133 1527
1134The second argument is the optional C<Net::SSLeay::CTX> object that is 1528The second argument is the optional C<AnyEvent::TLS> object that is used
1135used when AnyEvent::Handle has to create its own TLS connection object. 1529when AnyEvent::Handle has to create its own TLS connection object, or
1530a hash reference with C<< key => value >> pairs that will be used to
1531construct a new context.
1136 1532
1137The TLS connection object will end up in C<< $handle->{tls} >> after this 1533The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1138call and can be used or changed to your liking. Note that the handshake 1534context in C<< $handle->{tls_ctx} >> after this call and can be used or
1139might have already started when this function returns. 1535changed to your liking. Note that the handshake might have already started
1536when this function returns.
1140 1537
1538If it an error to start a TLS handshake more than once per
1539AnyEvent::Handle object (this is due to bugs in OpenSSL).
1540
1141=cut 1541=cut
1542
1543our %TLS_CACHE; #TODO not yet documented, should we?
1142 1544
1143sub starttls { 1545sub starttls {
1144 my ($self, $ssl, $ctx) = @_; 1546 my ($self, $ssl, $ctx) = @_;
1145 1547
1146 $self->stoptls; 1548 require Net::SSLeay;
1147 1549
1148 if ($ssl eq "accept") { 1550 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 if $self->{tls};
1150 Net::SSLeay::set_accept_state ($ssl); 1552
1151 } elsif ($ssl eq "connect") { 1553 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1152 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1554 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1153 Net::SSLeay::set_connect_state ($ssl); 1555
1556 $ctx ||= $self->{tls_ctx};
1557
1558 if ("HASH" eq ref $ctx) {
1559 require AnyEvent::TLS;
1560
1561 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1562
1563 if ($ctx->{cache}) {
1564 my $key = $ctx+0;
1565 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1566 } else {
1567 $ctx = new AnyEvent::TLS %$ctx;
1568 }
1569 }
1154 } 1570
1155 1571 $self->{tls_ctx} = $ctx || TLS_CTX ();
1156 $self->{tls} = $ssl; 1572 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1157 1573
1158 # basically, this is deep magic (because SSL_read should have the same issues) 1574 # basically, this is deep magic (because SSL_read should have the same issues)
1159 # but the openssl maintainers basically said: "trust us, it just works". 1575 # but the openssl maintainers basically said: "trust us, it just works".
1160 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1576 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161 # and mismaintained ssleay-module doesn't even offer them). 1577 # and mismaintained ssleay-module doesn't even offer them).
1162 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1578 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1579 #
1580 # in short: this is a mess.
1581 #
1582 # note that we do not try to keep the length constant between writes as we are required to do.
1583 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1584 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1585 # have identity issues in that area.
1163 Net::SSLeay::CTX_set_mode ($self->{tls}, 1586# Net::SSLeay::CTX_set_mode ($ssl,
1164 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1587# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1588# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1589 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1166 1590
1167 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1592 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 1593
1170 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1594 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1171 1595
1172 $self->{filter_w} = sub { 1596 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1173 $_[0]{_tls_wbuf} .= ${$_[1]}; 1597 if $self->{on_starttls};
1174 &_dotls; 1598
1175 }; 1599 &_dotls; # need to trigger the initial handshake
1176 $self->{filter_r} = sub { 1600 $self->start_read; # make sure we actually do read
1177 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 &_dotls;
1179 };
1180} 1601}
1181 1602
1182=item $handle->stoptls 1603=item $handle->stoptls
1183 1604
1184Destroys the SSL connection, if any. Partial read or write data will be 1605Shuts down the SSL connection - this makes a proper EOF handshake by
1185lost. 1606sending a close notify to the other side, but since OpenSSL doesn't
1607support non-blocking shut downs, it is not possible to re-use the stream
1608afterwards.
1186 1609
1187=cut 1610=cut
1188 1611
1189sub stoptls { 1612sub stoptls {
1190 my ($self) = @_; 1613 my ($self) = @_;
1191 1614
1192 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1615 if ($self->{tls}) {
1616 Net::SSLeay::shutdown ($self->{tls});
1193 1617
1194 delete $self->{_rbio}; 1618 &_dotls;
1195 delete $self->{_wbio}; 1619
1196 delete $self->{_tls_wbuf}; 1620# # we don't give a shit. no, we do, but we can't. no...#d#
1197 delete $self->{filter_r}; 1621# # we, we... have to use openssl :/#d#
1198 delete $self->{filter_w}; 1622# &_freetls;#d#
1623 }
1624}
1625
1626sub _freetls {
1627 my ($self) = @_;
1628
1629 return unless $self->{tls};
1630
1631 $self->{tls_ctx}->_put_session (delete $self->{tls});
1632
1633 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1199} 1634}
1200 1635
1201sub DESTROY { 1636sub DESTROY {
1202 my $self = shift; 1637 my ($self) = @_;
1203 1638
1204 $self->stoptls; 1639 &_freetls;
1640
1641 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1642
1643 if ($linger && length $self->{wbuf}) {
1644 my $fh = delete $self->{fh};
1645 my $wbuf = delete $self->{wbuf};
1646
1647 my @linger;
1648
1649 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1650 my $len = syswrite $fh, $wbuf, length $wbuf;
1651
1652 if ($len > 0) {
1653 substr $wbuf, 0, $len, "";
1654 } else {
1655 @linger = (); # end
1656 }
1657 });
1658 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1659 @linger = ();
1660 });
1661 }
1662}
1663
1664=item $handle->destroy
1665
1666Shuts down the handle object as much as possible - this call ensures that
1667no further callbacks will be invoked and as many resources as possible
1668will be freed. You must not call any methods on the object afterwards.
1669
1670Normally, you can just "forget" any references to an AnyEvent::Handle
1671object and it will simply shut down. This works in fatal error and EOF
1672callbacks, as well as code outside. It does I<NOT> work in a read or write
1673callback, so when you want to destroy the AnyEvent::Handle object from
1674within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1675that case.
1676
1677Destroying the handle object in this way has the advantage that callbacks
1678will be removed as well, so if those are the only reference holders (as
1679is common), then one doesn't need to do anything special to break any
1680reference cycles.
1681
1682The handle might still linger in the background and write out remaining
1683data, as specified by the C<linger> option, however.
1684
1685=cut
1686
1687sub destroy {
1688 my ($self) = @_;
1689
1690 $self->DESTROY;
1691 %$self = ();
1205} 1692}
1206 1693
1207=item AnyEvent::Handle::TLS_CTX 1694=item AnyEvent::Handle::TLS_CTX
1208 1695
1209This function creates and returns the Net::SSLeay::CTX object used by 1696This function creates and returns the AnyEvent::TLS object used by default
1210default for TLS mode. 1697for TLS mode.
1211 1698
1212The context is created like this: 1699The context is created by calling L<AnyEvent::TLS> without any arguments.
1213
1214 Net::SSLeay::load_error_strings;
1215 Net::SSLeay::SSLeay_add_ssl_algorithms;
1216 Net::SSLeay::randomize;
1217
1218 my $CTX = Net::SSLeay::CTX_new;
1219
1220 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221 1700
1222=cut 1701=cut
1223 1702
1224our $TLS_CTX; 1703our $TLS_CTX;
1225 1704
1226sub TLS_CTX() { 1705sub TLS_CTX() {
1227 $TLS_CTX || do { 1706 $TLS_CTX ||= do {
1228 require Net::SSLeay; 1707 require AnyEvent::TLS;
1229 1708
1230 Net::SSLeay::load_error_strings (); 1709 new AnyEvent::TLS
1231 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232 Net::SSLeay::randomize ();
1233
1234 $TLS_CTX = Net::SSLeay::CTX_new ();
1235
1236 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237
1238 $TLS_CTX
1239 } 1710 }
1240} 1711}
1241 1712
1242=back 1713=back
1714
1715
1716=head1 NONFREQUENTLY ASKED QUESTIONS
1717
1718=over 4
1719
1720=item I C<undef> the AnyEvent::Handle reference inside my callback and
1721still get further invocations!
1722
1723That's because AnyEvent::Handle keeps a reference to itself when handling
1724read or write callbacks.
1725
1726It is only safe to "forget" the reference inside EOF or error callbacks,
1727from within all other callbacks, you need to explicitly call the C<<
1728->destroy >> method.
1729
1730=item I get different callback invocations in TLS mode/Why can't I pause
1731reading?
1732
1733Unlike, say, TCP, TLS connections do not consist of two independent
1734communication channels, one for each direction. Or put differently. The
1735read and write directions are not independent of each other: you cannot
1736write data unless you are also prepared to read, and vice versa.
1737
1738This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1739callback invocations when you are not expecting any read data - the reason
1740is that AnyEvent::Handle always reads in TLS mode.
1741
1742During the connection, you have to make sure that you always have a
1743non-empty read-queue, or an C<on_read> watcher. At the end of the
1744connection (or when you no longer want to use it) you can call the
1745C<destroy> method.
1746
1747=item How do I read data until the other side closes the connection?
1748
1749If you just want to read your data into a perl scalar, the easiest way
1750to achieve this is by setting an C<on_read> callback that does nothing,
1751clearing the C<on_eof> callback and in the C<on_error> callback, the data
1752will be in C<$_[0]{rbuf}>:
1753
1754 $handle->on_read (sub { });
1755 $handle->on_eof (undef);
1756 $handle->on_error (sub {
1757 my $data = delete $_[0]{rbuf};
1758 });
1759
1760The reason to use C<on_error> is that TCP connections, due to latencies
1761and packets loss, might get closed quite violently with an error, when in
1762fact, all data has been received.
1763
1764It is usually better to use acknowledgements when transferring data,
1765to make sure the other side hasn't just died and you got the data
1766intact. This is also one reason why so many internet protocols have an
1767explicit QUIT command.
1768
1769=item I don't want to destroy the handle too early - how do I wait until
1770all data has been written?
1771
1772After writing your last bits of data, set the C<on_drain> callback
1773and destroy the handle in there - with the default setting of
1774C<low_water_mark> this will be called precisely when all data has been
1775written to the socket:
1776
1777 $handle->push_write (...);
1778 $handle->on_drain (sub {
1779 warn "all data submitted to the kernel\n";
1780 undef $handle;
1781 });
1782
1783If you just want to queue some data and then signal EOF to the other side,
1784consider using C<< ->push_shutdown >> instead.
1785
1786=item I want to contact a TLS/SSL server, I don't care about security.
1787
1788If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1789simply connect to it and then create the AnyEvent::Handle with the C<tls>
1790parameter:
1791
1792 tcp_connect $host, $port, sub {
1793 my ($fh) = @_;
1794
1795 my $handle = new AnyEvent::Handle
1796 fh => $fh,
1797 tls => "connect",
1798 on_error => sub { ... };
1799
1800 $handle->push_write (...);
1801 };
1802
1803=item I want to contact a TLS/SSL server, I do care about security.
1804
1805Then you should additionally enable certificate verification, including
1806peername verification, if the protocol you use supports it (see
1807L<AnyEvent::TLS>, C<verify_peername>).
1808
1809E.g. for HTTPS:
1810
1811 tcp_connect $host, $port, sub {
1812 my ($fh) = @_;
1813
1814 my $handle = new AnyEvent::Handle
1815 fh => $fh,
1816 peername => $host,
1817 tls => "connect",
1818 tls_ctx => { verify => 1, verify_peername => "https" },
1819 ...
1820
1821Note that you must specify the hostname you connected to (or whatever
1822"peername" the protocol needs) as the C<peername> argument, otherwise no
1823peername verification will be done.
1824
1825The above will use the system-dependent default set of trusted CA
1826certificates. If you want to check against a specific CA, add the
1827C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1828
1829 tls_ctx => {
1830 verify => 1,
1831 verify_peername => "https",
1832 ca_file => "my-ca-cert.pem",
1833 },
1834
1835=item I want to create a TLS/SSL server, how do I do that?
1836
1837Well, you first need to get a server certificate and key. You have
1838three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1839self-signed certificate (cheap. check the search engine of your choice,
1840there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1841nice program for that purpose).
1842
1843Then create a file with your private key (in PEM format, see
1844L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1845file should then look like this:
1846
1847 -----BEGIN RSA PRIVATE KEY-----
1848 ...header data
1849 ... lots of base64'y-stuff
1850 -----END RSA PRIVATE KEY-----
1851
1852 -----BEGIN CERTIFICATE-----
1853 ... lots of base64'y-stuff
1854 -----END CERTIFICATE-----
1855
1856The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1857specify this file as C<cert_file>:
1858
1859 tcp_server undef, $port, sub {
1860 my ($fh) = @_;
1861
1862 my $handle = new AnyEvent::Handle
1863 fh => $fh,
1864 tls => "accept",
1865 tls_ctx => { cert_file => "my-server-keycert.pem" },
1866 ...
1867
1868When you have intermediate CA certificates that your clients might not
1869know about, just append them to the C<cert_file>.
1870
1871=back
1872
1243 1873
1244=head1 SUBCLASSING AnyEvent::Handle 1874=head1 SUBCLASSING AnyEvent::Handle
1245 1875
1246In many cases, you might want to subclass AnyEvent::Handle. 1876In many cases, you might want to subclass AnyEvent::Handle.
1247 1877
1251=over 4 1881=over 4
1252 1882
1253=item * all constructor arguments become object members. 1883=item * all constructor arguments become object members.
1254 1884
1255At least initially, when you pass a C<tls>-argument to the constructor it 1885At least initially, when you pass a C<tls>-argument to the constructor it
1256will end up in C<< $handle->{tls} >>. Those members might be changes or 1886will end up in C<< $handle->{tls} >>. Those members might be changed or
1257mutated later on (for example C<tls> will hold the TLS connection object). 1887mutated later on (for example C<tls> will hold the TLS connection object).
1258 1888
1259=item * other object member names are prefixed with an C<_>. 1889=item * other object member names are prefixed with an C<_>.
1260 1890
1261All object members not explicitly documented (internal use) are prefixed 1891All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines