ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.56 by root, Wed Jun 4 09:55:16 2008 UTC vs.
Revision 1.184 by root, Thu Sep 3 13:14:38 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.12;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
107=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
108 170
109This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
111 175
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
114 180
115When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
119 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
120=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
121 208
122This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
124 211
125To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
126 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
127=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
128 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
129If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
130seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
131handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
132missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
133 237
134Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
138 243
139Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
140 245
141=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
142 247
146 251
147=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
148 253
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
152 257
153For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
157isn't finished). 262isn't finished).
158 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified. Note that setting this flag after
318establishing a connection I<may> be a bit too late (data loss could
319already have occured on BSD systems), but at least it will protect you
320from most attacks.
321
159=item read_size => <bytes> 322=item read_size => <bytes>
160 323
161The default read block size (the amount of bytes this module will try to read 324The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 325try to read during each loop iteration, which affects memory
326requirements). Default: C<8192>.
163 327
164=item low_water_mark => <bytes> 328=item low_water_mark => <bytes>
165 329
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 330Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 331buffer: If the write reaches this size or gets even samller it is
168considered empty. 332considered empty.
169 333
334Sometimes it can be beneficial (for performance reasons) to add data to
335the write buffer before it is fully drained, but this is a rare case, as
336the operating system kernel usually buffers data as well, so the default
337is good in almost all cases.
338
339=item linger => <seconds>
340
341If non-zero (default: C<3600>), then the destructor of the
342AnyEvent::Handle object will check whether there is still outstanding
343write data and will install a watcher that will write this data to the
344socket. No errors will be reported (this mostly matches how the operating
345system treats outstanding data at socket close time).
346
347This will not work for partial TLS data that could not be encoded
348yet. This data will be lost. Calling the C<stoptls> method in time might
349help.
350
351=item peername => $string
352
353A string used to identify the remote site - usually the DNS hostname
354(I<not> IDN!) used to create the connection, rarely the IP address.
355
356Apart from being useful in error messages, this string is also used in TLS
357peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
358verification will be skipped when C<peername> is not specified or
359C<undef>.
360
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 361=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 362
172When this parameter is given, it enables TLS (SSL) mode, that means it 363When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 364AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 365established and will transparently encrypt/decrypt data afterwards.
366
367All TLS protocol errors will be signalled as C<EPROTO>, with an
368appropriate error message.
175 369
176TLS mode requires Net::SSLeay to be installed (it will be loaded 370TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 371automatically when you try to create a TLS handle): this module doesn't
372have a dependency on that module, so if your module requires it, you have
373to add the dependency yourself.
178 374
179For the TLS server side, use C<accept>, and for the TLS client side of a 375Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 376C<accept>, and for the TLS client side of a connection, use C<connect>
377mode.
181 378
182You can also provide your own TLS connection object, but you have 379You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 380to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 381or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 382AnyEvent::Handle. Also, this module will take ownership of this connection
383object.
186 384
385At some future point, AnyEvent::Handle might switch to another TLS
386implementation, then the option to use your own session object will go
387away.
388
389B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
390passing in the wrong integer will lead to certain crash. This most often
391happens when one uses a stylish C<< tls => 1 >> and is surprised about the
392segmentation fault.
393
187See the C<starttls> method if you need to start TLs negotiation later. 394See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 395
189=item tls_ctx => $ssl_ctx 396=item tls_ctx => $anyevent_tls
190 397
191Use the given Net::SSLeay::CTX object to create the new TLS connection 398Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 399(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 400missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 401
402Instead of an object, you can also specify a hash reference with C<< key
403=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
404new TLS context object.
405
406=item on_starttls => $cb->($handle, $success[, $error_message])
407
408This callback will be invoked when the TLS/SSL handshake has finished. If
409C<$success> is true, then the TLS handshake succeeded, otherwise it failed
410(C<on_stoptls> will not be called in this case).
411
412The session in C<< $handle->{tls} >> can still be examined in this
413callback, even when the handshake was not successful.
414
415TLS handshake failures will not cause C<on_error> to be invoked when this
416callback is in effect, instead, the error message will be passed to C<on_starttls>.
417
418Without this callback, handshake failures lead to C<on_error> being
419called, as normal.
420
421Note that you cannot call C<starttls> right again in this callback. If you
422need to do that, start an zero-second timer instead whose callback can
423then call C<< ->starttls >> again.
424
425=item on_stoptls => $cb->($handle)
426
427When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
428set, then it will be invoked after freeing the TLS session. If it is not,
429then a TLS shutdown condition will be treated like a normal EOF condition
430on the handle.
431
432The session in C<< $handle->{tls} >> can still be examined in this
433callback.
434
435This callback will only be called on TLS shutdowns, not when the
436underlying handle signals EOF.
437
195=item json => JSON or JSON::XS object 438=item json => JSON or JSON::XS object
196 439
197This is the json coder object used by the C<json> read and write types. 440This is the json coder object used by the C<json> read and write types.
198 441
199If you don't supply it, then AnyEvent::Handle will create and use a 442If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 443suitable one (on demand), which will write and expect UTF-8 encoded JSON
444texts.
201 445
202Note that you are responsible to depend on the JSON module if you want to 446Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 447use this functionality, as AnyEvent does not have a dependency itself.
204 448
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 449=back
212 450
213=cut 451=cut
214 452
215sub new { 453sub new {
216 my $class = shift; 454 my $class = shift;
217
218 my $self = bless { @_ }, $class; 455 my $self = bless { @_ }, $class;
219 456
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 457 if ($self->{fh}) {
458 $self->_start;
459 return unless $self->{fh}; # could be gone by now
460
461 } elsif ($self->{connect}) {
462 require AnyEvent::Socket;
463
464 $self->{peername} = $self->{connect}[0]
465 unless exists $self->{peername};
466
467 $self->{_skip_drain_rbuf} = 1;
468
469 {
470 Scalar::Util::weaken (my $self = $self);
471
472 $self->{_connect} =
473 AnyEvent::Socket::tcp_connect (
474 $self->{connect}[0],
475 $self->{connect}[1],
476 sub {
477 my ($fh, $host, $port, $retry) = @_;
478
479 if ($fh) {
480 $self->{fh} = $fh;
481
482 delete $self->{_skip_drain_rbuf};
483 $self->_start;
484
485 $self->{on_connect}
486 and $self->{on_connect}($self, $host, $port, sub {
487 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
488 $self->{_skip_drain_rbuf} = 1;
489 &$retry;
490 });
491
492 } else {
493 if ($self->{on_connect_error}) {
494 $self->{on_connect_error}($self, "$!");
495 $self->destroy;
496 } else {
497 $self->_error ($!, 1);
498 }
499 }
500 },
501 sub {
502 local $self->{fh} = $_[0];
503
504 $self->{on_prepare}
505 ? $self->{on_prepare}->($self)
506 : ()
507 }
508 );
509 }
510
511 } else {
512 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
513 }
514
515 $self
516}
517
518sub _start {
519 my ($self) = @_;
221 520
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 521 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 522
224 if ($self->{tls}) { 523 $self->{_activity} =
225 require Net::SSLeay; 524 $self->{_ractivity} =
525 $self->{_wactivity} = AE::now;
526
527 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
528 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
529 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
530
531 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
532 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
533
534 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
535
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 536 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 537 if $self->{tls};
228 538
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 539 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 540
234 $self->{_activity} = AnyEvent->now;
235 $self->_timeout;
236
237 $self->start_read; 541 $self->start_read
542 if $self->{on_read} || @{ $self->{_queue} };
238 543
239 $self 544 $self->_drain_wbuf;
240}
241
242sub _shutdown {
243 my ($self) = @_;
244
245 delete $self->{_tw};
246 delete $self->{_rw};
247 delete $self->{_ww};
248 delete $self->{fh};
249
250 $self->stoptls;
251} 545}
252 546
253sub _error { 547sub _error {
254 my ($self, $errno, $fatal) = @_; 548 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 549
259 $! = $errno; 550 $! = $errno;
551 $message ||= "$!";
260 552
261 if ($self->{on_error}) { 553 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 554 $self->{on_error}($self, $fatal, $message);
263 } else { 555 $self->destroy if $fatal;
556 } elsif ($self->{fh}) {
557 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 558 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 559 }
266} 560}
267 561
268=item $fh = $handle->fh 562=item $fh = $handle->fh
269 563
270This method returns the file handle of the L<AnyEvent::Handle> object. 564This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 565
272=cut 566=cut
273 567
274sub fh { $_[0]{fh} } 568sub fh { $_[0]{fh} }
275 569
293 $_[0]{on_eof} = $_[1]; 587 $_[0]{on_eof} = $_[1];
294} 588}
295 589
296=item $handle->on_timeout ($cb) 590=item $handle->on_timeout ($cb)
297 591
298Replace the current C<on_timeout> callback, or disables the callback 592=item $handle->on_rtimeout ($cb)
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
300argument.
301 593
302=cut 594=item $handle->on_wtimeout ($cb)
303 595
304sub on_timeout { 596Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
597callback, or disables the callback (but not the timeout) if C<$cb> =
598C<undef>. See the C<timeout> constructor argument and method.
599
600=cut
601
602# see below
603
604=item $handle->autocork ($boolean)
605
606Enables or disables the current autocork behaviour (see C<autocork>
607constructor argument). Changes will only take effect on the next write.
608
609=cut
610
611sub autocork {
612 $_[0]{autocork} = $_[1];
613}
614
615=item $handle->no_delay ($boolean)
616
617Enables or disables the C<no_delay> setting (see constructor argument of
618the same name for details).
619
620=cut
621
622sub no_delay {
623 $_[0]{no_delay} = $_[1];
624
625 eval {
626 local $SIG{__DIE__};
627 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
628 if $_[0]{fh};
629 };
630}
631
632=item $handle->keepalive ($boolean)
633
634Enables or disables the C<keepalive> setting (see constructor argument of
635the same name for details).
636
637=cut
638
639sub keepalive {
640 $_[0]{keepalive} = $_[1];
641
642 eval {
643 local $SIG{__DIE__};
644 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
645 if $_[0]{fh};
646 };
647}
648
649=item $handle->oobinline ($boolean)
650
651Enables or disables the C<oobinline> setting (see constructor argument of
652the same name for details).
653
654=cut
655
656sub oobinline {
657 $_[0]{oobinline} = $_[1];
658
659 eval {
660 local $SIG{__DIE__};
661 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
662 if $_[0]{fh};
663 };
664}
665
666=item $handle->keepalive ($boolean)
667
668Enables or disables the C<keepalive> setting (see constructor argument of
669the same name for details).
670
671=cut
672
673sub keepalive {
674 $_[0]{keepalive} = $_[1];
675
676 eval {
677 local $SIG{__DIE__};
678 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
679 if $_[0]{fh};
680 };
681}
682
683=item $handle->on_starttls ($cb)
684
685Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
686
687=cut
688
689sub on_starttls {
690 $_[0]{on_starttls} = $_[1];
691}
692
693=item $handle->on_stoptls ($cb)
694
695Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
696
697=cut
698
699sub on_starttls {
305 $_[0]{on_timeout} = $_[1]; 700 $_[0]{on_stoptls} = $_[1];
701}
702
703=item $handle->rbuf_max ($max_octets)
704
705Configures the C<rbuf_max> setting (C<undef> disables it).
706
707=cut
708
709sub rbuf_max {
710 $_[0]{rbuf_max} = $_[1];
306} 711}
307 712
308############################################################################# 713#############################################################################
309 714
310=item $handle->timeout ($seconds) 715=item $handle->timeout ($seconds)
311 716
717=item $handle->rtimeout ($seconds)
718
719=item $handle->wtimeout ($seconds)
720
312Configures (or disables) the inactivity timeout. 721Configures (or disables) the inactivity timeout.
313 722
314=cut 723=item $handle->timeout_reset
315 724
316sub timeout { 725=item $handle->rtimeout_reset
726
727=item $handle->wtimeout_reset
728
729Reset the activity timeout, as if data was received or sent.
730
731These methods are cheap to call.
732
733=cut
734
735for my $dir ("", "r", "w") {
736 my $timeout = "${dir}timeout";
737 my $tw = "_${dir}tw";
738 my $on_timeout = "on_${dir}timeout";
739 my $activity = "_${dir}activity";
740 my $cb;
741
742 *$on_timeout = sub {
743 $_[0]{$on_timeout} = $_[1];
744 };
745
746 *$timeout = sub {
317 my ($self, $timeout) = @_; 747 my ($self, $new_value) = @_;
318 748
319 $self->{timeout} = $timeout; 749 $self->{$timeout} = $new_value;
320 $self->_timeout; 750 delete $self->{$tw}; &$cb;
321} 751 };
322 752
753 *{"${dir}timeout_reset"} = sub {
754 $_[0]{$activity} = AE::now;
755 };
756
757 # main workhorse:
323# reset the timeout watcher, as neccessary 758 # reset the timeout watcher, as neccessary
324# also check for time-outs 759 # also check for time-outs
325sub _timeout { 760 $cb = sub {
326 my ($self) = @_; 761 my ($self) = @_;
327 762
328 if ($self->{timeout}) { 763 if ($self->{$timeout} && $self->{fh}) {
329 my $NOW = AnyEvent->now; 764 my $NOW = AE::now;
330 765
331 # when would the timeout trigger? 766 # when would the timeout trigger?
332 my $after = $self->{_activity} + $self->{timeout} - $NOW; 767 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
333 768
334 # now or in the past already? 769 # now or in the past already?
335 if ($after <= 0) { 770 if ($after <= 0) {
336 $self->{_activity} = $NOW; 771 $self->{$activity} = $NOW;
337 772
338 if ($self->{on_timeout}) { 773 if ($self->{$on_timeout}) {
339 $self->{on_timeout}($self); 774 $self->{$on_timeout}($self);
340 } else { 775 } else {
341 $self->_error (&Errno::ETIMEDOUT); 776 $self->_error (Errno::ETIMEDOUT);
777 }
778
779 # callback could have changed timeout value, optimise
780 return unless $self->{$timeout};
781
782 # calculate new after
783 $after = $self->{$timeout};
342 } 784 }
343 785
344 # callback could have changed timeout value, optimise 786 Scalar::Util::weaken $self;
345 return unless $self->{timeout}; 787 return unless $self; # ->error could have destroyed $self
346 788
347 # calculate new after 789 $self->{$tw} ||= AE::timer $after, 0, sub {
348 $after = $self->{timeout}; 790 delete $self->{$tw};
791 $cb->($self);
792 };
793 } else {
794 delete $self->{$tw};
349 } 795 }
350
351 Scalar::Util::weaken $self;
352 return unless $self; # ->error could have destroyed $self
353
354 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
355 delete $self->{_tw};
356 $self->_timeout;
357 });
358 } else {
359 delete $self->{_tw};
360 } 796 }
361} 797}
362 798
363############################################################################# 799#############################################################################
364 800
388 my ($self, $cb) = @_; 824 my ($self, $cb) = @_;
389 825
390 $self->{on_drain} = $cb; 826 $self->{on_drain} = $cb;
391 827
392 $cb->($self) 828 $cb->($self)
393 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 829 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
394} 830}
395 831
396=item $handle->push_write ($data) 832=item $handle->push_write ($data)
397 833
398Queues the given scalar to be written. You can push as much data as you 834Queues the given scalar to be written. You can push as much data as you
409 Scalar::Util::weaken $self; 845 Scalar::Util::weaken $self;
410 846
411 my $cb = sub { 847 my $cb = sub {
412 my $len = syswrite $self->{fh}, $self->{wbuf}; 848 my $len = syswrite $self->{fh}, $self->{wbuf};
413 849
414 if ($len >= 0) { 850 if (defined $len) {
415 substr $self->{wbuf}, 0, $len, ""; 851 substr $self->{wbuf}, 0, $len, "";
416 852
417 $self->{_activity} = AnyEvent->now; 853 $self->{_activity} = $self->{_wactivity} = AE::now;
418 854
419 $self->{on_drain}($self) 855 $self->{on_drain}($self)
420 if $self->{low_water_mark} >= length $self->{wbuf} 856 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
421 && $self->{on_drain}; 857 && $self->{on_drain};
422 858
423 delete $self->{_ww} unless length $self->{wbuf}; 859 delete $self->{_ww} unless length $self->{wbuf};
424 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 860 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 $self->_error ($!, 1); 861 $self->_error ($!, 1);
426 } 862 }
427 }; 863 };
428 864
429 # try to write data immediately 865 # try to write data immediately
430 $cb->(); 866 $cb->() unless $self->{autocork};
431 867
432 # if still data left in wbuf, we need to poll 868 # if still data left in wbuf, we need to poll
433 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 869 $self->{_ww} = AE::io $self->{fh}, 1, $cb
434 if length $self->{wbuf}; 870 if length $self->{wbuf};
435 }; 871 };
436} 872}
437 873
438our %WH; 874our %WH;
449 885
450 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 886 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451 ->($self, @_); 887 ->($self, @_);
452 } 888 }
453 889
454 if ($self->{filter_w}) { 890 if ($self->{tls}) {
455 $self->{filter_w}($self, \$_[0]); 891 $self->{_tls_wbuf} .= $_[0];
892 &_dotls ($self) if $self->{fh};
456 } else { 893 } else {
457 $self->{wbuf} .= $_[0]; 894 $self->{wbuf} .= $_[0];
458 $self->_drain_wbuf; 895 $self->_drain_wbuf if $self->{fh};
459 } 896 }
460} 897}
461 898
462=item $handle->push_write (type => @args) 899=item $handle->push_write (type => @args)
463 900
477=cut 914=cut
478 915
479register_write_type netstring => sub { 916register_write_type netstring => sub {
480 my ($self, $string) = @_; 917 my ($self, $string) = @_;
481 918
482 sprintf "%d:%s,", (length $string), $string 919 (length $string) . ":$string,"
920};
921
922=item packstring => $format, $data
923
924An octet string prefixed with an encoded length. The encoding C<$format>
925uses the same format as a Perl C<pack> format, but must specify a single
926integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
927optional C<!>, C<< < >> or C<< > >> modifier).
928
929=cut
930
931register_write_type packstring => sub {
932 my ($self, $format, $string) = @_;
933
934 pack "$format/a*", $string
483}; 935};
484 936
485=item json => $array_or_hashref 937=item json => $array_or_hashref
486 938
487Encodes the given hash or array reference into a JSON object. Unless you 939Encodes the given hash or array reference into a JSON object. Unless you
512Other languages could read single lines terminated by a newline and pass 964Other languages could read single lines terminated by a newline and pass
513this line into their JSON decoder of choice. 965this line into their JSON decoder of choice.
514 966
515=cut 967=cut
516 968
969sub json_coder() {
970 eval { require JSON::XS; JSON::XS->new->utf8 }
971 || do { require JSON; JSON->new->utf8 }
972}
973
517register_write_type json => sub { 974register_write_type json => sub {
518 my ($self, $ref) = @_; 975 my ($self, $ref) = @_;
519 976
520 require JSON; 977 my $json = $self->{json} ||= json_coder;
521 978
522 $self->{json} ? $self->{json}->encode ($ref) 979 $json->encode ($ref)
523 : JSON::encode_json ($ref)
524}; 980};
525 981
982=item storable => $reference
983
984Freezes the given reference using L<Storable> and writes it to the
985handle. Uses the C<nfreeze> format.
986
987=cut
988
989register_write_type storable => sub {
990 my ($self, $ref) = @_;
991
992 require Storable;
993
994 pack "w/a*", Storable::nfreeze ($ref)
995};
996
526=back 997=back
998
999=item $handle->push_shutdown
1000
1001Sometimes you know you want to close the socket after writing your data
1002before it was actually written. One way to do that is to replace your
1003C<on_drain> handler by a callback that shuts down the socket (and set
1004C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1005replaces the C<on_drain> callback with:
1006
1007 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1008
1009This simply shuts down the write side and signals an EOF condition to the
1010the peer.
1011
1012You can rely on the normal read queue and C<on_eof> handling
1013afterwards. This is the cleanest way to close a connection.
1014
1015=cut
1016
1017sub push_shutdown {
1018 my ($self) = @_;
1019
1020 delete $self->{low_water_mark};
1021 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1022}
527 1023
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1024=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 1025
530This function (not method) lets you add your own types to C<push_write>. 1026This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 1027Whenever the given C<type> is used, C<push_write> will invoke the code
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 1048ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 1049a queue.
554 1050
555In the simple case, you just install an C<on_read> callback and whenever 1051In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 1052new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1053enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 1054leave the data there if you want to accumulate more (e.g. when only a
1055partial message has been received so far).
559 1056
560In the more complex case, you want to queue multiple callbacks. In this 1057In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 1058case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 1059data arrives (also the first time it is queued) and removes it when it has
563below). 1060done its job (see C<push_read>, below).
564 1061
565This way you can, for example, push three line-reads, followed by reading 1062This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 1063a chunk of data, and AnyEvent::Handle will execute them in order.
567 1064
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 1065Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 # handle xml 1078 # handle xml
582 }); 1079 });
583 }); 1080 });
584 }); 1081 });
585 1082
586Example 2: Implement a client for a protocol that replies either with 1083Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 1084and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 1085bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 1086just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 1087in the callbacks.
591 1088
592 # request one 1089When the first callback is called and sees an "OK" response, it will
1090C<unshift> another line-read. This line-read will be queued I<before> the
109164-byte chunk callback.
1092
1093 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 1094 $handle->push_write ("request 1\015\012");
594 1095
595 # we expect "ERROR" or "OK" as response, so push a line read 1096 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read (line => sub { 1097 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 1098 # if we got an "OK", we have to _prepend_ another line,
604 ... 1105 ...
605 }); 1106 });
606 } 1107 }
607 }); 1108 });
608 1109
609 # request two 1110 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 1111 $handle->push_write ("request 2\015\012");
611 1112
612 # simply read 64 bytes, always 1113 # simply read 64 bytes, always
613 $handle->push_read (chunk => 64, sub { 1114 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 1115 my $response = $_[1];
620=cut 1121=cut
621 1122
622sub _drain_rbuf { 1123sub _drain_rbuf {
623 my ($self) = @_; 1124 my ($self) = @_;
624 1125
625 if ( 1126 # avoid recursion
626 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf}
628 ) {
629 return $self->_error (&Errno::ENOSPC, 1);
630 }
631
632 return if $self->{in_drain}; 1127 return if $self->{_skip_drain_rbuf};
633 local $self->{in_drain} = 1; 1128 local $self->{_skip_drain_rbuf} = 1;
634 1129
1130 while () {
1131 # we need to use a separate tls read buffer, as we must not receive data while
1132 # we are draining the buffer, and this can only happen with TLS.
1133 $self->{rbuf} .= delete $self->{_tls_rbuf}
1134 if exists $self->{_tls_rbuf};
1135
635 while (my $len = length $self->{rbuf}) { 1136 my $len = length $self->{rbuf};
636 no strict 'refs'; 1137
637 if (my $cb = shift @{ $self->{_queue} }) { 1138 if (my $cb = shift @{ $self->{_queue} }) {
638 unless ($cb->($self)) { 1139 unless ($cb->($self)) {
1140 # no progress can be made
1141 # (not enough data and no data forthcoming)
1142 $self->_error (Errno::EPIPE, 1), return
639 if ($self->{_eof}) { 1143 if $self->{_eof};
640 # no progress can be made (not enough data and no data forthcoming)
641 return $self->_error (&Errno::EPIPE, 1);
642 }
643 1144
644 unshift @{ $self->{_queue} }, $cb; 1145 unshift @{ $self->{_queue} }, $cb;
645 last; 1146 last;
646 } 1147 }
647 } elsif ($self->{on_read}) { 1148 } elsif ($self->{on_read}) {
1149 last unless $len;
1150
648 $self->{on_read}($self); 1151 $self->{on_read}($self);
649 1152
650 if ( 1153 if (
651 $len == length $self->{rbuf} # if no data has been consumed 1154 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 1155 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # but we still have on_read 1156 && $self->{on_read} # but we still have on_read
654 ) { 1157 ) {
655 # no further data will arrive 1158 # no further data will arrive
656 # so no progress can be made 1159 # so no progress can be made
657 return $self->_error (&Errno::EPIPE, 1) 1160 $self->_error (Errno::EPIPE, 1), return
658 if $self->{_eof}; 1161 if $self->{_eof};
659 1162
660 last; # more data might arrive 1163 last; # more data might arrive
661 } 1164 }
662 } else { 1165 } else {
663 # read side becomes idle 1166 # read side becomes idle
664 delete $self->{_rw}; 1167 delete $self->{_rw} unless $self->{tls};
665 last; 1168 last;
666 } 1169 }
667 } 1170 }
668 1171
1172 if ($self->{_eof}) {
1173 $self->{on_eof}
669 $self->{on_eof}($self) 1174 ? $self->{on_eof}($self)
670 if $self->{_eof} && $self->{on_eof}; 1175 : $self->_error (0, 1, "Unexpected end-of-file");
1176
1177 return;
1178 }
1179
1180 if (
1181 defined $self->{rbuf_max}
1182 && $self->{rbuf_max} < length $self->{rbuf}
1183 ) {
1184 $self->_error (Errno::ENOSPC, 1), return;
1185 }
671 1186
672 # may need to restart read watcher 1187 # may need to restart read watcher
673 unless ($self->{_rw}) { 1188 unless ($self->{_rw}) {
674 $self->start_read 1189 $self->start_read
675 if $self->{on_read} || @{ $self->{_queue} }; 1190 if $self->{on_read} || @{ $self->{_queue} };
686 1201
687sub on_read { 1202sub on_read {
688 my ($self, $cb) = @_; 1203 my ($self, $cb) = @_;
689 1204
690 $self->{on_read} = $cb; 1205 $self->{on_read} = $cb;
1206 $self->_drain_rbuf if $cb;
691} 1207}
692 1208
693=item $handle->rbuf 1209=item $handle->rbuf
694 1210
695Returns the read buffer (as a modifiable lvalue). 1211Returns the read buffer (as a modifiable lvalue).
696 1212
697You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1213You can access the read buffer directly as the C<< ->{rbuf} >>
698you want. 1214member, if you want. However, the only operation allowed on the
1215read buffer (apart from looking at it) is removing data from its
1216beginning. Otherwise modifying or appending to it is not allowed and will
1217lead to hard-to-track-down bugs.
699 1218
700NOTE: The read buffer should only be used or modified if the C<on_read>, 1219NOTE: The read buffer should only be used or modified if the C<on_read>,
701C<push_read> or C<unshift_read> methods are used. The other read methods 1220C<push_read> or C<unshift_read> methods are used. The other read methods
702automatically manage the read buffer. 1221automatically manage the read buffer.
703 1222
757 my $type = shift; 1276 my $type = shift;
758 1277
759 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1278 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
760 ->($self, $cb, @_); 1279 ->($self, $cb, @_);
761 } 1280 }
762
763 1281
764 unshift @{ $self->{_queue} }, $cb; 1282 unshift @{ $self->{_queue} }, $cb;
765 $self->_drain_rbuf; 1283 $self->_drain_rbuf;
766} 1284}
767 1285
800 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1318 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 1 1319 1
802 } 1320 }
803}; 1321};
804 1322
805# compatibility with older API
806sub push_read_chunk {
807 $_[0]->push_read (chunk => $_[1], $_[2]);
808}
809
810sub unshift_read_chunk {
811 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812}
813
814=item line => [$eol, ]$cb->($handle, $line, $eol) 1323=item line => [$eol, ]$cb->($handle, $line, $eol)
815 1324
816The callback will be called only once a full line (including the end of 1325The callback will be called only once a full line (including the end of
817line marker, C<$eol>) has been read. This line (excluding the end of line 1326line marker, C<$eol>) has been read. This line (excluding the end of line
818marker) will be passed to the callback as second argument (C<$line>), and 1327marker) will be passed to the callback as second argument (C<$line>), and
833=cut 1342=cut
834 1343
835register_read_type line => sub { 1344register_read_type line => sub {
836 my ($self, $cb, $eol) = @_; 1345 my ($self, $cb, $eol) = @_;
837 1346
838 $eol = qr|(\015?\012)| if @_ < 3; 1347 if (@_ < 3) {
839 $eol = quotemeta $eol unless ref $eol; 1348 # this is more than twice as fast as the generic code below
840 $eol = qr|^(.*?)($eol)|s;
841
842 sub { 1349 sub {
843 $_[0]{rbuf} =~ s/$eol// or return; 1350 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
844 1351
845 $cb->($_[0], $1, $2); 1352 $cb->($_[0], $1, $2);
846 1
847 }
848};
849
850# compatibility with older API
851sub push_read_line {
852 my $self = shift;
853 $self->push_read (line => @_);
854}
855
856sub unshift_read_line {
857 my $self = shift;
858 $self->unshift_read (line => @_);
859}
860
861=item netstring => $cb->($handle, $string)
862
863A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864
865Throws an error with C<$!> set to EBADMSG on format violations.
866
867=cut
868
869register_read_type netstring => sub {
870 my ($self, $cb) = @_;
871
872 sub {
873 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874 if ($_[0]{rbuf} =~ /[^0-9]/) {
875 $self->_error (&Errno::EBADMSG);
876 } 1353 1
877 return;
878 } 1354 }
1355 } else {
1356 $eol = quotemeta $eol unless ref $eol;
1357 $eol = qr|^(.*?)($eol)|s;
879 1358
880 my $len = $1; 1359 sub {
1360 $_[0]{rbuf} =~ s/$eol// or return;
881 1361
882 $self->unshift_read (chunk => $len, sub { 1362 $cb->($_[0], $1, $2);
883 my $string = $_[1];
884 $_[0]->unshift_read (chunk => 1, sub {
885 if ($_[1] eq ",") {
886 $cb->($_[0], $string);
887 } else {
888 $self->_error (&Errno::EBADMSG);
889 }
890 }); 1363 1
891 }); 1364 }
892
893 1
894 } 1365 }
895}; 1366};
896 1367
897=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1368=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 1369
950 return 1; 1421 return 1;
951 } 1422 }
952 1423
953 # reject 1424 # reject
954 if ($reject && $$rbuf =~ $reject) { 1425 if ($reject && $$rbuf =~ $reject) {
955 $self->_error (&Errno::EBADMSG); 1426 $self->_error (Errno::EBADMSG);
956 } 1427 }
957 1428
958 # skip 1429 # skip
959 if ($skip && $$rbuf =~ $skip) { 1430 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1431 $data .= substr $$rbuf, 0, $+[0], "";
962 1433
963 () 1434 ()
964 } 1435 }
965}; 1436};
966 1437
1438=item netstring => $cb->($handle, $string)
1439
1440A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1441
1442Throws an error with C<$!> set to EBADMSG on format violations.
1443
1444=cut
1445
1446register_read_type netstring => sub {
1447 my ($self, $cb) = @_;
1448
1449 sub {
1450 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1451 if ($_[0]{rbuf} =~ /[^0-9]/) {
1452 $self->_error (Errno::EBADMSG);
1453 }
1454 return;
1455 }
1456
1457 my $len = $1;
1458
1459 $self->unshift_read (chunk => $len, sub {
1460 my $string = $_[1];
1461 $_[0]->unshift_read (chunk => 1, sub {
1462 if ($_[1] eq ",") {
1463 $cb->($_[0], $string);
1464 } else {
1465 $self->_error (Errno::EBADMSG);
1466 }
1467 });
1468 });
1469
1470 1
1471 }
1472};
1473
1474=item packstring => $format, $cb->($handle, $string)
1475
1476An octet string prefixed with an encoded length. The encoding C<$format>
1477uses the same format as a Perl C<pack> format, but must specify a single
1478integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1479optional C<!>, C<< < >> or C<< > >> modifier).
1480
1481For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1482EPP uses a prefix of C<N> (4 octtes).
1483
1484Example: read a block of data prefixed by its length in BER-encoded
1485format (very efficient).
1486
1487 $handle->push_read (packstring => "w", sub {
1488 my ($handle, $data) = @_;
1489 });
1490
1491=cut
1492
1493register_read_type packstring => sub {
1494 my ($self, $cb, $format) = @_;
1495
1496 sub {
1497 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1498 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1499 or return;
1500
1501 $format = length pack $format, $len;
1502
1503 # bypass unshift if we already have the remaining chunk
1504 if ($format + $len <= length $_[0]{rbuf}) {
1505 my $data = substr $_[0]{rbuf}, $format, $len;
1506 substr $_[0]{rbuf}, 0, $format + $len, "";
1507 $cb->($_[0], $data);
1508 } else {
1509 # remove prefix
1510 substr $_[0]{rbuf}, 0, $format, "";
1511
1512 # read remaining chunk
1513 $_[0]->unshift_read (chunk => $len, $cb);
1514 }
1515
1516 1
1517 }
1518};
1519
967=item json => $cb->($handle, $hash_or_arrayref) 1520=item json => $cb->($handle, $hash_or_arrayref)
968 1521
969Reads a JSON object or array, decodes it and passes it to the callback. 1522Reads a JSON object or array, decodes it and passes it to the
1523callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1524
971If a C<json> object was passed to the constructor, then that will be used 1525If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1526for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1527
974This read type uses the incremental parser available with JSON version 1528This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1535the C<json> write type description, above, for an actual example.
982 1536
983=cut 1537=cut
984 1538
985register_read_type json => sub { 1539register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1540 my ($self, $cb) = @_;
987 1541
988 require JSON; 1542 my $json = $self->{json} ||= json_coder;
989 1543
990 my $data; 1544 my $data;
991 my $rbuf = \$self->{rbuf}; 1545 my $rbuf = \$self->{rbuf};
992 1546
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1547 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1548 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1549
998 if ($ref) { 1550 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1551 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1552 $json->incr_text = "";
1001 $cb->($self, $ref); 1553 $cb->($self, $ref);
1002 1554
1003 1 1555 1
1556 } elsif ($@) {
1557 # error case
1558 $json->incr_skip;
1559
1560 $self->{rbuf} = $json->incr_text;
1561 $json->incr_text = "";
1562
1563 $self->_error (Errno::EBADMSG);
1564
1565 ()
1004 } else { 1566 } else {
1005 $self->{rbuf} = ""; 1567 $self->{rbuf} = "";
1568
1006 () 1569 ()
1007 } 1570 }
1571 }
1572};
1573
1574=item storable => $cb->($handle, $ref)
1575
1576Deserialises a L<Storable> frozen representation as written by the
1577C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1578data).
1579
1580Raises C<EBADMSG> error if the data could not be decoded.
1581
1582=cut
1583
1584register_read_type storable => sub {
1585 my ($self, $cb) = @_;
1586
1587 require Storable;
1588
1589 sub {
1590 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1591 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1592 or return;
1593
1594 my $format = length pack "w", $len;
1595
1596 # bypass unshift if we already have the remaining chunk
1597 if ($format + $len <= length $_[0]{rbuf}) {
1598 my $data = substr $_[0]{rbuf}, $format, $len;
1599 substr $_[0]{rbuf}, 0, $format + $len, "";
1600 $cb->($_[0], Storable::thaw ($data));
1601 } else {
1602 # remove prefix
1603 substr $_[0]{rbuf}, 0, $format, "";
1604
1605 # read remaining chunk
1606 $_[0]->unshift_read (chunk => $len, sub {
1607 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1608 $cb->($_[0], $ref);
1609 } else {
1610 $self->_error (Errno::EBADMSG);
1611 }
1612 });
1613 }
1614
1615 1
1008 } 1616 }
1009}; 1617};
1010 1618
1011=back 1619=back
1012 1620
1033=item $handle->stop_read 1641=item $handle->stop_read
1034 1642
1035=item $handle->start_read 1643=item $handle->start_read
1036 1644
1037In rare cases you actually do not want to read anything from the 1645In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1646socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1647any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1648C<start_read>.
1041 1649
1042Note that AnyEvent::Handle will automatically C<start_read> for you when 1650Note that AnyEvent::Handle will automatically C<start_read> for you when
1043you change the C<on_read> callback or push/unshift a read callback, and it 1651you change the C<on_read> callback or push/unshift a read callback, and it
1044will automatically C<stop_read> for you when neither C<on_read> is set nor 1652will automatically C<stop_read> for you when neither C<on_read> is set nor
1045there are any read requests in the queue. 1653there are any read requests in the queue.
1046 1654
1655These methods will have no effect when in TLS mode (as TLS doesn't support
1656half-duplex connections).
1657
1047=cut 1658=cut
1048 1659
1049sub stop_read { 1660sub stop_read {
1050 my ($self) = @_; 1661 my ($self) = @_;
1051 1662
1052 delete $self->{_rw}; 1663 delete $self->{_rw} unless $self->{tls};
1053} 1664}
1054 1665
1055sub start_read { 1666sub start_read {
1056 my ($self) = @_; 1667 my ($self) = @_;
1057 1668
1058 unless ($self->{_rw} || $self->{_eof}) { 1669 unless ($self->{_rw} || $self->{_eof}) {
1059 Scalar::Util::weaken $self; 1670 Scalar::Util::weaken $self;
1060 1671
1061 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1672 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1062 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1673 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1063 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1674 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 1675
1065 if ($len > 0) { 1676 if ($len > 0) {
1066 $self->{_activity} = AnyEvent->now; 1677 $self->{_activity} = $self->{_ractivity} = AE::now;
1067 1678
1068 $self->{filter_r} 1679 if ($self->{tls}) {
1069 ? $self->{filter_r}($self, $rbuf) 1680 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1681
1682 &_dotls ($self);
1683 } else {
1070 : $self->_drain_rbuf; 1684 $self->_drain_rbuf;
1685 }
1071 1686
1072 } elsif (defined $len) { 1687 } elsif (defined $len) {
1073 delete $self->{_rw}; 1688 delete $self->{_rw};
1074 $self->{_eof} = 1; 1689 $self->{_eof} = 1;
1075 $self->_drain_rbuf; 1690 $self->_drain_rbuf;
1076 1691
1077 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1692 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 return $self->_error ($!, 1); 1693 return $self->_error ($!, 1);
1079 } 1694 }
1080 }); 1695 };
1081 } 1696 }
1082} 1697}
1083 1698
1699our $ERROR_SYSCALL;
1700our $ERROR_WANT_READ;
1701
1702sub _tls_error {
1703 my ($self, $err) = @_;
1704
1705 return $self->_error ($!, 1)
1706 if $err == Net::SSLeay::ERROR_SYSCALL ();
1707
1708 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1709
1710 # reduce error string to look less scary
1711 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1712
1713 if ($self->{_on_starttls}) {
1714 (delete $self->{_on_starttls})->($self, undef, $err);
1715 &_freetls;
1716 } else {
1717 &_freetls;
1718 $self->_error (Errno::EPROTO, 1, $err);
1719 }
1720}
1721
1722# poll the write BIO and send the data if applicable
1723# also decode read data if possible
1724# this is basiclaly our TLS state machine
1725# more efficient implementations are possible with openssl,
1726# but not with the buggy and incomplete Net::SSLeay.
1084sub _dotls { 1727sub _dotls {
1085 my ($self) = @_; 1728 my ($self) = @_;
1086 1729
1087 my $buf; 1730 my $tmp;
1088 1731
1089 if (length $self->{_tls_wbuf}) { 1732 if (length $self->{_tls_wbuf}) {
1090 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1733 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091 substr $self->{_tls_wbuf}, 0, $len, ""; 1734 substr $self->{_tls_wbuf}, 0, $tmp, "";
1092 } 1735 }
1093 }
1094 1736
1737 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1738 return $self->_tls_error ($tmp)
1739 if $tmp != $ERROR_WANT_READ
1740 && ($tmp != $ERROR_SYSCALL || $!);
1741 }
1742
1743 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1744 unless (length $tmp) {
1745 $self->{_on_starttls}
1746 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1747 &_freetls;
1748
1749 if ($self->{on_stoptls}) {
1750 $self->{on_stoptls}($self);
1751 return;
1752 } else {
1753 # let's treat SSL-eof as we treat normal EOF
1754 delete $self->{_rw};
1755 $self->{_eof} = 1;
1756 }
1757 }
1758
1759 $self->{_tls_rbuf} .= $tmp;
1760 $self->_drain_rbuf;
1761 $self->{tls} or return; # tls session might have gone away in callback
1762 }
1763
1764 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1765 return $self->_tls_error ($tmp)
1766 if $tmp != $ERROR_WANT_READ
1767 && ($tmp != $ERROR_SYSCALL || $!);
1768
1095 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1769 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 $self->{wbuf} .= $buf; 1770 $self->{wbuf} .= $tmp;
1097 $self->_drain_wbuf; 1771 $self->_drain_wbuf;
1098 } 1772 }
1099 1773
1100 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1774 $self->{_on_starttls}
1101 if (length $buf) { 1775 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1102 $self->{rbuf} .= $buf; 1776 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1103 $self->_drain_rbuf;
1104 } else {
1105 # let's treat SSL-eof as we treat normal EOF
1106 $self->{_eof} = 1;
1107 $self->_shutdown;
1108 return;
1109 }
1110 }
1111
1112 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1113
1114 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1115 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1116 return $self->_error ($!, 1);
1117 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1118 return $self->_error (&Errno::EIO, 1);
1119 }
1120
1121 # all others are fine for our purposes
1122 }
1123} 1777}
1124 1778
1125=item $handle->starttls ($tls[, $tls_ctx]) 1779=item $handle->starttls ($tls[, $tls_ctx])
1126 1780
1127Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1781Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1128object is created, you can also do that at a later time by calling 1782object is created, you can also do that at a later time by calling
1129C<starttls>. 1783C<starttls>.
1130 1784
1785Starting TLS is currently an asynchronous operation - when you push some
1786write data and then call C<< ->starttls >> then TLS negotiation will start
1787immediately, after which the queued write data is then sent.
1788
1131The first argument is the same as the C<tls> constructor argument (either 1789The first argument is the same as the C<tls> constructor argument (either
1132C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1790C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133 1791
1134The second argument is the optional C<Net::SSLeay::CTX> object that is 1792The second argument is the optional C<AnyEvent::TLS> object that is used
1135used when AnyEvent::Handle has to create its own TLS connection object. 1793when AnyEvent::Handle has to create its own TLS connection object, or
1794a hash reference with C<< key => value >> pairs that will be used to
1795construct a new context.
1136 1796
1137The TLS connection object will end up in C<< $handle->{tls} >> after this 1797The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1138call and can be used or changed to your liking. Note that the handshake 1798context in C<< $handle->{tls_ctx} >> after this call and can be used or
1139might have already started when this function returns. 1799changed to your liking. Note that the handshake might have already started
1800when this function returns.
1140 1801
1802Due to bugs in OpenSSL, it might or might not be possible to do multiple
1803handshakes on the same stream. Best do not attempt to use the stream after
1804stopping TLS.
1805
1141=cut 1806=cut
1807
1808our %TLS_CACHE; #TODO not yet documented, should we?
1142 1809
1143sub starttls { 1810sub starttls {
1144 my ($self, $ssl, $ctx) = @_; 1811 my ($self, $tls, $ctx) = @_;
1145 1812
1146 $self->stoptls; 1813 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1814 if $self->{tls};
1147 1815
1148 if ($ssl eq "accept") { 1816 $self->{tls} = $tls;
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817 $self->{tls_ctx} = $ctx if @_ > 2;
1150 Net::SSLeay::set_accept_state ($ssl); 1818
1151 } elsif ($ssl eq "connect") { 1819 return unless $self->{fh};
1152 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1820
1153 Net::SSLeay::set_connect_state ($ssl); 1821 require Net::SSLeay;
1822
1823 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1824 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1825
1826 $tls = delete $self->{tls};
1827 $ctx = $self->{tls_ctx};
1828
1829 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1830
1831 if ("HASH" eq ref $ctx) {
1832 require AnyEvent::TLS;
1833
1834 if ($ctx->{cache}) {
1835 my $key = $ctx+0;
1836 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1837 } else {
1838 $ctx = new AnyEvent::TLS %$ctx;
1839 }
1840 }
1154 } 1841
1155 1842 $self->{tls_ctx} = $ctx || TLS_CTX ();
1156 $self->{tls} = $ssl; 1843 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1157 1844
1158 # basically, this is deep magic (because SSL_read should have the same issues) 1845 # basically, this is deep magic (because SSL_read should have the same issues)
1159 # but the openssl maintainers basically said: "trust us, it just works". 1846 # but the openssl maintainers basically said: "trust us, it just works".
1160 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1847 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161 # and mismaintained ssleay-module doesn't even offer them). 1848 # and mismaintained ssleay-module doesn't even offer them).
1162 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1849 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1850 #
1851 # in short: this is a mess.
1852 #
1853 # note that we do not try to keep the length constant between writes as we are required to do.
1854 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1855 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1856 # have identity issues in that area.
1163 Net::SSLeay::CTX_set_mode ($self->{tls}, 1857# Net::SSLeay::CTX_set_mode ($ssl,
1164 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1858# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1859# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1860 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1166 1861
1167 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1862 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1863 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 1864
1865 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1866
1170 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1867 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1171 1868
1172 $self->{filter_w} = sub { 1869 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1173 $_[0]{_tls_wbuf} .= ${$_[1]}; 1870 if $self->{on_starttls};
1174 &_dotls; 1871
1175 }; 1872 &_dotls; # need to trigger the initial handshake
1176 $self->{filter_r} = sub { 1873 $self->start_read; # make sure we actually do read
1177 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 &_dotls;
1179 };
1180} 1874}
1181 1875
1182=item $handle->stoptls 1876=item $handle->stoptls
1183 1877
1184Destroys the SSL connection, if any. Partial read or write data will be 1878Shuts down the SSL connection - this makes a proper EOF handshake by
1185lost. 1879sending a close notify to the other side, but since OpenSSL doesn't
1880support non-blocking shut downs, it is not guarenteed that you can re-use
1881the stream afterwards.
1186 1882
1187=cut 1883=cut
1188 1884
1189sub stoptls { 1885sub stoptls {
1190 my ($self) = @_; 1886 my ($self) = @_;
1191 1887
1192 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1888 if ($self->{tls}) {
1889 Net::SSLeay::shutdown ($self->{tls});
1193 1890
1194 delete $self->{_rbio}; 1891 &_dotls;
1195 delete $self->{_wbio}; 1892
1196 delete $self->{_tls_wbuf}; 1893# # we don't give a shit. no, we do, but we can't. no...#d#
1197 delete $self->{filter_r}; 1894# # we, we... have to use openssl :/#d#
1198 delete $self->{filter_w}; 1895# &_freetls;#d#
1896 }
1897}
1898
1899sub _freetls {
1900 my ($self) = @_;
1901
1902 return unless $self->{tls};
1903
1904 $self->{tls_ctx}->_put_session (delete $self->{tls})
1905 if $self->{tls} > 0;
1906
1907 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1199} 1908}
1200 1909
1201sub DESTROY { 1910sub DESTROY {
1202 my $self = shift; 1911 my ($self) = @_;
1203 1912
1204 $self->stoptls; 1913 &_freetls;
1914
1915 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1916
1917 if ($linger && length $self->{wbuf} && $self->{fh}) {
1918 my $fh = delete $self->{fh};
1919 my $wbuf = delete $self->{wbuf};
1920
1921 my @linger;
1922
1923 push @linger, AE::io $fh, 1, sub {
1924 my $len = syswrite $fh, $wbuf, length $wbuf;
1925
1926 if ($len > 0) {
1927 substr $wbuf, 0, $len, "";
1928 } else {
1929 @linger = (); # end
1930 }
1931 };
1932 push @linger, AE::timer $linger, 0, sub {
1933 @linger = ();
1934 };
1935 }
1936}
1937
1938=item $handle->destroy
1939
1940Shuts down the handle object as much as possible - this call ensures that
1941no further callbacks will be invoked and as many resources as possible
1942will be freed. Any method you will call on the handle object after
1943destroying it in this way will be silently ignored (and it will return the
1944empty list).
1945
1946Normally, you can just "forget" any references to an AnyEvent::Handle
1947object and it will simply shut down. This works in fatal error and EOF
1948callbacks, as well as code outside. It does I<NOT> work in a read or write
1949callback, so when you want to destroy the AnyEvent::Handle object from
1950within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1951that case.
1952
1953Destroying the handle object in this way has the advantage that callbacks
1954will be removed as well, so if those are the only reference holders (as
1955is common), then one doesn't need to do anything special to break any
1956reference cycles.
1957
1958The handle might still linger in the background and write out remaining
1959data, as specified by the C<linger> option, however.
1960
1961=cut
1962
1963sub destroy {
1964 my ($self) = @_;
1965
1966 $self->DESTROY;
1967 %$self = ();
1968 bless $self, "AnyEvent::Handle::destroyed";
1969}
1970
1971sub AnyEvent::Handle::destroyed::AUTOLOAD {
1972 #nop
1205} 1973}
1206 1974
1207=item AnyEvent::Handle::TLS_CTX 1975=item AnyEvent::Handle::TLS_CTX
1208 1976
1209This function creates and returns the Net::SSLeay::CTX object used by 1977This function creates and returns the AnyEvent::TLS object used by default
1210default for TLS mode. 1978for TLS mode.
1211 1979
1212The context is created like this: 1980The context is created by calling L<AnyEvent::TLS> without any arguments.
1213
1214 Net::SSLeay::load_error_strings;
1215 Net::SSLeay::SSLeay_add_ssl_algorithms;
1216 Net::SSLeay::randomize;
1217
1218 my $CTX = Net::SSLeay::CTX_new;
1219
1220 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221 1981
1222=cut 1982=cut
1223 1983
1224our $TLS_CTX; 1984our $TLS_CTX;
1225 1985
1226sub TLS_CTX() { 1986sub TLS_CTX() {
1227 $TLS_CTX || do { 1987 $TLS_CTX ||= do {
1228 require Net::SSLeay; 1988 require AnyEvent::TLS;
1229 1989
1230 Net::SSLeay::load_error_strings (); 1990 new AnyEvent::TLS
1231 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232 Net::SSLeay::randomize ();
1233
1234 $TLS_CTX = Net::SSLeay::CTX_new ();
1235
1236 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237
1238 $TLS_CTX
1239 } 1991 }
1240} 1992}
1241 1993
1242=back 1994=back
1995
1996
1997=head1 NONFREQUENTLY ASKED QUESTIONS
1998
1999=over 4
2000
2001=item I C<undef> the AnyEvent::Handle reference inside my callback and
2002still get further invocations!
2003
2004That's because AnyEvent::Handle keeps a reference to itself when handling
2005read or write callbacks.
2006
2007It is only safe to "forget" the reference inside EOF or error callbacks,
2008from within all other callbacks, you need to explicitly call the C<<
2009->destroy >> method.
2010
2011=item I get different callback invocations in TLS mode/Why can't I pause
2012reading?
2013
2014Unlike, say, TCP, TLS connections do not consist of two independent
2015communication channels, one for each direction. Or put differently. The
2016read and write directions are not independent of each other: you cannot
2017write data unless you are also prepared to read, and vice versa.
2018
2019This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2020callback invocations when you are not expecting any read data - the reason
2021is that AnyEvent::Handle always reads in TLS mode.
2022
2023During the connection, you have to make sure that you always have a
2024non-empty read-queue, or an C<on_read> watcher. At the end of the
2025connection (or when you no longer want to use it) you can call the
2026C<destroy> method.
2027
2028=item How do I read data until the other side closes the connection?
2029
2030If you just want to read your data into a perl scalar, the easiest way
2031to achieve this is by setting an C<on_read> callback that does nothing,
2032clearing the C<on_eof> callback and in the C<on_error> callback, the data
2033will be in C<$_[0]{rbuf}>:
2034
2035 $handle->on_read (sub { });
2036 $handle->on_eof (undef);
2037 $handle->on_error (sub {
2038 my $data = delete $_[0]{rbuf};
2039 });
2040
2041The reason to use C<on_error> is that TCP connections, due to latencies
2042and packets loss, might get closed quite violently with an error, when in
2043fact, all data has been received.
2044
2045It is usually better to use acknowledgements when transferring data,
2046to make sure the other side hasn't just died and you got the data
2047intact. This is also one reason why so many internet protocols have an
2048explicit QUIT command.
2049
2050=item I don't want to destroy the handle too early - how do I wait until
2051all data has been written?
2052
2053After writing your last bits of data, set the C<on_drain> callback
2054and destroy the handle in there - with the default setting of
2055C<low_water_mark> this will be called precisely when all data has been
2056written to the socket:
2057
2058 $handle->push_write (...);
2059 $handle->on_drain (sub {
2060 warn "all data submitted to the kernel\n";
2061 undef $handle;
2062 });
2063
2064If you just want to queue some data and then signal EOF to the other side,
2065consider using C<< ->push_shutdown >> instead.
2066
2067=item I want to contact a TLS/SSL server, I don't care about security.
2068
2069If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2070simply connect to it and then create the AnyEvent::Handle with the C<tls>
2071parameter:
2072
2073 tcp_connect $host, $port, sub {
2074 my ($fh) = @_;
2075
2076 my $handle = new AnyEvent::Handle
2077 fh => $fh,
2078 tls => "connect",
2079 on_error => sub { ... };
2080
2081 $handle->push_write (...);
2082 };
2083
2084=item I want to contact a TLS/SSL server, I do care about security.
2085
2086Then you should additionally enable certificate verification, including
2087peername verification, if the protocol you use supports it (see
2088L<AnyEvent::TLS>, C<verify_peername>).
2089
2090E.g. for HTTPS:
2091
2092 tcp_connect $host, $port, sub {
2093 my ($fh) = @_;
2094
2095 my $handle = new AnyEvent::Handle
2096 fh => $fh,
2097 peername => $host,
2098 tls => "connect",
2099 tls_ctx => { verify => 1, verify_peername => "https" },
2100 ...
2101
2102Note that you must specify the hostname you connected to (or whatever
2103"peername" the protocol needs) as the C<peername> argument, otherwise no
2104peername verification will be done.
2105
2106The above will use the system-dependent default set of trusted CA
2107certificates. If you want to check against a specific CA, add the
2108C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2109
2110 tls_ctx => {
2111 verify => 1,
2112 verify_peername => "https",
2113 ca_file => "my-ca-cert.pem",
2114 },
2115
2116=item I want to create a TLS/SSL server, how do I do that?
2117
2118Well, you first need to get a server certificate and key. You have
2119three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2120self-signed certificate (cheap. check the search engine of your choice,
2121there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2122nice program for that purpose).
2123
2124Then create a file with your private key (in PEM format, see
2125L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2126file should then look like this:
2127
2128 -----BEGIN RSA PRIVATE KEY-----
2129 ...header data
2130 ... lots of base64'y-stuff
2131 -----END RSA PRIVATE KEY-----
2132
2133 -----BEGIN CERTIFICATE-----
2134 ... lots of base64'y-stuff
2135 -----END CERTIFICATE-----
2136
2137The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2138specify this file as C<cert_file>:
2139
2140 tcp_server undef, $port, sub {
2141 my ($fh) = @_;
2142
2143 my $handle = new AnyEvent::Handle
2144 fh => $fh,
2145 tls => "accept",
2146 tls_ctx => { cert_file => "my-server-keycert.pem" },
2147 ...
2148
2149When you have intermediate CA certificates that your clients might not
2150know about, just append them to the C<cert_file>.
2151
2152=back
2153
1243 2154
1244=head1 SUBCLASSING AnyEvent::Handle 2155=head1 SUBCLASSING AnyEvent::Handle
1245 2156
1246In many cases, you might want to subclass AnyEvent::Handle. 2157In many cases, you might want to subclass AnyEvent::Handle.
1247 2158
1251=over 4 2162=over 4
1252 2163
1253=item * all constructor arguments become object members. 2164=item * all constructor arguments become object members.
1254 2165
1255At least initially, when you pass a C<tls>-argument to the constructor it 2166At least initially, when you pass a C<tls>-argument to the constructor it
1256will end up in C<< $handle->{tls} >>. Those members might be changes or 2167will end up in C<< $handle->{tls} >>. Those members might be changed or
1257mutated later on (for example C<tls> will hold the TLS connection object). 2168mutated later on (for example C<tls> will hold the TLS connection object).
1258 2169
1259=item * other object member names are prefixed with an C<_>. 2170=item * other object member names are prefixed with an C<_>.
1260 2171
1261All object members not explicitly documented (internal use) are prefixed 2172All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines