ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.92 by root, Wed Oct 1 08:52:06 2008 UTC vs.
Revision 1.160 by root, Fri Jul 24 22:47:04 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106=item on_connect => $cb->($handle, $host, $port, $retry->())
97you can still try to write data, and, in fact, one can return from the eof
98callback and continue writing data, as only the read part has been shut
99down.
100 107
101While not mandatory, it is I<highly> recommended to set an eof callback, 108This callback is called when a connection has been successfully established.
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 109
105If an EOF condition has been detected but no C<on_eof> callback has been 110The actual numeric host and port (the socket peername) are passed as
106set, then a fatal error will be raised with C<$!> set to <0>. 111parameters, together with a retry callback.
107 112
113When, for some reason, the handle is not acceptable, then calling
114C<$retry> will continue with the next conenction target (in case of
115multi-homed hosts or SRV records there can be multiple connection
116endpoints). When it is called then the read and write queues, eof status,
117tls status and similar properties of the handle are being reset.
118
119In most cases, ignoring the C<$retry> parameter is the way to go.
120
121=item on_connect_error => $cb->($handle, $message)
122
123This callback is called when the conenction could not be
124established. C<$!> will contain the relevant error code, and C<$message> a
125message describing it (usually the same as C<"$!">).
126
127If this callback isn't specified, then C<on_error> will be called with a
128fatal error instead.
129
130=back
131
108=item on_error => $cb->($handle, $fatal) 132=item on_error => $cb->($handle, $fatal, $message)
109 133
110This is the error callback, which is called when, well, some error 134This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 135occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 136connect or a read error.
113 137
114Some errors are fatal (which is indicated by C<$fatal> being true). On 138Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 139fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 140destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 141examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 142with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
143cases where the other side can close the connection at their will it is
144often easiest to not report C<EPIPE> errors in this callback.
145
146AnyEvent::Handle tries to find an appropriate error code for you to check
147against, but in some cases (TLS errors), this does not work well. It is
148recommended to always output the C<$message> argument in human-readable
149error messages (it's usually the same as C<"$!">).
119 150
120Non-fatal errors can be retried by simply returning, but it is recommended 151Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 152to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 153when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 154C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 155
125On callback entrance, the value of C<$!> contains the operating system 156On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 157error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
158C<EPROTO>).
127 159
128While not mandatory, it is I<highly> recommended to set this callback, as 160While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 161you will not be notified of errors otherwise. The default simply calls
130C<croak>. 162C<croak>.
131 163
135and no read request is in the queue (unlike read queue callbacks, this 167and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 168callback will only be called when at least one octet of data is in the
137read buffer). 169read buffer).
138 170
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 171To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 172method or access the C<< $handle->{rbuf} >> member directly. Note that you
173must not enlarge or modify the read buffer, you can only remove data at
174the beginning from it.
141 175
142When an EOF condition is detected then AnyEvent::Handle will first try to 176When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 177feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 178calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 179error will be raised (with C<$!> set to C<EPIPE>).
180
181Note that, unlike requests in the read queue, an C<on_read> callback
182doesn't mean you I<require> some data: if there is an EOF and there
183are outstanding read requests then an error will be flagged. With an
184C<on_read> callback, the C<on_eof> callback will be invoked.
185
186=item on_eof => $cb->($handle)
187
188Set the callback to be called when an end-of-file condition is detected,
189i.e. in the case of a socket, when the other side has closed the
190connection cleanly, and there are no outstanding read requests in the
191queue (if there are read requests, then an EOF counts as an unexpected
192connection close and will be flagged as an error).
193
194For sockets, this just means that the other side has stopped sending data,
195you can still try to write data, and, in fact, one can return from the EOF
196callback and continue writing data, as only the read part has been shut
197down.
198
199If an EOF condition has been detected but no C<on_eof> callback has been
200set, then a fatal error will be raised with C<$!> set to <0>.
146 201
147=item on_drain => $cb->($handle) 202=item on_drain => $cb->($handle)
148 203
149This sets the callback that is called when the write buffer becomes empty 204This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 205(or when the callback is set and the buffer is empty already).
240write data and will install a watcher that will write this data to the 295write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating 296socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time). 297system treats outstanding data at socket close time).
243 298
244This will not work for partial TLS data that could not be encoded 299This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. 300yet. This data will be lost. Calling the C<stoptls> method in time might
301help.
302
303=item peername => $string
304
305A string used to identify the remote site - usually the DNS hostname
306(I<not> IDN!) used to create the connection, rarely the IP address.
307
308Apart from being useful in error messages, this string is also used in TLS
309peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
310verification will be skipped when C<peername> is not specified or
311C<undef>.
246 312
247=item tls => "accept" | "connect" | Net::SSLeay::SSL object 313=item tls => "accept" | "connect" | Net::SSLeay::SSL object
248 314
249When this parameter is given, it enables TLS (SSL) mode, that means 315When this parameter is given, it enables TLS (SSL) mode, that means
250AnyEvent will start a TLS handshake as soon as the conenction has been 316AnyEvent will start a TLS handshake as soon as the conenction has been
251established and will transparently encrypt/decrypt data afterwards. 317established and will transparently encrypt/decrypt data afterwards.
318
319All TLS protocol errors will be signalled as C<EPROTO>, with an
320appropriate error message.
252 321
253TLS mode requires Net::SSLeay to be installed (it will be loaded 322TLS mode requires Net::SSLeay to be installed (it will be loaded
254automatically when you try to create a TLS handle): this module doesn't 323automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have 324have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself. 325to add the dependency yourself.
260mode. 329mode.
261 330
262You can also provide your own TLS connection object, but you have 331You can also provide your own TLS connection object, but you have
263to make sure that you call either C<Net::SSLeay::set_connect_state> 332to make sure that you call either C<Net::SSLeay::set_connect_state>
264or C<Net::SSLeay::set_accept_state> on it before you pass it to 333or C<Net::SSLeay::set_accept_state> on it before you pass it to
265AnyEvent::Handle. 334AnyEvent::Handle. Also, this module will take ownership of this connection
335object.
336
337At some future point, AnyEvent::Handle might switch to another TLS
338implementation, then the option to use your own session object will go
339away.
340
341B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
342passing in the wrong integer will lead to certain crash. This most often
343happens when one uses a stylish C<< tls => 1 >> and is surprised about the
344segmentation fault.
266 345
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 346See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 347
269=item tls_ctx => $ssl_ctx 348=item tls_ctx => $anyevent_tls
270 349
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 350Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 351(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 352missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
353
354Instead of an object, you can also specify a hash reference with C<< key
355=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
356new TLS context object.
357
358=item on_starttls => $cb->($handle, $success[, $error_message])
359
360This callback will be invoked when the TLS/SSL handshake has finished. If
361C<$success> is true, then the TLS handshake succeeded, otherwise it failed
362(C<on_stoptls> will not be called in this case).
363
364The session in C<< $handle->{tls} >> can still be examined in this
365callback, even when the handshake was not successful.
366
367TLS handshake failures will not cause C<on_error> to be invoked when this
368callback is in effect, instead, the error message will be passed to C<on_starttls>.
369
370Without this callback, handshake failures lead to C<on_error> being
371called, as normal.
372
373Note that you cannot call C<starttls> right again in this callback. If you
374need to do that, start an zero-second timer instead whose callback can
375then call C<< ->starttls >> again.
376
377=item on_stoptls => $cb->($handle)
378
379When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
380set, then it will be invoked after freeing the TLS session. If it is not,
381then a TLS shutdown condition will be treated like a normal EOF condition
382on the handle.
383
384The session in C<< $handle->{tls} >> can still be examined in this
385callback.
386
387This callback will only be called on TLS shutdowns, not when the
388underlying handle signals EOF.
274 389
275=item json => JSON or JSON::XS object 390=item json => JSON or JSON::XS object
276 391
277This is the json coder object used by the C<json> read and write types. 392This is the json coder object used by the C<json> read and write types.
278 393
281texts. 396texts.
282 397
283Note that you are responsible to depend on the JSON module if you want to 398Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself. 399use this functionality, as AnyEvent does not have a dependency itself.
285 400
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
292
293=back 401=back
294 402
295=cut 403=cut
296 404
297sub new { 405sub new {
298 my $class = shift; 406 my $class = shift;
299
300 my $self = bless { @_ }, $class; 407 my $self = bless { @_ }, $class;
301 408
302 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 409 if ($self->{fh}) {
410 $self->_start;
411 return unless $self->{fh}; # could be gone by now
412
413 } elsif ($self->{connect}) {
414 require AnyEvent::Socket;
415
416 $self->{peername} = $self->{connect}[0]
417 unless exists $self->{peername};
418
419 $self->{_skip_drain_rbuf} = 1;
420
421 {
422 Scalar::Util::weaken (my $self = $self);
423
424 $self->{_connect} =
425 AnyEvent::Socket::tcp_connect (
426 $self->{connect}[0],
427 $self->{connect}[1],
428 sub {
429 my ($fh, $host, $port, $retry) = @_;
430
431 if ($fh) {
432 $self->{fh} = $fh;
433
434 delete $self->{_skip_drain_rbuf};
435 $self->_start;
436
437 $self->{on_connect}
438 and $self->{on_connect}($self, $host, $port, sub {
439 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
440 $self->{_skip_drain_rbuf} = 1;
441 &$retry;
442 });
443
444 } else {
445 if ($self->{on_connect_error}) {
446 $self->{on_connect_error}($self, "$!");
447 $self->destroy;
448 } else {
449 $self->fatal ($!, 1);
450 }
451 }
452 },
453 sub {
454 local $self->{fh} = $_[0];
455
456 $self->{on_prepare}->($self)
457 if $self->{on_prepare};
458 }
459 );
460 }
461
462 } else {
463 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
464 }
465
466 $self
467}
468
469sub _start {
470 my ($self) = @_;
303 471
304 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 472 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305
306 if ($self->{tls}) {
307 require Net::SSLeay;
308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309 }
310 473
311 $self->{_activity} = AnyEvent->now; 474 $self->{_activity} = AnyEvent->now;
312 $self->_timeout; 475 $self->_timeout;
313 476
314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 477 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
316 478
479 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
480 if $self->{tls};
481
482 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
483
317 $self->start_read 484 $self->start_read
318 if $self->{on_read}; 485 if $self->{on_read} || @{ $self->{_queue} };
319 486
320 $self 487 $self->_drain_wbuf;
321} 488}
322 489
323sub _shutdown { 490#sub _shutdown {
324 my ($self) = @_; 491# my ($self) = @_;
325 492#
326 delete $self->{_tw}; 493# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
327 delete $self->{_rw}; 494# $self->{_eof} = 1; # tell starttls et. al to stop trying
328 delete $self->{_ww}; 495#
329 delete $self->{fh};
330
331 &_freetls; 496# &_freetls;
332 497#}
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336 498
337sub _error { 499sub _error {
338 my ($self, $errno, $fatal) = @_; 500 my ($self, $errno, $fatal, $message) = @_;
339
340 $self->_shutdown
341 if $fatal;
342 501
343 $! = $errno; 502 $! = $errno;
503 $message ||= "$!";
344 504
345 if ($self->{on_error}) { 505 if ($self->{on_error}) {
346 $self->{on_error}($self, $fatal); 506 $self->{on_error}($self, $fatal, $message);
347 } else { 507 $self->destroy if $fatal;
508 } elsif ($self->{fh}) {
509 $self->destroy;
348 Carp::croak "AnyEvent::Handle uncaught error: $!"; 510 Carp::croak "AnyEvent::Handle uncaught error: $message";
349 } 511 }
350} 512}
351 513
352=item $fh = $handle->fh 514=item $fh = $handle->fh
353 515
390} 552}
391 553
392=item $handle->autocork ($boolean) 554=item $handle->autocork ($boolean)
393 555
394Enables or disables the current autocork behaviour (see C<autocork> 556Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument). 557constructor argument). Changes will only take effect on the next write.
396 558
397=cut 559=cut
560
561sub autocork {
562 $_[0]{autocork} = $_[1];
563}
398 564
399=item $handle->no_delay ($boolean) 565=item $handle->no_delay ($boolean)
400 566
401Enables or disables the C<no_delay> setting (see constructor argument of 567Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details). 568the same name for details).
406sub no_delay { 572sub no_delay {
407 $_[0]{no_delay} = $_[1]; 573 $_[0]{no_delay} = $_[1];
408 574
409 eval { 575 eval {
410 local $SIG{__DIE__}; 576 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 577 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
578 if $_[0]{fh};
412 }; 579 };
580}
581
582=item $handle->on_starttls ($cb)
583
584Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
585
586=cut
587
588sub on_starttls {
589 $_[0]{on_starttls} = $_[1];
590}
591
592=item $handle->on_stoptls ($cb)
593
594Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
595
596=cut
597
598sub on_starttls {
599 $_[0]{on_stoptls} = $_[1];
413} 600}
414 601
415############################################################################# 602#############################################################################
416 603
417=item $handle->timeout ($seconds) 604=item $handle->timeout ($seconds)
430# reset the timeout watcher, as neccessary 617# reset the timeout watcher, as neccessary
431# also check for time-outs 618# also check for time-outs
432sub _timeout { 619sub _timeout {
433 my ($self) = @_; 620 my ($self) = @_;
434 621
435 if ($self->{timeout}) { 622 if ($self->{timeout} && $self->{fh}) {
436 my $NOW = AnyEvent->now; 623 my $NOW = AnyEvent->now;
437 624
438 # when would the timeout trigger? 625 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW; 626 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440 627
443 $self->{_activity} = $NOW; 630 $self->{_activity} = $NOW;
444 631
445 if ($self->{on_timeout}) { 632 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self); 633 $self->{on_timeout}($self);
447 } else { 634 } else {
448 $self->_error (&Errno::ETIMEDOUT); 635 $self->_error (Errno::ETIMEDOUT);
449 } 636 }
450 637
451 # callback could have changed timeout value, optimise 638 # callback could have changed timeout value, optimise
452 return unless $self->{timeout}; 639 return unless $self->{timeout};
453 640
495 my ($self, $cb) = @_; 682 my ($self, $cb) = @_;
496 683
497 $self->{on_drain} = $cb; 684 $self->{on_drain} = $cb;
498 685
499 $cb->($self) 686 $cb->($self)
500 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 687 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
501} 688}
502 689
503=item $handle->push_write ($data) 690=item $handle->push_write ($data)
504 691
505Queues the given scalar to be written. You can push as much data as you 692Queues the given scalar to be written. You can push as much data as you
516 Scalar::Util::weaken $self; 703 Scalar::Util::weaken $self;
517 704
518 my $cb = sub { 705 my $cb = sub {
519 my $len = syswrite $self->{fh}, $self->{wbuf}; 706 my $len = syswrite $self->{fh}, $self->{wbuf};
520 707
521 if ($len >= 0) { 708 if (defined $len) {
522 substr $self->{wbuf}, 0, $len, ""; 709 substr $self->{wbuf}, 0, $len, "";
523 710
524 $self->{_activity} = AnyEvent->now; 711 $self->{_activity} = AnyEvent->now;
525 712
526 $self->{on_drain}($self) 713 $self->{on_drain}($self)
527 if $self->{low_water_mark} >= length $self->{wbuf} 714 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
528 && $self->{on_drain}; 715 && $self->{on_drain};
529 716
530 delete $self->{_ww} unless length $self->{wbuf}; 717 delete $self->{_ww} unless length $self->{wbuf};
531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 718 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 $self->_error ($!, 1); 719 $self->_error ($!, 1);
556 743
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 744 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_); 745 ->($self, @_);
559 } 746 }
560 747
561 if ($self->{filter_w}) { 748 if ($self->{tls}) {
562 $self->{filter_w}($self, \$_[0]); 749 $self->{_tls_wbuf} .= $_[0];
750 &_dotls ($self) if $self->{fh};
563 } else { 751 } else {
564 $self->{wbuf} .= $_[0]; 752 $self->{wbuf} .= $_[0];
565 $self->_drain_wbuf; 753 $self->_drain_wbuf if $self->{fh};
566 } 754 }
567} 755}
568 756
569=item $handle->push_write (type => @args) 757=item $handle->push_write (type => @args)
570 758
584=cut 772=cut
585 773
586register_write_type netstring => sub { 774register_write_type netstring => sub {
587 my ($self, $string) = @_; 775 my ($self, $string) = @_;
588 776
589 sprintf "%d:%s,", (length $string), $string 777 (length $string) . ":$string,"
590}; 778};
591 779
592=item packstring => $format, $data 780=item packstring => $format, $data
593 781
594An octet string prefixed with an encoded length. The encoding C<$format> 782An octet string prefixed with an encoded length. The encoding C<$format>
659 847
660 pack "w/a*", Storable::nfreeze ($ref) 848 pack "w/a*", Storable::nfreeze ($ref)
661}; 849};
662 850
663=back 851=back
852
853=item $handle->push_shutdown
854
855Sometimes you know you want to close the socket after writing your data
856before it was actually written. One way to do that is to replace your
857C<on_drain> handler by a callback that shuts down the socket (and set
858C<low_water_mark> to C<0>). This method is a shorthand for just that, and
859replaces the C<on_drain> callback with:
860
861 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
862
863This simply shuts down the write side and signals an EOF condition to the
864the peer.
865
866You can rely on the normal read queue and C<on_eof> handling
867afterwards. This is the cleanest way to close a connection.
868
869=cut
870
871sub push_shutdown {
872 my ($self) = @_;
873
874 delete $self->{low_water_mark};
875 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
876}
664 877
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 878=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 879
667This function (not method) lets you add your own types to C<push_write>. 880This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code 881Whenever the given C<type> is used, C<push_write> will invoke the code
762=cut 975=cut
763 976
764sub _drain_rbuf { 977sub _drain_rbuf {
765 my ($self) = @_; 978 my ($self) = @_;
766 979
980 # avoid recursion
981 return if exists $self->{_skip_drain_rbuf};
767 local $self->{_in_drain} = 1; 982 local $self->{_skip_drain_rbuf} = 1;
768 983
769 if ( 984 if (
770 defined $self->{rbuf_max} 985 defined $self->{rbuf_max}
771 && $self->{rbuf_max} < length $self->{rbuf} 986 && $self->{rbuf_max} < length $self->{rbuf}
772 ) { 987 ) {
773 $self->_error (&Errno::ENOSPC, 1), return; 988 $self->_error (Errno::ENOSPC, 1), return;
774 } 989 }
775 990
776 while () { 991 while () {
992 # we need to use a separate tls read buffer, as we must not receive data while
993 # we are draining the buffer, and this can only happen with TLS.
994 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
995
777 my $len = length $self->{rbuf}; 996 my $len = length $self->{rbuf};
778 997
779 if (my $cb = shift @{ $self->{_queue} }) { 998 if (my $cb = shift @{ $self->{_queue} }) {
780 unless ($cb->($self)) { 999 unless ($cb->($self)) {
781 if ($self->{_eof}) { 1000 if ($self->{_eof}) {
782 # no progress can be made (not enough data and no data forthcoming) 1001 # no progress can be made (not enough data and no data forthcoming)
783 $self->_error (&Errno::EPIPE, 1), return; 1002 $self->_error (Errno::EPIPE, 1), return;
784 } 1003 }
785 1004
786 unshift @{ $self->{_queue} }, $cb; 1005 unshift @{ $self->{_queue} }, $cb;
787 last; 1006 last;
788 } 1007 }
796 && !@{ $self->{_queue} } # and the queue is still empty 1015 && !@{ $self->{_queue} } # and the queue is still empty
797 && $self->{on_read} # but we still have on_read 1016 && $self->{on_read} # but we still have on_read
798 ) { 1017 ) {
799 # no further data will arrive 1018 # no further data will arrive
800 # so no progress can be made 1019 # so no progress can be made
801 $self->_error (&Errno::EPIPE, 1), return 1020 $self->_error (Errno::EPIPE, 1), return
802 if $self->{_eof}; 1021 if $self->{_eof};
803 1022
804 last; # more data might arrive 1023 last; # more data might arrive
805 } 1024 }
806 } else { 1025 } else {
807 # read side becomes idle 1026 # read side becomes idle
808 delete $self->{_rw}; 1027 delete $self->{_rw} unless $self->{tls};
809 last; 1028 last;
810 } 1029 }
811 } 1030 }
812 1031
813 if ($self->{_eof}) { 1032 if ($self->{_eof}) {
814 if ($self->{on_eof}) { 1033 if ($self->{on_eof}) {
815 $self->{on_eof}($self) 1034 $self->{on_eof}($self)
816 } else { 1035 } else {
817 $self->_error (0, 1); 1036 $self->_error (0, 1, "Unexpected end-of-file");
818 } 1037 }
819 } 1038 }
820 1039
821 # may need to restart read watcher 1040 # may need to restart read watcher
822 unless ($self->{_rw}) { 1041 unless ($self->{_rw}) {
835 1054
836sub on_read { 1055sub on_read {
837 my ($self, $cb) = @_; 1056 my ($self, $cb) = @_;
838 1057
839 $self->{on_read} = $cb; 1058 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1059 $self->_drain_rbuf if $cb;
841} 1060}
842 1061
843=item $handle->rbuf 1062=item $handle->rbuf
844 1063
845Returns the read buffer (as a modifiable lvalue). 1064Returns the read buffer (as a modifiable lvalue).
846 1065
847You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1066You can access the read buffer directly as the C<< ->{rbuf} >>
848you want. 1067member, if you want. However, the only operation allowed on the
1068read buffer (apart from looking at it) is removing data from its
1069beginning. Otherwise modifying or appending to it is not allowed and will
1070lead to hard-to-track-down bugs.
849 1071
850NOTE: The read buffer should only be used or modified if the C<on_read>, 1072NOTE: The read buffer should only be used or modified if the C<on_read>,
851C<push_read> or C<unshift_read> methods are used. The other read methods 1073C<push_read> or C<unshift_read> methods are used. The other read methods
852automatically manage the read buffer. 1074automatically manage the read buffer.
853 1075
894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1116 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895 ->($self, $cb, @_); 1117 ->($self, $cb, @_);
896 } 1118 }
897 1119
898 push @{ $self->{_queue} }, $cb; 1120 push @{ $self->{_queue} }, $cb;
899 $self->_drain_rbuf unless $self->{_in_drain}; 1121 $self->_drain_rbuf;
900} 1122}
901 1123
902sub unshift_read { 1124sub unshift_read {
903 my $self = shift; 1125 my $self = shift;
904 my $cb = pop; 1126 my $cb = pop;
910 ->($self, $cb, @_); 1132 ->($self, $cb, @_);
911 } 1133 }
912 1134
913 1135
914 unshift @{ $self->{_queue} }, $cb; 1136 unshift @{ $self->{_queue} }, $cb;
915 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
916} 1138}
917 1139
918=item $handle->push_read (type => @args, $cb) 1140=item $handle->push_read (type => @args, $cb)
919 1141
920=item $handle->unshift_read (type => @args, $cb) 1142=item $handle->unshift_read (type => @args, $cb)
1053 return 1; 1275 return 1;
1054 } 1276 }
1055 1277
1056 # reject 1278 # reject
1057 if ($reject && $$rbuf =~ $reject) { 1279 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG); 1280 $self->_error (Errno::EBADMSG);
1059 } 1281 }
1060 1282
1061 # skip 1283 # skip
1062 if ($skip && $$rbuf =~ $skip) { 1284 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], ""; 1285 $data .= substr $$rbuf, 0, $+[0], "";
1079 my ($self, $cb) = @_; 1301 my ($self, $cb) = @_;
1080 1302
1081 sub { 1303 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1304 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) { 1305 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG); 1306 $self->_error (Errno::EBADMSG);
1085 } 1307 }
1086 return; 1308 return;
1087 } 1309 }
1088 1310
1089 my $len = $1; 1311 my $len = $1;
1092 my $string = $_[1]; 1314 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub { 1315 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") { 1316 if ($_[1] eq ",") {
1095 $cb->($_[0], $string); 1317 $cb->($_[0], $string);
1096 } else { 1318 } else {
1097 $self->_error (&Errno::EBADMSG); 1319 $self->_error (Errno::EBADMSG);
1098 } 1320 }
1099 }); 1321 });
1100 }); 1322 });
1101 1323
1102 1 1324 1
1108An octet string prefixed with an encoded length. The encoding C<$format> 1330An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single 1331uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1332integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier). 1333optional C<!>, C<< < >> or C<< > >> modifier).
1112 1334
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1335For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1336EPP uses a prefix of C<N> (4 octtes).
1114 1337
1115Example: read a block of data prefixed by its length in BER-encoded 1338Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient). 1339format (very efficient).
1117 1340
1118 $handle->push_read (packstring => "w", sub { 1341 $handle->push_read (packstring => "w", sub {
1148 } 1371 }
1149}; 1372};
1150 1373
1151=item json => $cb->($handle, $hash_or_arrayref) 1374=item json => $cb->($handle, $hash_or_arrayref)
1152 1375
1153Reads a JSON object or array, decodes it and passes it to the callback. 1376Reads a JSON object or array, decodes it and passes it to the
1377callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 1378
1155If a C<json> object was passed to the constructor, then that will be used 1379If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1380for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157 1381
1158This read type uses the incremental parser available with JSON version 1382This read type uses the incremental parser available with JSON version
1167=cut 1391=cut
1168 1392
1169register_read_type json => sub { 1393register_read_type json => sub {
1170 my ($self, $cb) = @_; 1394 my ($self, $cb) = @_;
1171 1395
1172 require JSON; 1396 my $json = $self->{json} ||=
1397 eval { require JSON::XS; JSON::XS->new->utf8 }
1398 || do { require JSON; JSON->new->utf8 };
1173 1399
1174 my $data; 1400 my $data;
1175 my $rbuf = \$self->{rbuf}; 1401 my $rbuf = \$self->{rbuf};
1176 1402
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub { 1403 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf}); 1404 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1405
1182 if ($ref) { 1406 if ($ref) {
1183 $self->{rbuf} = $json->incr_text; 1407 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = ""; 1408 $json->incr_text = "";
1185 $cb->($self, $ref); 1409 $cb->($self, $ref);
1186 1410
1187 1 1411 1
1412 } elsif ($@) {
1413 # error case
1414 $json->incr_skip;
1415
1416 $self->{rbuf} = $json->incr_text;
1417 $json->incr_text = "";
1418
1419 $self->_error (Errno::EBADMSG);
1420
1421 ()
1188 } else { 1422 } else {
1189 $self->{rbuf} = ""; 1423 $self->{rbuf} = "";
1424
1190 () 1425 ()
1191 } 1426 }
1192 } 1427 }
1193}; 1428};
1194 1429
1226 # read remaining chunk 1461 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub { 1462 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1463 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref); 1464 $cb->($_[0], $ref);
1230 } else { 1465 } else {
1231 $self->_error (&Errno::EBADMSG); 1466 $self->_error (Errno::EBADMSG);
1232 } 1467 }
1233 }); 1468 });
1234 } 1469 }
1235 1470
1236 1 1471 1
1271Note that AnyEvent::Handle will automatically C<start_read> for you when 1506Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it 1507you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor 1508will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue. 1509there are any read requests in the queue.
1275 1510
1511These methods will have no effect when in TLS mode (as TLS doesn't support
1512half-duplex connections).
1513
1276=cut 1514=cut
1277 1515
1278sub stop_read { 1516sub stop_read {
1279 my ($self) = @_; 1517 my ($self) = @_;
1280 1518
1281 delete $self->{_rw}; 1519 delete $self->{_rw} unless $self->{tls};
1282} 1520}
1283 1521
1284sub start_read { 1522sub start_read {
1285 my ($self) = @_; 1523 my ($self) = @_;
1286 1524
1287 unless ($self->{_rw} || $self->{_eof}) { 1525 unless ($self->{_rw} || $self->{_eof}) {
1288 Scalar::Util::weaken $self; 1526 Scalar::Util::weaken $self;
1289 1527
1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1528 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1529 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1530 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 1531
1294 if ($len > 0) { 1532 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now; 1533 $self->{_activity} = AnyEvent->now;
1296 1534
1297 $self->{filter_r} 1535 if ($self->{tls}) {
1298 ? $self->{filter_r}($self, $rbuf) 1536 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1299 : $self->{_in_drain} || $self->_drain_rbuf; 1537
1538 &_dotls ($self);
1539 } else {
1540 $self->_drain_rbuf;
1541 }
1300 1542
1301 } elsif (defined $len) { 1543 } elsif (defined $len) {
1302 delete $self->{_rw}; 1544 delete $self->{_rw};
1303 $self->{_eof} = 1; 1545 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1546 $self->_drain_rbuf;
1305 1547
1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 return $self->_error ($!, 1); 1549 return $self->_error ($!, 1);
1308 } 1550 }
1309 }); 1551 });
1310 } 1552 }
1311} 1553}
1312 1554
1555our $ERROR_SYSCALL;
1556our $ERROR_WANT_READ;
1557
1558sub _tls_error {
1559 my ($self, $err) = @_;
1560
1561 return $self->_error ($!, 1)
1562 if $err == Net::SSLeay::ERROR_SYSCALL ();
1563
1564 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1565
1566 # reduce error string to look less scary
1567 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1568
1569 if ($self->{_on_starttls}) {
1570 (delete $self->{_on_starttls})->($self, undef, $err);
1571 &_freetls;
1572 } else {
1573 &_freetls;
1574 $self->_error (Errno::EPROTO, 1, $err);
1575 }
1576}
1577
1578# poll the write BIO and send the data if applicable
1579# also decode read data if possible
1580# this is basiclaly our TLS state machine
1581# more efficient implementations are possible with openssl,
1582# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1583sub _dotls {
1314 my ($self) = @_; 1584 my ($self) = @_;
1315 1585
1316 my $buf; 1586 my $tmp;
1317 1587
1318 if (length $self->{_tls_wbuf}) { 1588 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1589 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1590 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1591 }
1322 }
1323 1592
1593 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1594 return $self->_tls_error ($tmp)
1595 if $tmp != $ERROR_WANT_READ
1596 && ($tmp != $ERROR_SYSCALL || $!);
1597 }
1598
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1599 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) { 1600 unless (length $tmp) {
1326 # let's treat SSL-eof as we treat normal EOF 1601 $self->{_on_starttls}
1327 delete $self->{_rw}; 1602 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1328 $self->{_eof} = 1;
1329 &_freetls; 1603 &_freetls;
1604
1605 if ($self->{on_stoptls}) {
1606 $self->{on_stoptls}($self);
1607 return;
1608 } else {
1609 # let's treat SSL-eof as we treat normal EOF
1610 delete $self->{_rw};
1611 $self->{_eof} = 1;
1612 }
1330 } 1613 }
1331 1614
1332 $self->{rbuf} .= $buf; 1615 $self->{_tls_rbuf} .= $tmp;
1333 $self->_drain_rbuf unless $self->{_in_drain}; 1616 $self->_drain_rbuf;
1334 $self->{tls} or return; # tls session might have gone away in callback 1617 $self->{tls} or return; # tls session might have gone away in callback
1335 } 1618 }
1336 1619
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1620 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1); 1621 return $self->_tls_error ($tmp)
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1622 if $tmp != $ERROR_WANT_READ
1343 return $self->_error (&Errno::EIO, 1); 1623 && ($tmp != $ERROR_SYSCALL || $!);
1344 }
1345 1624
1346 # all others are fine for our purposes
1347 }
1348
1349 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1625 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350 $self->{wbuf} .= $buf; 1626 $self->{wbuf} .= $tmp;
1351 $self->_drain_wbuf; 1627 $self->_drain_wbuf;
1352 } 1628 }
1629
1630 $self->{_on_starttls}
1631 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1632 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1353} 1633}
1354 1634
1355=item $handle->starttls ($tls[, $tls_ctx]) 1635=item $handle->starttls ($tls[, $tls_ctx])
1356 1636
1357Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1637Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358object is created, you can also do that at a later time by calling 1638object is created, you can also do that at a later time by calling
1359C<starttls>. 1639C<starttls>.
1360 1640
1641Starting TLS is currently an asynchronous operation - when you push some
1642write data and then call C<< ->starttls >> then TLS negotiation will start
1643immediately, after which the queued write data is then sent.
1644
1361The first argument is the same as the C<tls> constructor argument (either 1645The first argument is the same as the C<tls> constructor argument (either
1362C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1646C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363 1647
1364The second argument is the optional C<Net::SSLeay::CTX> object that is 1648The second argument is the optional C<AnyEvent::TLS> object that is used
1365used when AnyEvent::Handle has to create its own TLS connection object. 1649when AnyEvent::Handle has to create its own TLS connection object, or
1650a hash reference with C<< key => value >> pairs that will be used to
1651construct a new context.
1366 1652
1367The TLS connection object will end up in C<< $handle->{tls} >> after this 1653The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1368call and can be used or changed to your liking. Note that the handshake 1654context in C<< $handle->{tls_ctx} >> after this call and can be used or
1369might have already started when this function returns. 1655changed to your liking. Note that the handshake might have already started
1656when this function returns.
1370 1657
1371If it an error to start a TLS handshake more than once per 1658Due to bugs in OpenSSL, it might or might not be possible to do multiple
1372AnyEvent::Handle object (this is due to bugs in OpenSSL). 1659handshakes on the same stream. Best do not attempt to use the stream after
1660stopping TLS.
1373 1661
1374=cut 1662=cut
1663
1664our %TLS_CACHE; #TODO not yet documented, should we?
1375 1665
1376sub starttls { 1666sub starttls {
1377 my ($self, $ssl, $ctx) = @_; 1667 my ($self, $tls, $ctx) = @_;
1378 1668
1379 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1669 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1380 if $self->{tls}; 1670 if $self->{tls};
1671
1672 $self->{tls} = $tls;
1673 $self->{tls_ctx} = $ctx if @_ > 2;
1674
1675 return unless $self->{fh};
1676
1677 require Net::SSLeay;
1678
1679 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1680 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1681
1682 $tls = $self->{tls};
1683 $ctx = $self->{tls_ctx};
1684
1685 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1686
1687 if ("HASH" eq ref $ctx) {
1688 require AnyEvent::TLS;
1689
1690 if ($ctx->{cache}) {
1691 my $key = $ctx+0;
1692 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1693 } else {
1694 $ctx = new AnyEvent::TLS %$ctx;
1695 }
1696 }
1381 1697
1382 if ($ssl eq "accept") { 1698 $self->{tls_ctx} = $ctx || TLS_CTX ();
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1699 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1384 Net::SSLeay::set_accept_state ($ssl);
1385 } elsif ($ssl eq "connect") {
1386 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1387 Net::SSLeay::set_connect_state ($ssl);
1388 }
1389
1390 $self->{tls} = $ssl;
1391 1700
1392 # basically, this is deep magic (because SSL_read should have the same issues) 1701 # basically, this is deep magic (because SSL_read should have the same issues)
1393 # but the openssl maintainers basically said: "trust us, it just works". 1702 # but the openssl maintainers basically said: "trust us, it just works".
1394 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1703 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1395 # and mismaintained ssleay-module doesn't even offer them). 1704 # and mismaintained ssleay-module doesn't even offer them).
1396 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1705 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1397 # 1706 #
1398 # in short: this is a mess. 1707 # in short: this is a mess.
1399 # 1708 #
1400 # note that we do not try to kepe the length constant between writes as we are required to do. 1709 # note that we do not try to keep the length constant between writes as we are required to do.
1401 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1710 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1402 # and we drive openssl fully in blocking mode here. 1711 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1712 # have identity issues in that area.
1403 Net::SSLeay::CTX_set_mode ($self->{tls}, 1713# Net::SSLeay::CTX_set_mode ($ssl,
1404 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1714# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1405 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1715# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1716 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1406 1717
1407 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1718 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1408 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1719 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1409 1720
1410 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1721 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1411 1722
1412 $self->{filter_w} = sub { 1723 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1413 $_[0]{_tls_wbuf} .= ${$_[1]}; 1724 if $self->{on_starttls};
1414 &_dotls;
1415 };
1416 $self->{filter_r} = sub {
1417 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1418 &_dotls;
1419 };
1420 1725
1421 &_dotls; # need to trigger the initial negotiation exchange 1726 &_dotls; # need to trigger the initial handshake
1727 $self->start_read; # make sure we actually do read
1422} 1728}
1423 1729
1424=item $handle->stoptls 1730=item $handle->stoptls
1425 1731
1426Shuts down the SSL connection - this makes a proper EOF handshake by 1732Shuts down the SSL connection - this makes a proper EOF handshake by
1427sending a close notify to the other side, but since OpenSSL doesn't 1733sending a close notify to the other side, but since OpenSSL doesn't
1428support non-blocking shut downs, it is not possible to re-use the stream 1734support non-blocking shut downs, it is not guarenteed that you can re-use
1429afterwards. 1735the stream afterwards.
1430 1736
1431=cut 1737=cut
1432 1738
1433sub stoptls { 1739sub stoptls {
1434 my ($self) = @_; 1740 my ($self) = @_;
1435 1741
1436 if ($self->{tls}) { 1742 if ($self->{tls}) {
1437 Net::SSLeay::shutdown $self->{tls}; 1743 Net::SSLeay::shutdown ($self->{tls});
1438 1744
1439 &_dotls; 1745 &_dotls;
1440 1746
1441 # we don't give a shit. no, we do, but we can't. no... 1747# # we don't give a shit. no, we do, but we can't. no...#d#
1442 # we, we... have to use openssl :/ 1748# # we, we... have to use openssl :/#d#
1443 &_freetls; 1749# &_freetls;#d#
1444 } 1750 }
1445} 1751}
1446 1752
1447sub _freetls { 1753sub _freetls {
1448 my ($self) = @_; 1754 my ($self) = @_;
1449 1755
1450 return unless $self->{tls}; 1756 return unless $self->{tls};
1451 1757
1452 Net::SSLeay::free (delete $self->{tls}); 1758 $self->{tls_ctx}->_put_session (delete $self->{tls})
1759 if ref $self->{tls};
1453 1760
1454 delete @$self{qw(_rbio filter_w _wbio filter_r)}; 1761 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1455} 1762}
1456 1763
1457sub DESTROY { 1764sub DESTROY {
1458 my $self = shift; 1765 my ($self) = @_;
1459 1766
1460 &_freetls; 1767 &_freetls;
1461 1768
1462 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1769 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1463 1770
1464 if ($linger && length $self->{wbuf}) { 1771 if ($linger && length $self->{wbuf} && $self->{fh}) {
1465 my $fh = delete $self->{fh}; 1772 my $fh = delete $self->{fh};
1466 my $wbuf = delete $self->{wbuf}; 1773 my $wbuf = delete $self->{wbuf};
1467 1774
1468 my @linger; 1775 my @linger;
1469 1776
1480 @linger = (); 1787 @linger = ();
1481 }); 1788 });
1482 } 1789 }
1483} 1790}
1484 1791
1792=item $handle->destroy
1793
1794Shuts down the handle object as much as possible - this call ensures that
1795no further callbacks will be invoked and as many resources as possible
1796will be freed. You must not call any methods on the object afterwards.
1797
1798Normally, you can just "forget" any references to an AnyEvent::Handle
1799object and it will simply shut down. This works in fatal error and EOF
1800callbacks, as well as code outside. It does I<NOT> work in a read or write
1801callback, so when you want to destroy the AnyEvent::Handle object from
1802within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1803that case.
1804
1805Destroying the handle object in this way has the advantage that callbacks
1806will be removed as well, so if those are the only reference holders (as
1807is common), then one doesn't need to do anything special to break any
1808reference cycles.
1809
1810The handle might still linger in the background and write out remaining
1811data, as specified by the C<linger> option, however.
1812
1813=cut
1814
1815sub destroy {
1816 my ($self) = @_;
1817
1818 $self->DESTROY;
1819 %$self = ();
1820}
1821
1485=item AnyEvent::Handle::TLS_CTX 1822=item AnyEvent::Handle::TLS_CTX
1486 1823
1487This function creates and returns the Net::SSLeay::CTX object used by 1824This function creates and returns the AnyEvent::TLS object used by default
1488default for TLS mode. 1825for TLS mode.
1489 1826
1490The context is created like this: 1827The context is created by calling L<AnyEvent::TLS> without any arguments.
1491
1492 Net::SSLeay::load_error_strings;
1493 Net::SSLeay::SSLeay_add_ssl_algorithms;
1494 Net::SSLeay::randomize;
1495
1496 my $CTX = Net::SSLeay::CTX_new;
1497
1498 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1499 1828
1500=cut 1829=cut
1501 1830
1502our $TLS_CTX; 1831our $TLS_CTX;
1503 1832
1504sub TLS_CTX() { 1833sub TLS_CTX() {
1505 $TLS_CTX || do { 1834 $TLS_CTX ||= do {
1506 require Net::SSLeay; 1835 require AnyEvent::TLS;
1507 1836
1508 Net::SSLeay::load_error_strings (); 1837 new AnyEvent::TLS
1509 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1510 Net::SSLeay::randomize ();
1511
1512 $TLS_CTX = Net::SSLeay::CTX_new ();
1513
1514 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1515
1516 $TLS_CTX
1517 } 1838 }
1518} 1839}
1519 1840
1520=back 1841=back
1842
1843
1844=head1 NONFREQUENTLY ASKED QUESTIONS
1845
1846=over 4
1847
1848=item I C<undef> the AnyEvent::Handle reference inside my callback and
1849still get further invocations!
1850
1851That's because AnyEvent::Handle keeps a reference to itself when handling
1852read or write callbacks.
1853
1854It is only safe to "forget" the reference inside EOF or error callbacks,
1855from within all other callbacks, you need to explicitly call the C<<
1856->destroy >> method.
1857
1858=item I get different callback invocations in TLS mode/Why can't I pause
1859reading?
1860
1861Unlike, say, TCP, TLS connections do not consist of two independent
1862communication channels, one for each direction. Or put differently. The
1863read and write directions are not independent of each other: you cannot
1864write data unless you are also prepared to read, and vice versa.
1865
1866This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1867callback invocations when you are not expecting any read data - the reason
1868is that AnyEvent::Handle always reads in TLS mode.
1869
1870During the connection, you have to make sure that you always have a
1871non-empty read-queue, or an C<on_read> watcher. At the end of the
1872connection (or when you no longer want to use it) you can call the
1873C<destroy> method.
1874
1875=item How do I read data until the other side closes the connection?
1876
1877If you just want to read your data into a perl scalar, the easiest way
1878to achieve this is by setting an C<on_read> callback that does nothing,
1879clearing the C<on_eof> callback and in the C<on_error> callback, the data
1880will be in C<$_[0]{rbuf}>:
1881
1882 $handle->on_read (sub { });
1883 $handle->on_eof (undef);
1884 $handle->on_error (sub {
1885 my $data = delete $_[0]{rbuf};
1886 });
1887
1888The reason to use C<on_error> is that TCP connections, due to latencies
1889and packets loss, might get closed quite violently with an error, when in
1890fact, all data has been received.
1891
1892It is usually better to use acknowledgements when transferring data,
1893to make sure the other side hasn't just died and you got the data
1894intact. This is also one reason why so many internet protocols have an
1895explicit QUIT command.
1896
1897=item I don't want to destroy the handle too early - how do I wait until
1898all data has been written?
1899
1900After writing your last bits of data, set the C<on_drain> callback
1901and destroy the handle in there - with the default setting of
1902C<low_water_mark> this will be called precisely when all data has been
1903written to the socket:
1904
1905 $handle->push_write (...);
1906 $handle->on_drain (sub {
1907 warn "all data submitted to the kernel\n";
1908 undef $handle;
1909 });
1910
1911If you just want to queue some data and then signal EOF to the other side,
1912consider using C<< ->push_shutdown >> instead.
1913
1914=item I want to contact a TLS/SSL server, I don't care about security.
1915
1916If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1917simply connect to it and then create the AnyEvent::Handle with the C<tls>
1918parameter:
1919
1920 tcp_connect $host, $port, sub {
1921 my ($fh) = @_;
1922
1923 my $handle = new AnyEvent::Handle
1924 fh => $fh,
1925 tls => "connect",
1926 on_error => sub { ... };
1927
1928 $handle->push_write (...);
1929 };
1930
1931=item I want to contact a TLS/SSL server, I do care about security.
1932
1933Then you should additionally enable certificate verification, including
1934peername verification, if the protocol you use supports it (see
1935L<AnyEvent::TLS>, C<verify_peername>).
1936
1937E.g. for HTTPS:
1938
1939 tcp_connect $host, $port, sub {
1940 my ($fh) = @_;
1941
1942 my $handle = new AnyEvent::Handle
1943 fh => $fh,
1944 peername => $host,
1945 tls => "connect",
1946 tls_ctx => { verify => 1, verify_peername => "https" },
1947 ...
1948
1949Note that you must specify the hostname you connected to (or whatever
1950"peername" the protocol needs) as the C<peername> argument, otherwise no
1951peername verification will be done.
1952
1953The above will use the system-dependent default set of trusted CA
1954certificates. If you want to check against a specific CA, add the
1955C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1956
1957 tls_ctx => {
1958 verify => 1,
1959 verify_peername => "https",
1960 ca_file => "my-ca-cert.pem",
1961 },
1962
1963=item I want to create a TLS/SSL server, how do I do that?
1964
1965Well, you first need to get a server certificate and key. You have
1966three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1967self-signed certificate (cheap. check the search engine of your choice,
1968there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1969nice program for that purpose).
1970
1971Then create a file with your private key (in PEM format, see
1972L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1973file should then look like this:
1974
1975 -----BEGIN RSA PRIVATE KEY-----
1976 ...header data
1977 ... lots of base64'y-stuff
1978 -----END RSA PRIVATE KEY-----
1979
1980 -----BEGIN CERTIFICATE-----
1981 ... lots of base64'y-stuff
1982 -----END CERTIFICATE-----
1983
1984The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1985specify this file as C<cert_file>:
1986
1987 tcp_server undef, $port, sub {
1988 my ($fh) = @_;
1989
1990 my $handle = new AnyEvent::Handle
1991 fh => $fh,
1992 tls => "accept",
1993 tls_ctx => { cert_file => "my-server-keycert.pem" },
1994 ...
1995
1996When you have intermediate CA certificates that your clients might not
1997know about, just append them to the C<cert_file>.
1998
1999=back
2000
1521 2001
1522=head1 SUBCLASSING AnyEvent::Handle 2002=head1 SUBCLASSING AnyEvent::Handle
1523 2003
1524In many cases, you might want to subclass AnyEvent::Handle. 2004In many cases, you might want to subclass AnyEvent::Handle.
1525 2005

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines