ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.81 by root, Wed Aug 20 12:37:21 2008 UTC vs.
Revision 1.175 by root, Sat Aug 8 22:20:43 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.231; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is I<highly> recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
88If an EOF condition has been detected but no C<on_eof> callback has been 110=item on_connect => $cb->($handle, $host, $port, $retry->())
89set, then a fatal error will be raised with C<$!> set to <0>.
90 111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
91=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
92 137
93This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
94occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
95connect or a read error. 140connect or a read error.
96 141
97Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
98fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
99usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
100recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
101object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
102 159
103On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
104error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
105 163
106While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
107you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
108C<croak>. 166C<croak>.
109 167
113and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
114callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
115read buffer). 173read buffer).
116 174
117To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
118method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
119 179
120When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
121feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
122calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
123error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
124 205
125=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
126 207
127This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
128(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
138=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
139 220
140If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
141seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
142handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
143missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
144 225
145Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
146any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
147idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
148in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
149 231
150Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
151 233
152=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
153 235
157 239
158=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
159 241
160If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
161when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
162avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
163 245
164For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
165be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
166(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
167amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
168isn't finished). 250isn't finished).
169 251
170=item autocork => <boolean> 252=item autocork => <boolean>
171 253
172When disabled (the default), then C<push_write> will try to immediately 254When disabled (the default), then C<push_write> will try to immediately
173write the data to the handle if possible. This avoids having to register 255write the data to the handle, if possible. This avoids having to register
174a write watcher and wait for the next event loop iteration, but can be 256a write watcher and wait for the next event loop iteration, but can
175inefficient if you write multiple small chunks (this disadvantage is 257be inefficient if you write multiple small chunks (on the wire, this
176usually avoided by your kernel's nagle algorithm, see C<low_delay>). 258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
177 260
178When enabled, then writes will always be queued till the next event loop 261When enabled, then writes will always be queued till the next event loop
179iteration. This is efficient when you do many small writes per iteration, 262iteration. This is efficient when you do many small writes per iteration,
180but less efficient when you do a single write only. 263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
181 265
182=item no_delay => <boolean> 266=item no_delay => <boolean>
183 267
184When doing small writes on sockets, your operating system kernel might 268When doing small writes on sockets, your operating system kernel might
185wait a bit for more data before actually sending it out. This is called 269wait a bit for more data before actually sending it out. This is called
186the Nagle algorithm, and usually it is beneficial. 270the Nagle algorithm, and usually it is beneficial.
187 271
188In some situations you want as low a delay as possible, which cna be 272In some situations you want as low a delay as possible, which can be
189accomplishd by setting this option to true. 273accomplishd by setting this option to a true value.
190 274
191The default is your opertaing system's default behaviour, this option 275The default is your opertaing system's default behaviour (most likely
192explicitly enables or disables it, if possible. 276enabled), this option explicitly enables or disables it, if possible.
193 277
194=item read_size => <bytes> 278=item read_size => <bytes>
195 279
196The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
197during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
198 283
199=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
200 285
201Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
202buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
203considered empty. 288considered empty.
204 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
205=item linger => <seconds> 295=item linger => <seconds>
206 296
207If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
208AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
209data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
210will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
211outstanding data at socket close time). 301system treats outstanding data at socket close time).
212 302
213This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
214encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
215 316
216=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
217 318
218When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
219will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
220data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
221 325
222TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
223automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
224 330
225For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
226connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
227 334
228You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
229to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
230or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
231AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
232 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
233See the C<starttls> method if you need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
234 351
235=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
236 353
237Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
238(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
239missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
240 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
241=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
242 395
243This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
244 397
245If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
246suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
247 401
248Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
249use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
250 404
251=item filter_r => $cb
252
253=item filter_w => $cb
254
255These exist, but are undocumented at this time.
256
257=back 405=back
258 406
259=cut 407=cut
260 408
261sub new { 409sub new {
262 my $class = shift; 410 my $class = shift;
263
264 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
265 412
266 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
267 476
268 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
269 478
270 if ($self->{tls}) {
271 require Net::SSLeay;
272 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
273 }
274
275 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AE::now;
276 $self->_timeout; 480 $self->_timeout;
277 481
278 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
279 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
280 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
281 $self->start_read 489 $self->start_read
282 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
283 491
284 $self 492 $self->_drain_wbuf;
285} 493}
286 494
287sub _shutdown { 495#sub _shutdown {
288 my ($self) = @_; 496# my ($self) = @_;
289 497#
290 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
291 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
292 delete $self->{_ww}; 500#
293 delete $self->{fh}; 501# &_freetls;
294 502#}
295 $self->stoptls;
296}
297 503
298sub _error { 504sub _error {
299 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
300
301 $self->_shutdown
302 if $fatal;
303 506
304 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
305 509
306 if ($self->{on_error}) { 510 if ($self->{on_error}) {
307 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
308 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
309 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
310 } 516 }
311} 517}
312 518
313=item $fh = $handle->fh 519=item $fh = $handle->fh
314 520
315This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
316 522
317=cut 523=cut
318 524
319sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
320 526
338 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
339} 545}
340 546
341=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
342 548
343Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
344(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
345argument. 551argument and method.
346 552
347=cut 553=cut
348 554
349sub on_timeout { 555sub on_timeout {
350 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
351} 557}
352 558
353=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
354 560
355Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
356constructor argument). 562constructor argument). Changes will only take effect on the next write.
357 563
358=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
359 569
360=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
361 571
362Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
363the same name for details). 573the same name for details).
367sub no_delay { 577sub no_delay {
368 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
369 579
370 eval { 580 eval {
371 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
372 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
373 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
374} 615}
375 616
376############################################################################# 617#############################################################################
377 618
378=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
383 624
384sub timeout { 625sub timeout {
385 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
386 627
387 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
388 $self->_timeout; 630 $self->_timeout;
389} 631}
390 632
391# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
392# also check for time-outs 634# also check for time-outs
393sub _timeout { 635sub _timeout {
394 my ($self) = @_; 636 my ($self) = @_;
395 637
396 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
397 my $NOW = AnyEvent->now; 639 my $NOW = AE::now;
398 640
399 # when would the timeout trigger? 641 # when would the timeout trigger?
400 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
401 643
402 # now or in the past already? 644 # now or in the past already?
404 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
405 647
406 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
407 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
408 } else { 650 } else {
409 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
410 } 652 }
411 653
412 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
413 return unless $self->{timeout}; 655 return unless $self->{timeout};
414 656
417 } 659 }
418 660
419 Scalar::Util::weaken $self; 661 Scalar::Util::weaken $self;
420 return unless $self; # ->error could have destroyed $self 662 return unless $self; # ->error could have destroyed $self
421 663
422 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 664 $self->{_tw} ||= AE::timer $after, 0, sub {
423 delete $self->{_tw}; 665 delete $self->{_tw};
424 $self->_timeout; 666 $self->_timeout;
425 }); 667 };
426 } else { 668 } else {
427 delete $self->{_tw}; 669 delete $self->{_tw};
428 } 670 }
429} 671}
430 672
456 my ($self, $cb) = @_; 698 my ($self, $cb) = @_;
457 699
458 $self->{on_drain} = $cb; 700 $self->{on_drain} = $cb;
459 701
460 $cb->($self) 702 $cb->($self)
461 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 703 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
462} 704}
463 705
464=item $handle->push_write ($data) 706=item $handle->push_write ($data)
465 707
466Queues the given scalar to be written. You can push as much data as you 708Queues the given scalar to be written. You can push as much data as you
477 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
478 720
479 my $cb = sub { 721 my $cb = sub {
480 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
481 723
482 if ($len >= 0) { 724 if (defined $len) {
483 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
484 726
485 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AE::now;
486 728
487 $self->{on_drain}($self) 729 $self->{on_drain}($self)
488 if $self->{low_water_mark} >= length $self->{wbuf} 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
489 && $self->{on_drain}; 731 && $self->{on_drain};
490 732
491 delete $self->{_ww} unless length $self->{wbuf}; 733 delete $self->{_ww} unless length $self->{wbuf};
492 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 734 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
493 $self->_error ($!, 1); 735 $self->_error ($!, 1);
496 738
497 # try to write data immediately 739 # try to write data immediately
498 $cb->() unless $self->{autocork}; 740 $cb->() unless $self->{autocork};
499 741
500 # if still data left in wbuf, we need to poll 742 # if still data left in wbuf, we need to poll
501 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 743 $self->{_ww} = AE::io $self->{fh}, 1, $cb
502 if length $self->{wbuf}; 744 if length $self->{wbuf};
503 }; 745 };
504} 746}
505 747
506our %WH; 748our %WH;
517 759
518 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 760 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
519 ->($self, @_); 761 ->($self, @_);
520 } 762 }
521 763
522 if ($self->{filter_w}) { 764 if ($self->{tls}) {
523 $self->{filter_w}($self, \$_[0]); 765 $self->{_tls_wbuf} .= $_[0];
766 &_dotls ($self) if $self->{fh};
524 } else { 767 } else {
525 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
526 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
527 } 770 }
528} 771}
529 772
530=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
531 774
545=cut 788=cut
546 789
547register_write_type netstring => sub { 790register_write_type netstring => sub {
548 my ($self, $string) = @_; 791 my ($self, $string) = @_;
549 792
550 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
551}; 794};
552 795
553=item packstring => $format, $data 796=item packstring => $format, $data
554 797
555An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
620 863
621 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
622}; 865};
623 866
624=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
625 893
626=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
627 895
628This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
629Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
723=cut 991=cut
724 992
725sub _drain_rbuf { 993sub _drain_rbuf {
726 my ($self) = @_; 994 my ($self) = @_;
727 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
728 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
729
730 if (
731 defined $self->{rbuf_max}
732 && $self->{rbuf_max} < length $self->{rbuf}
733 ) {
734 return $self->_error (&Errno::ENOSPC, 1);
735 }
736 999
737 while () { 1000 while () {
1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
1005
738 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
739 1007
740 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
741 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
742 if ($self->{_eof}) { 1010 # no progress can be made
743 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
744 $self->_error (&Errno::EPIPE, 1), last; 1012 $self->_error (Errno::EPIPE, 1), return
745 } 1013 if $self->{_eof};
746 1014
747 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
748 last; 1016 last;
749 } 1017 }
750 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
757 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
758 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
759 ) { 1027 ) {
760 # no further data will arrive 1028 # no further data will arrive
761 # so no progress can be made 1029 # so no progress can be made
762 $self->_error (&Errno::EPIPE, 1), last 1030 $self->_error (Errno::EPIPE, 1), return
763 if $self->{_eof}; 1031 if $self->{_eof};
764 1032
765 last; # more data might arrive 1033 last; # more data might arrive
766 } 1034 }
767 } else { 1035 } else {
768 # read side becomes idle 1036 # read side becomes idle
769 delete $self->{_rw}; 1037 delete $self->{_rw} unless $self->{tls};
770 last; 1038 last;
771 } 1039 }
772 } 1040 }
773 1041
774 if ($self->{_eof}) { 1042 if ($self->{_eof}) {
775 if ($self->{on_eof}) { 1043 $self->{on_eof}
776 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
777 } else { 1045 : $self->_error (0, 1, "Unexpected end-of-file");
778 $self->_error (0, 1); 1046
779 } 1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
780 } 1055 }
781 1056
782 # may need to restart read watcher 1057 # may need to restart read watcher
783 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
784 $self->start_read 1059 $self->start_read
796 1071
797sub on_read { 1072sub on_read {
798 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
799 1074
800 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
801 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
802} 1077}
803 1078
804=item $handle->rbuf 1079=item $handle->rbuf
805 1080
806Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
807 1082
808You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
809you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
810 1088
811NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
812C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
813automatically manage the read buffer. 1091automatically manage the read buffer.
814 1092
855 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
856 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
857 } 1135 }
858 1136
859 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
860 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
861} 1139}
862 1140
863sub unshift_read { 1141sub unshift_read {
864 my $self = shift; 1142 my $self = shift;
865 my $cb = pop; 1143 my $cb = pop;
871 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
872 } 1150 }
873 1151
874 1152
875 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
876 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
877} 1155}
878 1156
879=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
880 1158
881=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
1014 return 1; 1292 return 1;
1015 } 1293 }
1016 1294
1017 # reject 1295 # reject
1018 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1019 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1020 } 1298 }
1021 1299
1022 # skip 1300 # skip
1023 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1024 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1040 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1041 1319
1042 sub { 1320 sub {
1043 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1044 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1045 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1046 } 1324 }
1047 return; 1325 return;
1048 } 1326 }
1049 1327
1050 my $len = $1; 1328 my $len = $1;
1053 my $string = $_[1]; 1331 my $string = $_[1];
1054 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1055 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1056 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1057 } else { 1335 } else {
1058 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1059 } 1337 }
1060 }); 1338 });
1061 }); 1339 });
1062 1340
1063 1 1341 1
1069An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
1070uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
1071integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1072optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1073 1351
1074DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1075 1354
1076Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1077format (very efficient). 1356format (very efficient).
1078 1357
1079 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1109 } 1388 }
1110}; 1389};
1111 1390
1112=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1113 1392
1114Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1115 1395
1116If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1117for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1118 1398
1119This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1128=cut 1408=cut
1129 1409
1130register_read_type json => sub { 1410register_read_type json => sub {
1131 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1132 1412
1133 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1134 1416
1135 my $data; 1417 my $data;
1136 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1137 1419
1138 my $json = $self->{json} ||= JSON->new->utf8;
1139
1140 sub { 1420 sub {
1141 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1142 1422
1143 if ($ref) { 1423 if ($ref) {
1144 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1145 $json->incr_text = ""; 1425 $json->incr_text = "";
1146 $cb->($self, $ref); 1426 $cb->($self, $ref);
1147 1427
1148 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1149 } else { 1439 } else {
1150 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1151 () 1442 ()
1152 } 1443 }
1153 } 1444 }
1154}; 1445};
1155 1446
1187 # read remaining chunk 1478 # read remaining chunk
1188 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1189 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1190 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1191 } else { 1482 } else {
1192 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1193 } 1484 }
1194 }); 1485 });
1195 } 1486 }
1196 1487
1197 1 1488 1
1232Note that AnyEvent::Handle will automatically C<start_read> for you when 1523Note that AnyEvent::Handle will automatically C<start_read> for you when
1233you change the C<on_read> callback or push/unshift a read callback, and it 1524you change the C<on_read> callback or push/unshift a read callback, and it
1234will automatically C<stop_read> for you when neither C<on_read> is set nor 1525will automatically C<stop_read> for you when neither C<on_read> is set nor
1235there are any read requests in the queue. 1526there are any read requests in the queue.
1236 1527
1528These methods will have no effect when in TLS mode (as TLS doesn't support
1529half-duplex connections).
1530
1237=cut 1531=cut
1238 1532
1239sub stop_read { 1533sub stop_read {
1240 my ($self) = @_; 1534 my ($self) = @_;
1241 1535
1242 delete $self->{_rw}; 1536 delete $self->{_rw} unless $self->{tls};
1243} 1537}
1244 1538
1245sub start_read { 1539sub start_read {
1246 my ($self) = @_; 1540 my ($self) = @_;
1247 1541
1248 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1249 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1250 1544
1251 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1252 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1253 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1254 1548
1255 if ($len > 0) { 1549 if ($len > 0) {
1256 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AE::now;
1257 1551
1258 $self->{filter_r} 1552 if ($self->{tls}) {
1259 ? $self->{filter_r}($self, $rbuf) 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1260 : $self->{_in_drain} || $self->_drain_rbuf; 1554
1555 &_dotls ($self);
1556 } else {
1557 $self->_drain_rbuf;
1558 }
1261 1559
1262 } elsif (defined $len) { 1560 } elsif (defined $len) {
1263 delete $self->{_rw}; 1561 delete $self->{_rw};
1264 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1265 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1266 1564
1267 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1268 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1269 } 1567 }
1270 }); 1568 };
1271 } 1569 }
1272} 1570}
1273 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1274sub _dotls { 1600sub _dotls {
1275 my ($self) = @_; 1601 my ($self) = @_;
1276 1602
1277 my $buf; 1603 my $tmp;
1278 1604
1279 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1280 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1281 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1282 } 1608 }
1283 }
1284 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617 unless (length $tmp) {
1618 $self->{_on_starttls}
1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1630 }
1631
1632 $self->{_tls_rbuf} .= $tmp;
1633 $self->_drain_rbuf;
1634 $self->{tls} or return; # tls session might have gone away in callback
1635 }
1636
1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 return $self->_tls_error ($tmp)
1639 if $tmp != $ERROR_WANT_READ
1640 && ($tmp != $ERROR_SYSCALL || $!);
1641
1285 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1286 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1287 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1288 } 1645 }
1289 1646
1290 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1647 $self->{_on_starttls}
1291 if (length $buf) { 1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1292 $self->{rbuf} .= $buf; 1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1293 $self->_drain_rbuf unless $self->{_in_drain};
1294 } else {
1295 # let's treat SSL-eof as we treat normal EOF
1296 $self->{_eof} = 1;
1297 $self->_shutdown;
1298 return;
1299 }
1300 }
1301
1302 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1303
1304 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1305 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1306 return $self->_error ($!, 1);
1307 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1308 return $self->_error (&Errno::EIO, 1);
1309 }
1310
1311 # all others are fine for our purposes
1312 }
1313} 1650}
1314 1651
1315=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1316 1653
1317Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1318object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1319C<starttls>. 1656C<starttls>.
1320 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1321The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1322C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1323 1664
1324The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1325used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1326 1669
1327The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1328call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1329might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1330 1674
1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1678
1331=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1332 1682
1333sub starttls { 1683sub starttls {
1334 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1335 1685
1336 $self->stoptls; 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1337 1688
1338 if ($ssl eq "accept") { 1689 $self->{tls} = $tls;
1339 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1690 $self->{tls_ctx} = $ctx if @_ > 2;
1340 Net::SSLeay::set_accept_state ($ssl); 1691
1341 } elsif ($ssl eq "connect") { 1692 return unless $self->{fh};
1342 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1693
1343 Net::SSLeay::set_connect_state ($ssl); 1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1344 } 1714
1345 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1346 $self->{tls} = $ssl; 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1347 1717
1348 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1349 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1350 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1351 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1352 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1722 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1723 #
1724 # in short: this is a mess.
1725 #
1726 # note that we do not try to keep the length constant between writes as we are required to do.
1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729 # have identity issues in that area.
1353 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1354 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1355 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1356 1734
1357 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1358 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1359 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1360 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1361 1741
1362 $self->{filter_w} = sub { 1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1363 $_[0]{_tls_wbuf} .= ${$_[1]}; 1743 if $self->{on_starttls};
1364 &_dotls; 1744
1365 }; 1745 &_dotls; # need to trigger the initial handshake
1366 $self->{filter_r} = sub { 1746 $self->start_read; # make sure we actually do read
1367 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1368 &_dotls;
1369 };
1370} 1747}
1371 1748
1372=item $handle->stoptls 1749=item $handle->stoptls
1373 1750
1374Destroys the SSL connection, if any. Partial read or write data will be 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1375lost. 1752sending a close notify to the other side, but since OpenSSL doesn't
1753support non-blocking shut downs, it is not guarenteed that you can re-use
1754the stream afterwards.
1376 1755
1377=cut 1756=cut
1378 1757
1379sub stoptls { 1758sub stoptls {
1380 my ($self) = @_; 1759 my ($self) = @_;
1381 1760
1382 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1761 if ($self->{tls}) {
1762 Net::SSLeay::shutdown ($self->{tls});
1383 1763
1384 delete $self->{_rbio}; 1764 &_dotls;
1385 delete $self->{_wbio}; 1765
1386 delete $self->{_tls_wbuf}; 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1387 delete $self->{filter_r}; 1767# # we, we... have to use openssl :/#d#
1388 delete $self->{filter_w}; 1768# &_freetls;#d#
1769 }
1770}
1771
1772sub _freetls {
1773 my ($self) = @_;
1774
1775 return unless $self->{tls};
1776
1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1779
1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1389} 1781}
1390 1782
1391sub DESTROY { 1783sub DESTROY {
1392 my $self = shift; 1784 my ($self) = @_;
1393 1785
1394 $self->stoptls; 1786 &_freetls;
1395 1787
1396 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1397 1789
1398 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1399 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1400 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1401 1793
1402 my @linger; 1794 my @linger;
1403 1795
1404 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1796 push @linger, AE::io $fh, 1, sub {
1405 my $len = syswrite $fh, $wbuf, length $wbuf; 1797 my $len = syswrite $fh, $wbuf, length $wbuf;
1406 1798
1407 if ($len > 0) { 1799 if ($len > 0) {
1408 substr $wbuf, 0, $len, ""; 1800 substr $wbuf, 0, $len, "";
1409 } else { 1801 } else {
1410 @linger = (); # end 1802 @linger = (); # end
1411 } 1803 }
1412 }); 1804 };
1413 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1805 push @linger, AE::timer $linger, 0, sub {
1414 @linger = (); 1806 @linger = ();
1415 }); 1807 };
1416 } 1808 }
1809}
1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1417} 1846}
1418 1847
1419=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1420 1849
1421This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1422default for TLS mode. 1851for TLS mode.
1423 1852
1424The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1425
1426 Net::SSLeay::load_error_strings;
1427 Net::SSLeay::SSLeay_add_ssl_algorithms;
1428 Net::SSLeay::randomize;
1429
1430 my $CTX = Net::SSLeay::CTX_new;
1431
1432 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1433 1854
1434=cut 1855=cut
1435 1856
1436our $TLS_CTX; 1857our $TLS_CTX;
1437 1858
1438sub TLS_CTX() { 1859sub TLS_CTX() {
1439 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1440 require Net::SSLeay; 1861 require AnyEvent::TLS;
1441 1862
1442 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1443 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1444 Net::SSLeay::randomize ();
1445
1446 $TLS_CTX = Net::SSLeay::CTX_new ();
1447
1448 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1449
1450 $TLS_CTX
1451 } 1864 }
1452} 1865}
1453 1866
1454=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1455 2027
1456=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1457 2029
1458In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1459 2031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines