ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.56 by root, Wed Jun 4 09:55:16 2008 UTC vs.
Revision 1.158 by root, Fri Jul 24 08:40:35 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.12; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 50on sockets see L<AnyEvent::Util>.
53 51
52The L<AnyEvent::Intro> tutorial contains some well-documented
53AnyEvent::Handle examples.
54
54In the following, when the documentation refers to of "bytes" then this 55In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 56means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 57treatment of characters applies to this module as well.
57 58
58All callbacks will be invoked with the handle object as their first 59All callbacks will be invoked with the handle object as their first
60 61
61=head1 METHODS 62=head1 METHODS
62 63
63=over 4 64=over 4
64 65
65=item B<new (%args)> 66=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 67
67The constructor supports these arguments (all as key => value pairs). 68The constructor supports these arguments (all as C<< key => value >> pairs).
68 69
69=over 4 70=over 4
70 71
71=item fh => $filehandle [MANDATORY] 72=item fh => $filehandle [MANDATORY]
72 73
74#=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
80
81#=item connect => [$host, $service]
82#
83# You have to specify either this parameter, or C<connect>, below.
84#Try to connect to the specified host and service (port), using
85#C<AnyEvent::Socket::tcp_connect>.
86#
87#When this
77 88
78=item on_eof => $cb->($handle) 89=item on_eof => $cb->($handle)
79 90
80Set the callback to be called when an end-of-file condition is detcted, 91Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 92i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 93connection cleanly, and there are no outstanding read requests in the
94queue (if there are read requests, then an EOF counts as an unexpected
95connection close and will be flagged as an error).
83 96
84While not mandatory, it is highly recommended to set an eof callback, 97For sockets, this just means that the other side has stopped sending data,
85otherwise you might end up with a closed socket while you are still 98you can still try to write data, and, in fact, one can return from the EOF
86waiting for data. 99callback and continue writing data, as only the read part has been shut
100down.
87 101
102If an EOF condition has been detected but no C<on_eof> callback has been
103set, then a fatal error will be raised with C<$!> set to <0>.
104
88=item on_error => $cb->($handle, $fatal) 105=item on_error => $cb->($handle, $fatal, $message)
89 106
90This is the error callback, which is called when, well, some error 107This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 108occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 109connect or a read error.
93 110
94Some errors are fatal (which is indicated by C<$fatal> being true). On 111Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 112fatal errors the handle object will be destroyed (by a call to C<< ->
113destroy >>) after invoking the error callback (which means you are free to
114examine the handle object). Examples of fatal errors are an EOF condition
115with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
116
117AnyEvent::Handle tries to find an appropriate error code for you to check
118against, but in some cases (TLS errors), this does not work well. It is
119recommended to always output the C<$message> argument in human-readable
120error messages (it's usually the same as C<"$!">).
121
96usable. Non-fatal errors can be retried by simply returning, but it is 122Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 123to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 124when this callback is invoked. Examples of non-fatal errors are timeouts
125C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 126
100On callback entrance, the value of C<$!> contains the operating system 127On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 128error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
129C<EPROTO>).
102 130
103While not mandatory, it is I<highly> recommended to set this callback, as 131While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 132you will not be notified of errors otherwise. The default simply calls
105C<croak>. 133C<croak>.
106 134
107=item on_read => $cb->($handle) 135=item on_read => $cb->($handle)
108 136
109This sets the default read callback, which is called when data arrives 137This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 138and no read request is in the queue (unlike read queue callbacks, this
139callback will only be called when at least one octet of data is in the
140read buffer).
111 141
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 142To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 143method or access the C<< $handle->{rbuf} >> member directly. Note that you
144must not enlarge or modify the read buffer, you can only remove data at
145the beginning from it.
114 146
115When an EOF condition is detected then AnyEvent::Handle will first try to 147When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 148feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 149calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 150error will be raised (with C<$!> set to C<EPIPE>).
119 151
152Note that, unlike requests in the read queue, an C<on_read> callback
153doesn't mean you I<require> some data: if there is an EOF and there
154are outstanding read requests then an error will be flagged. With an
155C<on_read> callback, the C<on_eof> callback will be invoked.
156
120=item on_drain => $cb->($handle) 157=item on_drain => $cb->($handle)
121 158
122This sets the callback that is called when the write buffer becomes empty 159This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 160(or when the callback is set and the buffer is empty already).
124 161
125To append to the write buffer, use the C<< ->push_write >> method. 162To append to the write buffer, use the C<< ->push_write >> method.
163
164This callback is useful when you don't want to put all of your write data
165into the queue at once, for example, when you want to write the contents
166of some file to the socket you might not want to read the whole file into
167memory and push it into the queue, but instead only read more data from
168the file when the write queue becomes empty.
126 169
127=item timeout => $fractional_seconds 170=item timeout => $fractional_seconds
128 171
129If non-zero, then this enables an "inactivity" timeout: whenever this many 172If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 173seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 174handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 175missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 176
134Note that timeout processing is also active when you currently do not have 177Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 178any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 179idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 180in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
181restart the timeout.
138 182
139Zero (the default) disables this timeout. 183Zero (the default) disables this timeout.
140 184
141=item on_timeout => $cb->($handle) 185=item on_timeout => $cb->($handle)
142 186
146 190
147=item rbuf_max => <bytes> 191=item rbuf_max => <bytes>
148 192
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 193If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 194when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 195avoid some forms of denial-of-service attacks.
152 196
153For example, a server accepting connections from untrusted sources should 197For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 198be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 199(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 200amount of data without a callback ever being called as long as the line
157isn't finished). 201isn't finished).
158 202
203=item autocork => <boolean>
204
205When disabled (the default), then C<push_write> will try to immediately
206write the data to the handle, if possible. This avoids having to register
207a write watcher and wait for the next event loop iteration, but can
208be inefficient if you write multiple small chunks (on the wire, this
209disadvantage is usually avoided by your kernel's nagle algorithm, see
210C<no_delay>, but this option can save costly syscalls).
211
212When enabled, then writes will always be queued till the next event loop
213iteration. This is efficient when you do many small writes per iteration,
214but less efficient when you do a single write only per iteration (or when
215the write buffer often is full). It also increases write latency.
216
217=item no_delay => <boolean>
218
219When doing small writes on sockets, your operating system kernel might
220wait a bit for more data before actually sending it out. This is called
221the Nagle algorithm, and usually it is beneficial.
222
223In some situations you want as low a delay as possible, which can be
224accomplishd by setting this option to a true value.
225
226The default is your opertaing system's default behaviour (most likely
227enabled), this option explicitly enables or disables it, if possible.
228
159=item read_size => <bytes> 229=item read_size => <bytes>
160 230
161The default read block size (the amount of bytes this module will try to read 231The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 232try to read during each loop iteration, which affects memory
233requirements). Default: C<8192>.
163 234
164=item low_water_mark => <bytes> 235=item low_water_mark => <bytes>
165 236
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 237Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 238buffer: If the write reaches this size or gets even samller it is
168considered empty. 239considered empty.
169 240
241Sometimes it can be beneficial (for performance reasons) to add data to
242the write buffer before it is fully drained, but this is a rare case, as
243the operating system kernel usually buffers data as well, so the default
244is good in almost all cases.
245
246=item linger => <seconds>
247
248If non-zero (default: C<3600>), then the destructor of the
249AnyEvent::Handle object will check whether there is still outstanding
250write data and will install a watcher that will write this data to the
251socket. No errors will be reported (this mostly matches how the operating
252system treats outstanding data at socket close time).
253
254This will not work for partial TLS data that could not be encoded
255yet. This data will be lost. Calling the C<stoptls> method in time might
256help.
257
258=item peername => $string
259
260A string used to identify the remote site - usually the DNS hostname
261(I<not> IDN!) used to create the connection, rarely the IP address.
262
263Apart from being useful in error messages, this string is also used in TLS
264peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
265verification will be skipped when C<peername> is not specified or
266C<undef>.
267
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 268=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 269
172When this parameter is given, it enables TLS (SSL) mode, that means it 270When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 271AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 272established and will transparently encrypt/decrypt data afterwards.
273
274All TLS protocol errors will be signalled as C<EPROTO>, with an
275appropriate error message.
175 276
176TLS mode requires Net::SSLeay to be installed (it will be loaded 277TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 278automatically when you try to create a TLS handle): this module doesn't
279have a dependency on that module, so if your module requires it, you have
280to add the dependency yourself.
178 281
179For the TLS server side, use C<accept>, and for the TLS client side of a 282Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 283C<accept>, and for the TLS client side of a connection, use C<connect>
284mode.
181 285
182You can also provide your own TLS connection object, but you have 286You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 287to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 288or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 289AnyEvent::Handle. Also, this module will take ownership of this connection
290object.
186 291
292At some future point, AnyEvent::Handle might switch to another TLS
293implementation, then the option to use your own session object will go
294away.
295
296B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
297passing in the wrong integer will lead to certain crash. This most often
298happens when one uses a stylish C<< tls => 1 >> and is surprised about the
299segmentation fault.
300
187See the C<starttls> method if you need to start TLs negotiation later. 301See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 302
189=item tls_ctx => $ssl_ctx 303=item tls_ctx => $anyevent_tls
190 304
191Use the given Net::SSLeay::CTX object to create the new TLS connection 305Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 306(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 307missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 308
309Instead of an object, you can also specify a hash reference with C<< key
310=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
311new TLS context object.
312
313=item on_starttls => $cb->($handle, $success[, $error_message])
314
315This callback will be invoked when the TLS/SSL handshake has finished. If
316C<$success> is true, then the TLS handshake succeeded, otherwise it failed
317(C<on_stoptls> will not be called in this case).
318
319The session in C<< $handle->{tls} >> can still be examined in this
320callback, even when the handshake was not successful.
321
322TLS handshake failures will not cause C<on_error> to be invoked when this
323callback is in effect, instead, the error message will be passed to C<on_starttls>.
324
325Without this callback, handshake failures lead to C<on_error> being
326called, as normal.
327
328Note that you cannot call C<starttls> right again in this callback. If you
329need to do that, start an zero-second timer instead whose callback can
330then call C<< ->starttls >> again.
331
332=item on_stoptls => $cb->($handle)
333
334When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
335set, then it will be invoked after freeing the TLS session. If it is not,
336then a TLS shutdown condition will be treated like a normal EOF condition
337on the handle.
338
339The session in C<< $handle->{tls} >> can still be examined in this
340callback.
341
342This callback will only be called on TLS shutdowns, not when the
343underlying handle signals EOF.
344
195=item json => JSON or JSON::XS object 345=item json => JSON or JSON::XS object
196 346
197This is the json coder object used by the C<json> read and write types. 347This is the json coder object used by the C<json> read and write types.
198 348
199If you don't supply it, then AnyEvent::Handle will create and use a 349If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 350suitable one (on demand), which will write and expect UTF-8 encoded JSON
351texts.
201 352
202Note that you are responsible to depend on the JSON module if you want to 353Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 354use this functionality, as AnyEvent does not have a dependency itself.
204 355
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 356=back
212 357
213=cut 358=cut
214 359
215sub new { 360sub new {
216 my $class = shift; 361 my $class = shift;
217
218 my $self = bless { @_ }, $class; 362 my $self = bless { @_ }, $class;
219 363
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 364 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 365
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 366 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 367
234 $self->{_activity} = AnyEvent->now; 368 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 369 $self->_timeout;
236 370
371 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
372
373 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
374 if $self->{tls};
375
376 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
377
237 $self->start_read; 378 $self->start_read
379 if $self->{on_read};
238 380
239 $self 381 $self->{fh} && $self
240} 382}
241 383
242sub _shutdown { 384#sub _shutdown {
243 my ($self) = @_; 385# my ($self) = @_;
244 386#
245 delete $self->{_tw}; 387# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 388# $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww}; 389#
248 delete $self->{fh}; 390# &_freetls;
249 391#}
250 $self->stoptls;
251}
252 392
253sub _error { 393sub _error {
254 my ($self, $errno, $fatal) = @_; 394 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 395
259 $! = $errno; 396 $! = $errno;
397 $message ||= "$!";
260 398
261 if ($self->{on_error}) { 399 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 400 $self->{on_error}($self, $fatal, $message);
263 } else { 401 $self->destroy if $fatal;
402 } elsif ($self->{fh}) {
403 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 404 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 405 }
266} 406}
267 407
268=item $fh = $handle->fh 408=item $fh = $handle->fh
269 409
270This method returns the file handle of the L<AnyEvent::Handle> object. 410This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 411
272=cut 412=cut
273 413
274sub fh { $_[0]{fh} } 414sub fh { $_[0]{fh} }
275 415
293 $_[0]{on_eof} = $_[1]; 433 $_[0]{on_eof} = $_[1];
294} 434}
295 435
296=item $handle->on_timeout ($cb) 436=item $handle->on_timeout ($cb)
297 437
298Replace the current C<on_timeout> callback, or disables the callback 438Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 439not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 440argument and method.
301 441
302=cut 442=cut
303 443
304sub on_timeout { 444sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 445 $_[0]{on_timeout} = $_[1];
446}
447
448=item $handle->autocork ($boolean)
449
450Enables or disables the current autocork behaviour (see C<autocork>
451constructor argument). Changes will only take effect on the next write.
452
453=cut
454
455sub autocork {
456 $_[0]{autocork} = $_[1];
457}
458
459=item $handle->no_delay ($boolean)
460
461Enables or disables the C<no_delay> setting (see constructor argument of
462the same name for details).
463
464=cut
465
466sub no_delay {
467 $_[0]{no_delay} = $_[1];
468
469 eval {
470 local $SIG{__DIE__};
471 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
472 };
473}
474
475=item $handle->on_starttls ($cb)
476
477Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
478
479=cut
480
481sub on_starttls {
482 $_[0]{on_starttls} = $_[1];
483}
484
485=item $handle->on_stoptls ($cb)
486
487Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
488
489=cut
490
491sub on_starttls {
492 $_[0]{on_stoptls} = $_[1];
306} 493}
307 494
308############################################################################# 495#############################################################################
309 496
310=item $handle->timeout ($seconds) 497=item $handle->timeout ($seconds)
336 $self->{_activity} = $NOW; 523 $self->{_activity} = $NOW;
337 524
338 if ($self->{on_timeout}) { 525 if ($self->{on_timeout}) {
339 $self->{on_timeout}($self); 526 $self->{on_timeout}($self);
340 } else { 527 } else {
341 $self->_error (&Errno::ETIMEDOUT); 528 $self->_error (Errno::ETIMEDOUT);
342 } 529 }
343 530
344 # callback could have changed timeout value, optimise 531 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 532 return unless $self->{timeout};
346 533
388 my ($self, $cb) = @_; 575 my ($self, $cb) = @_;
389 576
390 $self->{on_drain} = $cb; 577 $self->{on_drain} = $cb;
391 578
392 $cb->($self) 579 $cb->($self)
393 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 580 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
394} 581}
395 582
396=item $handle->push_write ($data) 583=item $handle->push_write ($data)
397 584
398Queues the given scalar to be written. You can push as much data as you 585Queues the given scalar to be written. You can push as much data as you
409 Scalar::Util::weaken $self; 596 Scalar::Util::weaken $self;
410 597
411 my $cb = sub { 598 my $cb = sub {
412 my $len = syswrite $self->{fh}, $self->{wbuf}; 599 my $len = syswrite $self->{fh}, $self->{wbuf};
413 600
414 if ($len >= 0) { 601 if (defined $len) {
415 substr $self->{wbuf}, 0, $len, ""; 602 substr $self->{wbuf}, 0, $len, "";
416 603
417 $self->{_activity} = AnyEvent->now; 604 $self->{_activity} = AnyEvent->now;
418 605
419 $self->{on_drain}($self) 606 $self->{on_drain}($self)
420 if $self->{low_water_mark} >= length $self->{wbuf} 607 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
421 && $self->{on_drain}; 608 && $self->{on_drain};
422 609
423 delete $self->{_ww} unless length $self->{wbuf}; 610 delete $self->{_ww} unless length $self->{wbuf};
424 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 611 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 $self->_error ($!, 1); 612 $self->_error ($!, 1);
426 } 613 }
427 }; 614 };
428 615
429 # try to write data immediately 616 # try to write data immediately
430 $cb->(); 617 $cb->() unless $self->{autocork};
431 618
432 # if still data left in wbuf, we need to poll 619 # if still data left in wbuf, we need to poll
433 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 620 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
434 if length $self->{wbuf}; 621 if length $self->{wbuf};
435 }; 622 };
449 636
450 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 637 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451 ->($self, @_); 638 ->($self, @_);
452 } 639 }
453 640
454 if ($self->{filter_w}) { 641 if ($self->{tls}) {
455 $self->{filter_w}($self, \$_[0]); 642 $self->{_tls_wbuf} .= $_[0];
643
644 &_dotls ($self);
456 } else { 645 } else {
457 $self->{wbuf} .= $_[0]; 646 $self->{wbuf} .= $_[0];
458 $self->_drain_wbuf; 647 $self->_drain_wbuf;
459 } 648 }
460} 649}
477=cut 666=cut
478 667
479register_write_type netstring => sub { 668register_write_type netstring => sub {
480 my ($self, $string) = @_; 669 my ($self, $string) = @_;
481 670
482 sprintf "%d:%s,", (length $string), $string 671 (length $string) . ":$string,"
672};
673
674=item packstring => $format, $data
675
676An octet string prefixed with an encoded length. The encoding C<$format>
677uses the same format as a Perl C<pack> format, but must specify a single
678integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
679optional C<!>, C<< < >> or C<< > >> modifier).
680
681=cut
682
683register_write_type packstring => sub {
684 my ($self, $format, $string) = @_;
685
686 pack "$format/a*", $string
483}; 687};
484 688
485=item json => $array_or_hashref 689=item json => $array_or_hashref
486 690
487Encodes the given hash or array reference into a JSON object. Unless you 691Encodes the given hash or array reference into a JSON object. Unless you
521 725
522 $self->{json} ? $self->{json}->encode ($ref) 726 $self->{json} ? $self->{json}->encode ($ref)
523 : JSON::encode_json ($ref) 727 : JSON::encode_json ($ref)
524}; 728};
525 729
730=item storable => $reference
731
732Freezes the given reference using L<Storable> and writes it to the
733handle. Uses the C<nfreeze> format.
734
735=cut
736
737register_write_type storable => sub {
738 my ($self, $ref) = @_;
739
740 require Storable;
741
742 pack "w/a*", Storable::nfreeze ($ref)
743};
744
526=back 745=back
746
747=item $handle->push_shutdown
748
749Sometimes you know you want to close the socket after writing your data
750before it was actually written. One way to do that is to replace your
751C<on_drain> handler by a callback that shuts down the socket (and set
752C<low_water_mark> to C<0>). This method is a shorthand for just that, and
753replaces the C<on_drain> callback with:
754
755 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
756
757This simply shuts down the write side and signals an EOF condition to the
758the peer.
759
760You can rely on the normal read queue and C<on_eof> handling
761afterwards. This is the cleanest way to close a connection.
762
763=cut
764
765sub push_shutdown {
766 my ($self) = @_;
767
768 delete $self->{low_water_mark};
769 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
770}
527 771
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 772=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 773
530This function (not method) lets you add your own types to C<push_write>. 774This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 775Whenever the given C<type> is used, C<push_write> will invoke the code
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 796ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 797a queue.
554 798
555In the simple case, you just install an C<on_read> callback and whenever 799In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 800new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 801enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 802leave the data there if you want to accumulate more (e.g. when only a
803partial message has been received so far).
559 804
560In the more complex case, you want to queue multiple callbacks. In this 805In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 806case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 807data arrives (also the first time it is queued) and removes it when it has
563below). 808done its job (see C<push_read>, below).
564 809
565This way you can, for example, push three line-reads, followed by reading 810This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 811a chunk of data, and AnyEvent::Handle will execute them in order.
567 812
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 813Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 # handle xml 826 # handle xml
582 }); 827 });
583 }); 828 });
584 }); 829 });
585 830
586Example 2: Implement a client for a protocol that replies either with 831Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 832and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 833bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 834just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 835in the callbacks.
591 836
592 # request one 837When the first callback is called and sees an "OK" response, it will
838C<unshift> another line-read. This line-read will be queued I<before> the
83964-byte chunk callback.
840
841 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 842 $handle->push_write ("request 1\015\012");
594 843
595 # we expect "ERROR" or "OK" as response, so push a line read 844 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read (line => sub { 845 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 846 # if we got an "OK", we have to _prepend_ another line,
604 ... 853 ...
605 }); 854 });
606 } 855 }
607 }); 856 });
608 857
609 # request two 858 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 859 $handle->push_write ("request 2\015\012");
611 860
612 # simply read 64 bytes, always 861 # simply read 64 bytes, always
613 $handle->push_read (chunk => 64, sub { 862 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 863 my $response = $_[1];
620=cut 869=cut
621 870
622sub _drain_rbuf { 871sub _drain_rbuf {
623 my ($self) = @_; 872 my ($self) = @_;
624 873
874 local $self->{_in_drain} = 1;
875
625 if ( 876 if (
626 defined $self->{rbuf_max} 877 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 878 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 879 ) {
629 return $self->_error (&Errno::ENOSPC, 1); 880 $self->_error (Errno::ENOSPC, 1), return;
630 } 881 }
631 882
632 return if $self->{in_drain}; 883 while () {
633 local $self->{in_drain} = 1; 884 # we need to use a separate tls read buffer, as we must not receive data while
885 # we are draining the buffer, and this can only happen with TLS.
886 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
634 887
635 while (my $len = length $self->{rbuf}) { 888 my $len = length $self->{rbuf};
636 no strict 'refs'; 889
637 if (my $cb = shift @{ $self->{_queue} }) { 890 if (my $cb = shift @{ $self->{_queue} }) {
638 unless ($cb->($self)) { 891 unless ($cb->($self)) {
639 if ($self->{_eof}) { 892 if ($self->{_eof}) {
640 # no progress can be made (not enough data and no data forthcoming) 893 # no progress can be made (not enough data and no data forthcoming)
641 return $self->_error (&Errno::EPIPE, 1); 894 $self->_error (Errno::EPIPE, 1), return;
642 } 895 }
643 896
644 unshift @{ $self->{_queue} }, $cb; 897 unshift @{ $self->{_queue} }, $cb;
645 last; 898 last;
646 } 899 }
647 } elsif ($self->{on_read}) { 900 } elsif ($self->{on_read}) {
901 last unless $len;
902
648 $self->{on_read}($self); 903 $self->{on_read}($self);
649 904
650 if ( 905 if (
651 $len == length $self->{rbuf} # if no data has been consumed 906 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 907 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # but we still have on_read 908 && $self->{on_read} # but we still have on_read
654 ) { 909 ) {
655 # no further data will arrive 910 # no further data will arrive
656 # so no progress can be made 911 # so no progress can be made
657 return $self->_error (&Errno::EPIPE, 1) 912 $self->_error (Errno::EPIPE, 1), return
658 if $self->{_eof}; 913 if $self->{_eof};
659 914
660 last; # more data might arrive 915 last; # more data might arrive
661 } 916 }
662 } else { 917 } else {
663 # read side becomes idle 918 # read side becomes idle
664 delete $self->{_rw}; 919 delete $self->{_rw} unless $self->{tls};
665 last; 920 last;
666 } 921 }
667 } 922 }
668 923
924 if ($self->{_eof}) {
925 if ($self->{on_eof}) {
669 $self->{on_eof}($self) 926 $self->{on_eof}($self)
670 if $self->{_eof} && $self->{on_eof}; 927 } else {
928 $self->_error (0, 1, "Unexpected end-of-file");
929 }
930 }
671 931
672 # may need to restart read watcher 932 # may need to restart read watcher
673 unless ($self->{_rw}) { 933 unless ($self->{_rw}) {
674 $self->start_read 934 $self->start_read
675 if $self->{on_read} || @{ $self->{_queue} }; 935 if $self->{on_read} || @{ $self->{_queue} };
686 946
687sub on_read { 947sub on_read {
688 my ($self, $cb) = @_; 948 my ($self, $cb) = @_;
689 949
690 $self->{on_read} = $cb; 950 $self->{on_read} = $cb;
951 $self->_drain_rbuf if $cb && !$self->{_in_drain};
691} 952}
692 953
693=item $handle->rbuf 954=item $handle->rbuf
694 955
695Returns the read buffer (as a modifiable lvalue). 956Returns the read buffer (as a modifiable lvalue).
696 957
697You can access the read buffer directly as the C<< ->{rbuf} >> member, if 958You can access the read buffer directly as the C<< ->{rbuf} >>
698you want. 959member, if you want. However, the only operation allowed on the
960read buffer (apart from looking at it) is removing data from its
961beginning. Otherwise modifying or appending to it is not allowed and will
962lead to hard-to-track-down bugs.
699 963
700NOTE: The read buffer should only be used or modified if the C<on_read>, 964NOTE: The read buffer should only be used or modified if the C<on_read>,
701C<push_read> or C<unshift_read> methods are used. The other read methods 965C<push_read> or C<unshift_read> methods are used. The other read methods
702automatically manage the read buffer. 966automatically manage the read buffer.
703 967
744 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1008 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
745 ->($self, $cb, @_); 1009 ->($self, $cb, @_);
746 } 1010 }
747 1011
748 push @{ $self->{_queue} }, $cb; 1012 push @{ $self->{_queue} }, $cb;
749 $self->_drain_rbuf; 1013 $self->_drain_rbuf unless $self->{_in_drain};
750} 1014}
751 1015
752sub unshift_read { 1016sub unshift_read {
753 my $self = shift; 1017 my $self = shift;
754 my $cb = pop; 1018 my $cb = pop;
760 ->($self, $cb, @_); 1024 ->($self, $cb, @_);
761 } 1025 }
762 1026
763 1027
764 unshift @{ $self->{_queue} }, $cb; 1028 unshift @{ $self->{_queue} }, $cb;
765 $self->_drain_rbuf; 1029 $self->_drain_rbuf unless $self->{_in_drain};
766} 1030}
767 1031
768=item $handle->push_read (type => @args, $cb) 1032=item $handle->push_read (type => @args, $cb)
769 1033
770=item $handle->unshift_read (type => @args, $cb) 1034=item $handle->unshift_read (type => @args, $cb)
800 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1064 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 1 1065 1
802 } 1066 }
803}; 1067};
804 1068
805# compatibility with older API
806sub push_read_chunk {
807 $_[0]->push_read (chunk => $_[1], $_[2]);
808}
809
810sub unshift_read_chunk {
811 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812}
813
814=item line => [$eol, ]$cb->($handle, $line, $eol) 1069=item line => [$eol, ]$cb->($handle, $line, $eol)
815 1070
816The callback will be called only once a full line (including the end of 1071The callback will be called only once a full line (including the end of
817line marker, C<$eol>) has been read. This line (excluding the end of line 1072line marker, C<$eol>) has been read. This line (excluding the end of line
818marker) will be passed to the callback as second argument (C<$line>), and 1073marker) will be passed to the callback as second argument (C<$line>), and
833=cut 1088=cut
834 1089
835register_read_type line => sub { 1090register_read_type line => sub {
836 my ($self, $cb, $eol) = @_; 1091 my ($self, $cb, $eol) = @_;
837 1092
838 $eol = qr|(\015?\012)| if @_ < 3; 1093 if (@_ < 3) {
839 $eol = quotemeta $eol unless ref $eol; 1094 # this is more than twice as fast as the generic code below
840 $eol = qr|^(.*?)($eol)|s;
841
842 sub { 1095 sub {
843 $_[0]{rbuf} =~ s/$eol// or return; 1096 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
844 1097
845 $cb->($_[0], $1, $2); 1098 $cb->($_[0], $1, $2);
846 1
847 }
848};
849
850# compatibility with older API
851sub push_read_line {
852 my $self = shift;
853 $self->push_read (line => @_);
854}
855
856sub unshift_read_line {
857 my $self = shift;
858 $self->unshift_read (line => @_);
859}
860
861=item netstring => $cb->($handle, $string)
862
863A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864
865Throws an error with C<$!> set to EBADMSG on format violations.
866
867=cut
868
869register_read_type netstring => sub {
870 my ($self, $cb) = @_;
871
872 sub {
873 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874 if ($_[0]{rbuf} =~ /[^0-9]/) {
875 $self->_error (&Errno::EBADMSG);
876 } 1099 1
877 return;
878 } 1100 }
1101 } else {
1102 $eol = quotemeta $eol unless ref $eol;
1103 $eol = qr|^(.*?)($eol)|s;
879 1104
880 my $len = $1; 1105 sub {
1106 $_[0]{rbuf} =~ s/$eol// or return;
881 1107
882 $self->unshift_read (chunk => $len, sub { 1108 $cb->($_[0], $1, $2);
883 my $string = $_[1];
884 $_[0]->unshift_read (chunk => 1, sub {
885 if ($_[1] eq ",") {
886 $cb->($_[0], $string);
887 } else {
888 $self->_error (&Errno::EBADMSG);
889 }
890 }); 1109 1
891 }); 1110 }
892
893 1
894 } 1111 }
895}; 1112};
896 1113
897=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1114=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 1115
950 return 1; 1167 return 1;
951 } 1168 }
952 1169
953 # reject 1170 # reject
954 if ($reject && $$rbuf =~ $reject) { 1171 if ($reject && $$rbuf =~ $reject) {
955 $self->_error (&Errno::EBADMSG); 1172 $self->_error (Errno::EBADMSG);
956 } 1173 }
957 1174
958 # skip 1175 # skip
959 if ($skip && $$rbuf =~ $skip) { 1176 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1177 $data .= substr $$rbuf, 0, $+[0], "";
962 1179
963 () 1180 ()
964 } 1181 }
965}; 1182};
966 1183
1184=item netstring => $cb->($handle, $string)
1185
1186A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1187
1188Throws an error with C<$!> set to EBADMSG on format violations.
1189
1190=cut
1191
1192register_read_type netstring => sub {
1193 my ($self, $cb) = @_;
1194
1195 sub {
1196 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1197 if ($_[0]{rbuf} =~ /[^0-9]/) {
1198 $self->_error (Errno::EBADMSG);
1199 }
1200 return;
1201 }
1202
1203 my $len = $1;
1204
1205 $self->unshift_read (chunk => $len, sub {
1206 my $string = $_[1];
1207 $_[0]->unshift_read (chunk => 1, sub {
1208 if ($_[1] eq ",") {
1209 $cb->($_[0], $string);
1210 } else {
1211 $self->_error (Errno::EBADMSG);
1212 }
1213 });
1214 });
1215
1216 1
1217 }
1218};
1219
1220=item packstring => $format, $cb->($handle, $string)
1221
1222An octet string prefixed with an encoded length. The encoding C<$format>
1223uses the same format as a Perl C<pack> format, but must specify a single
1224integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1225optional C<!>, C<< < >> or C<< > >> modifier).
1226
1227For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1228EPP uses a prefix of C<N> (4 octtes).
1229
1230Example: read a block of data prefixed by its length in BER-encoded
1231format (very efficient).
1232
1233 $handle->push_read (packstring => "w", sub {
1234 my ($handle, $data) = @_;
1235 });
1236
1237=cut
1238
1239register_read_type packstring => sub {
1240 my ($self, $cb, $format) = @_;
1241
1242 sub {
1243 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1244 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1245 or return;
1246
1247 $format = length pack $format, $len;
1248
1249 # bypass unshift if we already have the remaining chunk
1250 if ($format + $len <= length $_[0]{rbuf}) {
1251 my $data = substr $_[0]{rbuf}, $format, $len;
1252 substr $_[0]{rbuf}, 0, $format + $len, "";
1253 $cb->($_[0], $data);
1254 } else {
1255 # remove prefix
1256 substr $_[0]{rbuf}, 0, $format, "";
1257
1258 # read remaining chunk
1259 $_[0]->unshift_read (chunk => $len, $cb);
1260 }
1261
1262 1
1263 }
1264};
1265
967=item json => $cb->($handle, $hash_or_arrayref) 1266=item json => $cb->($handle, $hash_or_arrayref)
968 1267
969Reads a JSON object or array, decodes it and passes it to the callback. 1268Reads a JSON object or array, decodes it and passes it to the
1269callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1270
971If a C<json> object was passed to the constructor, then that will be used 1271If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1272for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1273
974This read type uses the incremental parser available with JSON version 1274This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1281the C<json> write type description, above, for an actual example.
982 1282
983=cut 1283=cut
984 1284
985register_read_type json => sub { 1285register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1286 my ($self, $cb) = @_;
987 1287
988 require JSON; 1288 my $json = $self->{json} ||=
1289 eval { require JSON::XS; JSON::XS->new->utf8 }
1290 || do { require JSON; JSON->new->utf8 };
989 1291
990 my $data; 1292 my $data;
991 my $rbuf = \$self->{rbuf}; 1293 my $rbuf = \$self->{rbuf};
992 1294
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1295 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1296 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1297
998 if ($ref) { 1298 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1299 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1300 $json->incr_text = "";
1001 $cb->($self, $ref); 1301 $cb->($self, $ref);
1002 1302
1003 1 1303 1
1304 } elsif ($@) {
1305 # error case
1306 $json->incr_skip;
1307
1308 $self->{rbuf} = $json->incr_text;
1309 $json->incr_text = "";
1310
1311 $self->_error (Errno::EBADMSG);
1312
1313 ()
1004 } else { 1314 } else {
1005 $self->{rbuf} = ""; 1315 $self->{rbuf} = "";
1316
1006 () 1317 ()
1007 } 1318 }
1319 }
1320};
1321
1322=item storable => $cb->($handle, $ref)
1323
1324Deserialises a L<Storable> frozen representation as written by the
1325C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1326data).
1327
1328Raises C<EBADMSG> error if the data could not be decoded.
1329
1330=cut
1331
1332register_read_type storable => sub {
1333 my ($self, $cb) = @_;
1334
1335 require Storable;
1336
1337 sub {
1338 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1339 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1340 or return;
1341
1342 my $format = length pack "w", $len;
1343
1344 # bypass unshift if we already have the remaining chunk
1345 if ($format + $len <= length $_[0]{rbuf}) {
1346 my $data = substr $_[0]{rbuf}, $format, $len;
1347 substr $_[0]{rbuf}, 0, $format + $len, "";
1348 $cb->($_[0], Storable::thaw ($data));
1349 } else {
1350 # remove prefix
1351 substr $_[0]{rbuf}, 0, $format, "";
1352
1353 # read remaining chunk
1354 $_[0]->unshift_read (chunk => $len, sub {
1355 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1356 $cb->($_[0], $ref);
1357 } else {
1358 $self->_error (Errno::EBADMSG);
1359 }
1360 });
1361 }
1362
1363 1
1008 } 1364 }
1009}; 1365};
1010 1366
1011=back 1367=back
1012 1368
1033=item $handle->stop_read 1389=item $handle->stop_read
1034 1390
1035=item $handle->start_read 1391=item $handle->start_read
1036 1392
1037In rare cases you actually do not want to read anything from the 1393In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1394socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1395any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1396C<start_read>.
1041 1397
1042Note that AnyEvent::Handle will automatically C<start_read> for you when 1398Note that AnyEvent::Handle will automatically C<start_read> for you when
1043you change the C<on_read> callback or push/unshift a read callback, and it 1399you change the C<on_read> callback or push/unshift a read callback, and it
1044will automatically C<stop_read> for you when neither C<on_read> is set nor 1400will automatically C<stop_read> for you when neither C<on_read> is set nor
1045there are any read requests in the queue. 1401there are any read requests in the queue.
1046 1402
1403These methods will have no effect when in TLS mode (as TLS doesn't support
1404half-duplex connections).
1405
1047=cut 1406=cut
1048 1407
1049sub stop_read { 1408sub stop_read {
1050 my ($self) = @_; 1409 my ($self) = @_;
1051 1410
1052 delete $self->{_rw}; 1411 delete $self->{_rw} unless $self->{tls};
1053} 1412}
1054 1413
1055sub start_read { 1414sub start_read {
1056 my ($self) = @_; 1415 my ($self) = @_;
1057 1416
1058 unless ($self->{_rw} || $self->{_eof}) { 1417 unless ($self->{_rw} || $self->{_eof}) {
1059 Scalar::Util::weaken $self; 1418 Scalar::Util::weaken $self;
1060 1419
1061 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1420 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1062 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1421 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1063 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1422 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 1423
1065 if ($len > 0) { 1424 if ($len > 0) {
1066 $self->{_activity} = AnyEvent->now; 1425 $self->{_activity} = AnyEvent->now;
1067 1426
1068 $self->{filter_r} 1427 if ($self->{tls}) {
1069 ? $self->{filter_r}($self, $rbuf) 1428 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1070 : $self->_drain_rbuf; 1429
1430 &_dotls ($self);
1431 } else {
1432 $self->_drain_rbuf unless $self->{_in_drain};
1433 }
1071 1434
1072 } elsif (defined $len) { 1435 } elsif (defined $len) {
1073 delete $self->{_rw}; 1436 delete $self->{_rw};
1074 $self->{_eof} = 1; 1437 $self->{_eof} = 1;
1075 $self->_drain_rbuf; 1438 $self->_drain_rbuf unless $self->{_in_drain};
1076 1439
1077 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1440 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 return $self->_error ($!, 1); 1441 return $self->_error ($!, 1);
1079 } 1442 }
1080 }); 1443 });
1081 } 1444 }
1082} 1445}
1083 1446
1447our $ERROR_SYSCALL;
1448our $ERROR_WANT_READ;
1449
1450sub _tls_error {
1451 my ($self, $err) = @_;
1452
1453 return $self->_error ($!, 1)
1454 if $err == Net::SSLeay::ERROR_SYSCALL ();
1455
1456 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1457
1458 # reduce error string to look less scary
1459 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1460
1461 if ($self->{_on_starttls}) {
1462 (delete $self->{_on_starttls})->($self, undef, $err);
1463 &_freetls;
1464 } else {
1465 &_freetls;
1466 $self->_error (Errno::EPROTO, 1, $err);
1467 }
1468}
1469
1470# poll the write BIO and send the data if applicable
1471# also decode read data if possible
1472# this is basiclaly our TLS state machine
1473# more efficient implementations are possible with openssl,
1474# but not with the buggy and incomplete Net::SSLeay.
1084sub _dotls { 1475sub _dotls {
1085 my ($self) = @_; 1476 my ($self) = @_;
1086 1477
1087 my $buf; 1478 my $tmp;
1088 1479
1089 if (length $self->{_tls_wbuf}) { 1480 if (length $self->{_tls_wbuf}) {
1090 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1481 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091 substr $self->{_tls_wbuf}, 0, $len, ""; 1482 substr $self->{_tls_wbuf}, 0, $tmp, "";
1092 } 1483 }
1093 }
1094 1484
1485 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1486 return $self->_tls_error ($tmp)
1487 if $tmp != $ERROR_WANT_READ
1488 && ($tmp != $ERROR_SYSCALL || $!);
1489 }
1490
1491 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1492 unless (length $tmp) {
1493 $self->{_on_starttls}
1494 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1495 &_freetls;
1496
1497 if ($self->{on_stoptls}) {
1498 $self->{on_stoptls}($self);
1499 return;
1500 } else {
1501 # let's treat SSL-eof as we treat normal EOF
1502 delete $self->{_rw};
1503 $self->{_eof} = 1;
1504 }
1505 }
1506
1507 $self->{_tls_rbuf} .= $tmp;
1508 $self->_drain_rbuf unless $self->{_in_drain};
1509 $self->{tls} or return; # tls session might have gone away in callback
1510 }
1511
1512 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1513 return $self->_tls_error ($tmp)
1514 if $tmp != $ERROR_WANT_READ
1515 && ($tmp != $ERROR_SYSCALL || $!);
1516
1095 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1517 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 $self->{wbuf} .= $buf; 1518 $self->{wbuf} .= $tmp;
1097 $self->_drain_wbuf; 1519 $self->_drain_wbuf;
1098 } 1520 }
1099 1521
1100 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1522 $self->{_on_starttls}
1101 if (length $buf) { 1523 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1102 $self->{rbuf} .= $buf; 1524 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1103 $self->_drain_rbuf;
1104 } else {
1105 # let's treat SSL-eof as we treat normal EOF
1106 $self->{_eof} = 1;
1107 $self->_shutdown;
1108 return;
1109 }
1110 }
1111
1112 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1113
1114 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1115 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1116 return $self->_error ($!, 1);
1117 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1118 return $self->_error (&Errno::EIO, 1);
1119 }
1120
1121 # all others are fine for our purposes
1122 }
1123} 1525}
1124 1526
1125=item $handle->starttls ($tls[, $tls_ctx]) 1527=item $handle->starttls ($tls[, $tls_ctx])
1126 1528
1127Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1529Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1128object is created, you can also do that at a later time by calling 1530object is created, you can also do that at a later time by calling
1129C<starttls>. 1531C<starttls>.
1130 1532
1533Starting TLS is currently an asynchronous operation - when you push some
1534write data and then call C<< ->starttls >> then TLS negotiation will start
1535immediately, after which the queued write data is then sent.
1536
1131The first argument is the same as the C<tls> constructor argument (either 1537The first argument is the same as the C<tls> constructor argument (either
1132C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1538C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133 1539
1134The second argument is the optional C<Net::SSLeay::CTX> object that is 1540The second argument is the optional C<AnyEvent::TLS> object that is used
1135used when AnyEvent::Handle has to create its own TLS connection object. 1541when AnyEvent::Handle has to create its own TLS connection object, or
1542a hash reference with C<< key => value >> pairs that will be used to
1543construct a new context.
1136 1544
1137The TLS connection object will end up in C<< $handle->{tls} >> after this 1545The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1138call and can be used or changed to your liking. Note that the handshake 1546context in C<< $handle->{tls_ctx} >> after this call and can be used or
1139might have already started when this function returns. 1547changed to your liking. Note that the handshake might have already started
1548when this function returns.
1140 1549
1550If it an error to start a TLS handshake more than once per
1551AnyEvent::Handle object (this is due to bugs in OpenSSL).
1552
1141=cut 1553=cut
1554
1555our %TLS_CACHE; #TODO not yet documented, should we?
1142 1556
1143sub starttls { 1557sub starttls {
1144 my ($self, $ssl, $ctx) = @_; 1558 my ($self, $ssl, $ctx) = @_;
1145 1559
1146 $self->stoptls; 1560 require Net::SSLeay;
1147 1561
1148 if ($ssl eq "accept") { 1562 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1563 if $self->{tls};
1150 Net::SSLeay::set_accept_state ($ssl); 1564
1151 } elsif ($ssl eq "connect") { 1565 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1152 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1566 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1153 Net::SSLeay::set_connect_state ($ssl); 1567
1568 $ctx ||= $self->{tls_ctx};
1569
1570 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1571
1572 if ("HASH" eq ref $ctx) {
1573 require AnyEvent::TLS;
1574
1575 if ($ctx->{cache}) {
1576 my $key = $ctx+0;
1577 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1578 } else {
1579 $ctx = new AnyEvent::TLS %$ctx;
1580 }
1581 }
1154 } 1582
1155 1583 $self->{tls_ctx} = $ctx || TLS_CTX ();
1156 $self->{tls} = $ssl; 1584 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1157 1585
1158 # basically, this is deep magic (because SSL_read should have the same issues) 1586 # basically, this is deep magic (because SSL_read should have the same issues)
1159 # but the openssl maintainers basically said: "trust us, it just works". 1587 # but the openssl maintainers basically said: "trust us, it just works".
1160 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1588 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161 # and mismaintained ssleay-module doesn't even offer them). 1589 # and mismaintained ssleay-module doesn't even offer them).
1162 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1590 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1591 #
1592 # in short: this is a mess.
1593 #
1594 # note that we do not try to keep the length constant between writes as we are required to do.
1595 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1596 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1597 # have identity issues in that area.
1163 Net::SSLeay::CTX_set_mode ($self->{tls}, 1598# Net::SSLeay::CTX_set_mode ($ssl,
1164 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1599# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1600# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1601 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1166 1602
1167 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1603 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1604 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 1605
1170 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1606 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1171 1607
1172 $self->{filter_w} = sub { 1608 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1173 $_[0]{_tls_wbuf} .= ${$_[1]}; 1609 if $self->{on_starttls};
1174 &_dotls; 1610
1175 }; 1611 &_dotls; # need to trigger the initial handshake
1176 $self->{filter_r} = sub { 1612 $self->start_read; # make sure we actually do read
1177 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 &_dotls;
1179 };
1180} 1613}
1181 1614
1182=item $handle->stoptls 1615=item $handle->stoptls
1183 1616
1184Destroys the SSL connection, if any. Partial read or write data will be 1617Shuts down the SSL connection - this makes a proper EOF handshake by
1185lost. 1618sending a close notify to the other side, but since OpenSSL doesn't
1619support non-blocking shut downs, it is not possible to re-use the stream
1620afterwards.
1186 1621
1187=cut 1622=cut
1188 1623
1189sub stoptls { 1624sub stoptls {
1190 my ($self) = @_; 1625 my ($self) = @_;
1191 1626
1192 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1627 if ($self->{tls}) {
1628 Net::SSLeay::shutdown ($self->{tls});
1193 1629
1194 delete $self->{_rbio}; 1630 &_dotls;
1195 delete $self->{_wbio}; 1631
1196 delete $self->{_tls_wbuf}; 1632# # we don't give a shit. no, we do, but we can't. no...#d#
1197 delete $self->{filter_r}; 1633# # we, we... have to use openssl :/#d#
1198 delete $self->{filter_w}; 1634# &_freetls;#d#
1635 }
1636}
1637
1638sub _freetls {
1639 my ($self) = @_;
1640
1641 return unless $self->{tls};
1642
1643 $self->{tls_ctx}->_put_session (delete $self->{tls});
1644
1645 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1199} 1646}
1200 1647
1201sub DESTROY { 1648sub DESTROY {
1202 my $self = shift; 1649 my ($self) = @_;
1203 1650
1204 $self->stoptls; 1651 &_freetls;
1652
1653 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1654
1655 if ($linger && length $self->{wbuf} && $self->{fh}) {
1656 my $fh = delete $self->{fh};
1657 my $wbuf = delete $self->{wbuf};
1658
1659 my @linger;
1660
1661 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1662 my $len = syswrite $fh, $wbuf, length $wbuf;
1663
1664 if ($len > 0) {
1665 substr $wbuf, 0, $len, "";
1666 } else {
1667 @linger = (); # end
1668 }
1669 });
1670 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1671 @linger = ();
1672 });
1673 }
1674}
1675
1676=item $handle->destroy
1677
1678Shuts down the handle object as much as possible - this call ensures that
1679no further callbacks will be invoked and as many resources as possible
1680will be freed. You must not call any methods on the object afterwards.
1681
1682Normally, you can just "forget" any references to an AnyEvent::Handle
1683object and it will simply shut down. This works in fatal error and EOF
1684callbacks, as well as code outside. It does I<NOT> work in a read or write
1685callback, so when you want to destroy the AnyEvent::Handle object from
1686within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1687that case.
1688
1689Destroying the handle object in this way has the advantage that callbacks
1690will be removed as well, so if those are the only reference holders (as
1691is common), then one doesn't need to do anything special to break any
1692reference cycles.
1693
1694The handle might still linger in the background and write out remaining
1695data, as specified by the C<linger> option, however.
1696
1697=cut
1698
1699sub destroy {
1700 my ($self) = @_;
1701
1702 $self->DESTROY;
1703 %$self = ();
1205} 1704}
1206 1705
1207=item AnyEvent::Handle::TLS_CTX 1706=item AnyEvent::Handle::TLS_CTX
1208 1707
1209This function creates and returns the Net::SSLeay::CTX object used by 1708This function creates and returns the AnyEvent::TLS object used by default
1210default for TLS mode. 1709for TLS mode.
1211 1710
1212The context is created like this: 1711The context is created by calling L<AnyEvent::TLS> without any arguments.
1213
1214 Net::SSLeay::load_error_strings;
1215 Net::SSLeay::SSLeay_add_ssl_algorithms;
1216 Net::SSLeay::randomize;
1217
1218 my $CTX = Net::SSLeay::CTX_new;
1219
1220 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221 1712
1222=cut 1713=cut
1223 1714
1224our $TLS_CTX; 1715our $TLS_CTX;
1225 1716
1226sub TLS_CTX() { 1717sub TLS_CTX() {
1227 $TLS_CTX || do { 1718 $TLS_CTX ||= do {
1228 require Net::SSLeay; 1719 require AnyEvent::TLS;
1229 1720
1230 Net::SSLeay::load_error_strings (); 1721 new AnyEvent::TLS
1231 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232 Net::SSLeay::randomize ();
1233
1234 $TLS_CTX = Net::SSLeay::CTX_new ();
1235
1236 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237
1238 $TLS_CTX
1239 } 1722 }
1240} 1723}
1241 1724
1242=back 1725=back
1726
1727
1728=head1 NONFREQUENTLY ASKED QUESTIONS
1729
1730=over 4
1731
1732=item I C<undef> the AnyEvent::Handle reference inside my callback and
1733still get further invocations!
1734
1735That's because AnyEvent::Handle keeps a reference to itself when handling
1736read or write callbacks.
1737
1738It is only safe to "forget" the reference inside EOF or error callbacks,
1739from within all other callbacks, you need to explicitly call the C<<
1740->destroy >> method.
1741
1742=item I get different callback invocations in TLS mode/Why can't I pause
1743reading?
1744
1745Unlike, say, TCP, TLS connections do not consist of two independent
1746communication channels, one for each direction. Or put differently. The
1747read and write directions are not independent of each other: you cannot
1748write data unless you are also prepared to read, and vice versa.
1749
1750This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1751callback invocations when you are not expecting any read data - the reason
1752is that AnyEvent::Handle always reads in TLS mode.
1753
1754During the connection, you have to make sure that you always have a
1755non-empty read-queue, or an C<on_read> watcher. At the end of the
1756connection (or when you no longer want to use it) you can call the
1757C<destroy> method.
1758
1759=item How do I read data until the other side closes the connection?
1760
1761If you just want to read your data into a perl scalar, the easiest way
1762to achieve this is by setting an C<on_read> callback that does nothing,
1763clearing the C<on_eof> callback and in the C<on_error> callback, the data
1764will be in C<$_[0]{rbuf}>:
1765
1766 $handle->on_read (sub { });
1767 $handle->on_eof (undef);
1768 $handle->on_error (sub {
1769 my $data = delete $_[0]{rbuf};
1770 });
1771
1772The reason to use C<on_error> is that TCP connections, due to latencies
1773and packets loss, might get closed quite violently with an error, when in
1774fact, all data has been received.
1775
1776It is usually better to use acknowledgements when transferring data,
1777to make sure the other side hasn't just died and you got the data
1778intact. This is also one reason why so many internet protocols have an
1779explicit QUIT command.
1780
1781=item I don't want to destroy the handle too early - how do I wait until
1782all data has been written?
1783
1784After writing your last bits of data, set the C<on_drain> callback
1785and destroy the handle in there - with the default setting of
1786C<low_water_mark> this will be called precisely when all data has been
1787written to the socket:
1788
1789 $handle->push_write (...);
1790 $handle->on_drain (sub {
1791 warn "all data submitted to the kernel\n";
1792 undef $handle;
1793 });
1794
1795If you just want to queue some data and then signal EOF to the other side,
1796consider using C<< ->push_shutdown >> instead.
1797
1798=item I want to contact a TLS/SSL server, I don't care about security.
1799
1800If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1801simply connect to it and then create the AnyEvent::Handle with the C<tls>
1802parameter:
1803
1804 tcp_connect $host, $port, sub {
1805 my ($fh) = @_;
1806
1807 my $handle = new AnyEvent::Handle
1808 fh => $fh,
1809 tls => "connect",
1810 on_error => sub { ... };
1811
1812 $handle->push_write (...);
1813 };
1814
1815=item I want to contact a TLS/SSL server, I do care about security.
1816
1817Then you should additionally enable certificate verification, including
1818peername verification, if the protocol you use supports it (see
1819L<AnyEvent::TLS>, C<verify_peername>).
1820
1821E.g. for HTTPS:
1822
1823 tcp_connect $host, $port, sub {
1824 my ($fh) = @_;
1825
1826 my $handle = new AnyEvent::Handle
1827 fh => $fh,
1828 peername => $host,
1829 tls => "connect",
1830 tls_ctx => { verify => 1, verify_peername => "https" },
1831 ...
1832
1833Note that you must specify the hostname you connected to (or whatever
1834"peername" the protocol needs) as the C<peername> argument, otherwise no
1835peername verification will be done.
1836
1837The above will use the system-dependent default set of trusted CA
1838certificates. If you want to check against a specific CA, add the
1839C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1840
1841 tls_ctx => {
1842 verify => 1,
1843 verify_peername => "https",
1844 ca_file => "my-ca-cert.pem",
1845 },
1846
1847=item I want to create a TLS/SSL server, how do I do that?
1848
1849Well, you first need to get a server certificate and key. You have
1850three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1851self-signed certificate (cheap. check the search engine of your choice,
1852there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1853nice program for that purpose).
1854
1855Then create a file with your private key (in PEM format, see
1856L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1857file should then look like this:
1858
1859 -----BEGIN RSA PRIVATE KEY-----
1860 ...header data
1861 ... lots of base64'y-stuff
1862 -----END RSA PRIVATE KEY-----
1863
1864 -----BEGIN CERTIFICATE-----
1865 ... lots of base64'y-stuff
1866 -----END CERTIFICATE-----
1867
1868The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1869specify this file as C<cert_file>:
1870
1871 tcp_server undef, $port, sub {
1872 my ($fh) = @_;
1873
1874 my $handle = new AnyEvent::Handle
1875 fh => $fh,
1876 tls => "accept",
1877 tls_ctx => { cert_file => "my-server-keycert.pem" },
1878 ...
1879
1880When you have intermediate CA certificates that your clients might not
1881know about, just append them to the C<cert_file>.
1882
1883=back
1884
1243 1885
1244=head1 SUBCLASSING AnyEvent::Handle 1886=head1 SUBCLASSING AnyEvent::Handle
1245 1887
1246In many cases, you might want to subclass AnyEvent::Handle. 1888In many cases, you might want to subclass AnyEvent::Handle.
1247 1889
1251=over 4 1893=over 4
1252 1894
1253=item * all constructor arguments become object members. 1895=item * all constructor arguments become object members.
1254 1896
1255At least initially, when you pass a C<tls>-argument to the constructor it 1897At least initially, when you pass a C<tls>-argument to the constructor it
1256will end up in C<< $handle->{tls} >>. Those members might be changes or 1898will end up in C<< $handle->{tls} >>. Those members might be changed or
1257mutated later on (for example C<tls> will hold the TLS connection object). 1899mutated later on (for example C<tls> will hold the TLS connection object).
1258 1900
1259=item * other object member names are prefixed with an C<_>. 1901=item * other object member names are prefixed with an C<_>.
1260 1902
1261All object members not explicitly documented (internal use) are prefixed 1903All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines