ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.92 by root, Wed Oct 1 08:52:06 2008 UTC vs.
Revision 1.162 by root, Sun Jul 26 00:17:25 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head2 SIGPIPE is not handled by this module
65
66SIGPIPE is not handled by this module, so one of the practical
67requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68'IGNORE'>). At least, this is highly recommend in a networked program: If
69you use AnyEvent::Handle in a filter program (like sort), exiting on
70SIGPIPE is probably the right thing to do.
71
72=head1 METHODS 64=head1 METHODS
73 65
74=over 4 66=over 4
75 67
76=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
77 69
78The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
79 71
80=over 4 72=over 4
81 73
82=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
83 75
84The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
85
86NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
87C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88that mode. 79that mode.
89 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
90=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
91 99
92Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
93i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
94connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
95 105
96For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
97you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
98callback and continue writing data, as only the read part has been shut 108timeout is to be used).
99down.
100 109
101While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
102otherwise you might end up with a closed socket while you are still
103waiting for data.
104 111
105If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
106set, then a fatal error will be raised with C<$!> set to <0>.
107 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
108=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
109 137
110This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
111occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
112connect or a read error. 140connect or a read error.
113 141
114Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
115fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
116(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
117errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
118(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
119 154
120Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
121to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
122when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
123C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 159
125On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
126error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
127 163
128While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
129you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
130C<croak>. 166C<croak>.
131 167
135and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
136callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
137read buffer). 173read buffer).
138 174
139To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
141 179
142When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
143feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
144calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
145error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
146 205
147=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
148 207
149This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
150(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
240write data and will install a watcher that will write this data to the 299write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating 300socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time). 301system treats outstanding data at socket close time).
243 302
244This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
246 316
247=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
248 318
249When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
250AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
251established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
252 325
253TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
254automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
255have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
256to add the dependency yourself. 329to add the dependency yourself.
260mode. 333mode.
261 334
262You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
263to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
264or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
265AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
266 349
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 351
269=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
270 353
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
274 393
275=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
276 395
277This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
278 397
281texts. 400texts.
282 401
283Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
284use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
285 404
286=item filter_r => $cb
287
288=item filter_w => $cb
289
290These exist, but are undocumented at this time. (They are used internally
291by the TLS code).
292
293=back 405=back
294 406
295=cut 407=cut
296 408
297sub new { 409sub new {
298 my $class = shift; 410 my $class = shift;
299
300 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
301 412
302 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
303 476
304 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
305
306 if ($self->{tls}) {
307 require Net::SSLeay;
308 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
309 }
310 478
311 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
312 $self->_timeout; 480 $self->_timeout;
313 481
314 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
315 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
316 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
317 $self->start_read 489 $self->start_read
318 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
319 491
320 $self 492 $self->_drain_wbuf;
321} 493}
322 494
323sub _shutdown { 495#sub _shutdown {
324 my ($self) = @_; 496# my ($self) = @_;
325 497#
326 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
327 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
328 delete $self->{_ww}; 500#
329 delete $self->{fh};
330
331 &_freetls; 501# &_freetls;
332 502#}
333 delete $self->{on_read};
334 delete $self->{_queue};
335}
336 503
337sub _error { 504sub _error {
338 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
339
340 $self->_shutdown
341 if $fatal;
342 506
343 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
344 509
345 if ($self->{on_error}) { 510 if ($self->{on_error}) {
346 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
347 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
348 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
349 } 516 }
350} 517}
351 518
352=item $fh = $handle->fh 519=item $fh = $handle->fh
353 520
390} 557}
391 558
392=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
393 560
394Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
395constructor argument). 562constructor argument). Changes will only take effect on the next write.
396 563
397=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
398 569
399=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
400 571
401Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
402the same name for details). 573the same name for details).
406sub no_delay { 577sub no_delay {
407 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
408 579
409 eval { 580 eval {
410 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
411 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
412 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
413} 605}
414 606
415############################################################################# 607#############################################################################
416 608
417=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
430# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
431# also check for time-outs 623# also check for time-outs
432sub _timeout { 624sub _timeout {
433 my ($self) = @_; 625 my ($self) = @_;
434 626
435 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
436 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
437 629
438 # when would the timeout trigger? 630 # when would the timeout trigger?
439 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
440 632
443 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
444 636
445 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
446 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
447 } else { 639 } else {
448 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
449 } 641 }
450 642
451 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
452 return unless $self->{timeout}; 644 return unless $self->{timeout};
453 645
495 my ($self, $cb) = @_; 687 my ($self, $cb) = @_;
496 688
497 $self->{on_drain} = $cb; 689 $self->{on_drain} = $cb;
498 690
499 $cb->($self) 691 $cb->($self)
500 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 692 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
501} 693}
502 694
503=item $handle->push_write ($data) 695=item $handle->push_write ($data)
504 696
505Queues the given scalar to be written. You can push as much data as you 697Queues the given scalar to be written. You can push as much data as you
516 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
517 709
518 my $cb = sub { 710 my $cb = sub {
519 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
520 712
521 if ($len >= 0) { 713 if (defined $len) {
522 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
523 715
524 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
525 717
526 $self->{on_drain}($self) 718 $self->{on_drain}($self)
527 if $self->{low_water_mark} >= length $self->{wbuf} 719 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
528 && $self->{on_drain}; 720 && $self->{on_drain};
529 721
530 delete $self->{_ww} unless length $self->{wbuf}; 722 delete $self->{_ww} unless length $self->{wbuf};
531 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 723 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
532 $self->_error ($!, 1); 724 $self->_error ($!, 1);
556 748
557 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 749 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
558 ->($self, @_); 750 ->($self, @_);
559 } 751 }
560 752
561 if ($self->{filter_w}) { 753 if ($self->{tls}) {
562 $self->{filter_w}($self, \$_[0]); 754 $self->{_tls_wbuf} .= $_[0];
755 &_dotls ($self) if $self->{fh};
563 } else { 756 } else {
564 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
565 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
566 } 759 }
567} 760}
568 761
569=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
570 763
584=cut 777=cut
585 778
586register_write_type netstring => sub { 779register_write_type netstring => sub {
587 my ($self, $string) = @_; 780 my ($self, $string) = @_;
588 781
589 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
590}; 783};
591 784
592=item packstring => $format, $data 785=item packstring => $format, $data
593 786
594An octet string prefixed with an encoded length. The encoding C<$format> 787An octet string prefixed with an encoded length. The encoding C<$format>
659 852
660 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
661}; 854};
662 855
663=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
664 882
665=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
666 884
667This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
668Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
762=cut 980=cut
763 981
764sub _drain_rbuf { 982sub _drain_rbuf {
765 my ($self) = @_; 983 my ($self) = @_;
766 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
767 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
768 988
769 if ( 989 if (
770 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
771 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
772 ) { 992 ) {
773 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
774 } 994 }
775 995
776 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
1000
777 my $len = length $self->{rbuf}; 1001 my $len = length $self->{rbuf};
778 1002
779 if (my $cb = shift @{ $self->{_queue} }) { 1003 if (my $cb = shift @{ $self->{_queue} }) {
780 unless ($cb->($self)) { 1004 unless ($cb->($self)) {
781 if ($self->{_eof}) { 1005 if ($self->{_eof}) {
782 # no progress can be made (not enough data and no data forthcoming) 1006 # no progress can be made (not enough data and no data forthcoming)
783 $self->_error (&Errno::EPIPE, 1), return; 1007 $self->_error (Errno::EPIPE, 1), return;
784 } 1008 }
785 1009
786 unshift @{ $self->{_queue} }, $cb; 1010 unshift @{ $self->{_queue} }, $cb;
787 last; 1011 last;
788 } 1012 }
796 && !@{ $self->{_queue} } # and the queue is still empty 1020 && !@{ $self->{_queue} } # and the queue is still empty
797 && $self->{on_read} # but we still have on_read 1021 && $self->{on_read} # but we still have on_read
798 ) { 1022 ) {
799 # no further data will arrive 1023 # no further data will arrive
800 # so no progress can be made 1024 # so no progress can be made
801 $self->_error (&Errno::EPIPE, 1), return 1025 $self->_error (Errno::EPIPE, 1), return
802 if $self->{_eof}; 1026 if $self->{_eof};
803 1027
804 last; # more data might arrive 1028 last; # more data might arrive
805 } 1029 }
806 } else { 1030 } else {
807 # read side becomes idle 1031 # read side becomes idle
808 delete $self->{_rw}; 1032 delete $self->{_rw} unless $self->{tls};
809 last; 1033 last;
810 } 1034 }
811 } 1035 }
812 1036
813 if ($self->{_eof}) { 1037 if ($self->{_eof}) {
814 if ($self->{on_eof}) { 1038 if ($self->{on_eof}) {
815 $self->{on_eof}($self) 1039 $self->{on_eof}($self)
816 } else { 1040 } else {
817 $self->_error (0, 1); 1041 $self->_error (0, 1, "Unexpected end-of-file");
818 } 1042 }
819 } 1043 }
820 1044
821 # may need to restart read watcher 1045 # may need to restart read watcher
822 unless ($self->{_rw}) { 1046 unless ($self->{_rw}) {
835 1059
836sub on_read { 1060sub on_read {
837 my ($self, $cb) = @_; 1061 my ($self, $cb) = @_;
838 1062
839 $self->{on_read} = $cb; 1063 $self->{on_read} = $cb;
840 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1064 $self->_drain_rbuf if $cb;
841} 1065}
842 1066
843=item $handle->rbuf 1067=item $handle->rbuf
844 1068
845Returns the read buffer (as a modifiable lvalue). 1069Returns the read buffer (as a modifiable lvalue).
846 1070
847You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1071You can access the read buffer directly as the C<< ->{rbuf} >>
848you want. 1072member, if you want. However, the only operation allowed on the
1073read buffer (apart from looking at it) is removing data from its
1074beginning. Otherwise modifying or appending to it is not allowed and will
1075lead to hard-to-track-down bugs.
849 1076
850NOTE: The read buffer should only be used or modified if the C<on_read>, 1077NOTE: The read buffer should only be used or modified if the C<on_read>,
851C<push_read> or C<unshift_read> methods are used. The other read methods 1078C<push_read> or C<unshift_read> methods are used. The other read methods
852automatically manage the read buffer. 1079automatically manage the read buffer.
853 1080
894 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1121 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
895 ->($self, $cb, @_); 1122 ->($self, $cb, @_);
896 } 1123 }
897 1124
898 push @{ $self->{_queue} }, $cb; 1125 push @{ $self->{_queue} }, $cb;
899 $self->_drain_rbuf unless $self->{_in_drain}; 1126 $self->_drain_rbuf;
900} 1127}
901 1128
902sub unshift_read { 1129sub unshift_read {
903 my $self = shift; 1130 my $self = shift;
904 my $cb = pop; 1131 my $cb = pop;
910 ->($self, $cb, @_); 1137 ->($self, $cb, @_);
911 } 1138 }
912 1139
913 1140
914 unshift @{ $self->{_queue} }, $cb; 1141 unshift @{ $self->{_queue} }, $cb;
915 $self->_drain_rbuf unless $self->{_in_drain}; 1142 $self->_drain_rbuf;
916} 1143}
917 1144
918=item $handle->push_read (type => @args, $cb) 1145=item $handle->push_read (type => @args, $cb)
919 1146
920=item $handle->unshift_read (type => @args, $cb) 1147=item $handle->unshift_read (type => @args, $cb)
1053 return 1; 1280 return 1;
1054 } 1281 }
1055 1282
1056 # reject 1283 # reject
1057 if ($reject && $$rbuf =~ $reject) { 1284 if ($reject && $$rbuf =~ $reject) {
1058 $self->_error (&Errno::EBADMSG); 1285 $self->_error (Errno::EBADMSG);
1059 } 1286 }
1060 1287
1061 # skip 1288 # skip
1062 if ($skip && $$rbuf =~ $skip) { 1289 if ($skip && $$rbuf =~ $skip) {
1063 $data .= substr $$rbuf, 0, $+[0], ""; 1290 $data .= substr $$rbuf, 0, $+[0], "";
1079 my ($self, $cb) = @_; 1306 my ($self, $cb) = @_;
1080 1307
1081 sub { 1308 sub {
1082 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1309 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1083 if ($_[0]{rbuf} =~ /[^0-9]/) { 1310 if ($_[0]{rbuf} =~ /[^0-9]/) {
1084 $self->_error (&Errno::EBADMSG); 1311 $self->_error (Errno::EBADMSG);
1085 } 1312 }
1086 return; 1313 return;
1087 } 1314 }
1088 1315
1089 my $len = $1; 1316 my $len = $1;
1092 my $string = $_[1]; 1319 my $string = $_[1];
1093 $_[0]->unshift_read (chunk => 1, sub { 1320 $_[0]->unshift_read (chunk => 1, sub {
1094 if ($_[1] eq ",") { 1321 if ($_[1] eq ",") {
1095 $cb->($_[0], $string); 1322 $cb->($_[0], $string);
1096 } else { 1323 } else {
1097 $self->_error (&Errno::EBADMSG); 1324 $self->_error (Errno::EBADMSG);
1098 } 1325 }
1099 }); 1326 });
1100 }); 1327 });
1101 1328
1102 1 1329 1
1108An octet string prefixed with an encoded length. The encoding C<$format> 1335An octet string prefixed with an encoded length. The encoding C<$format>
1109uses the same format as a Perl C<pack> format, but must specify a single 1336uses the same format as a Perl C<pack> format, but must specify a single
1110integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1337integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1111optional C<!>, C<< < >> or C<< > >> modifier). 1338optional C<!>, C<< < >> or C<< > >> modifier).
1112 1339
1113DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1340For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1341EPP uses a prefix of C<N> (4 octtes).
1114 1342
1115Example: read a block of data prefixed by its length in BER-encoded 1343Example: read a block of data prefixed by its length in BER-encoded
1116format (very efficient). 1344format (very efficient).
1117 1345
1118 $handle->push_read (packstring => "w", sub { 1346 $handle->push_read (packstring => "w", sub {
1148 } 1376 }
1149}; 1377};
1150 1378
1151=item json => $cb->($handle, $hash_or_arrayref) 1379=item json => $cb->($handle, $hash_or_arrayref)
1152 1380
1153Reads a JSON object or array, decodes it and passes it to the callback. 1381Reads a JSON object or array, decodes it and passes it to the
1382callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1154 1383
1155If a C<json> object was passed to the constructor, then that will be used 1384If a C<json> object was passed to the constructor, then that will be used
1156for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1385for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1157 1386
1158This read type uses the incremental parser available with JSON version 1387This read type uses the incremental parser available with JSON version
1167=cut 1396=cut
1168 1397
1169register_read_type json => sub { 1398register_read_type json => sub {
1170 my ($self, $cb) = @_; 1399 my ($self, $cb) = @_;
1171 1400
1172 require JSON; 1401 my $json = $self->{json} ||=
1402 eval { require JSON::XS; JSON::XS->new->utf8 }
1403 || do { require JSON; JSON->new->utf8 };
1173 1404
1174 my $data; 1405 my $data;
1175 my $rbuf = \$self->{rbuf}; 1406 my $rbuf = \$self->{rbuf};
1176 1407
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178
1179 sub { 1408 sub {
1180 my $ref = $json->incr_parse ($self->{rbuf}); 1409 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1410
1182 if ($ref) { 1411 if ($ref) {
1183 $self->{rbuf} = $json->incr_text; 1412 $self->{rbuf} = $json->incr_text;
1184 $json->incr_text = ""; 1413 $json->incr_text = "";
1185 $cb->($self, $ref); 1414 $cb->($self, $ref);
1186 1415
1187 1 1416 1
1417 } elsif ($@) {
1418 # error case
1419 $json->incr_skip;
1420
1421 $self->{rbuf} = $json->incr_text;
1422 $json->incr_text = "";
1423
1424 $self->_error (Errno::EBADMSG);
1425
1426 ()
1188 } else { 1427 } else {
1189 $self->{rbuf} = ""; 1428 $self->{rbuf} = "";
1429
1190 () 1430 ()
1191 } 1431 }
1192 } 1432 }
1193}; 1433};
1194 1434
1226 # read remaining chunk 1466 # read remaining chunk
1227 $_[0]->unshift_read (chunk => $len, sub { 1467 $_[0]->unshift_read (chunk => $len, sub {
1228 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1468 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1229 $cb->($_[0], $ref); 1469 $cb->($_[0], $ref);
1230 } else { 1470 } else {
1231 $self->_error (&Errno::EBADMSG); 1471 $self->_error (Errno::EBADMSG);
1232 } 1472 }
1233 }); 1473 });
1234 } 1474 }
1235 1475
1236 1 1476 1
1271Note that AnyEvent::Handle will automatically C<start_read> for you when 1511Note that AnyEvent::Handle will automatically C<start_read> for you when
1272you change the C<on_read> callback or push/unshift a read callback, and it 1512you change the C<on_read> callback or push/unshift a read callback, and it
1273will automatically C<stop_read> for you when neither C<on_read> is set nor 1513will automatically C<stop_read> for you when neither C<on_read> is set nor
1274there are any read requests in the queue. 1514there are any read requests in the queue.
1275 1515
1516These methods will have no effect when in TLS mode (as TLS doesn't support
1517half-duplex connections).
1518
1276=cut 1519=cut
1277 1520
1278sub stop_read { 1521sub stop_read {
1279 my ($self) = @_; 1522 my ($self) = @_;
1280 1523
1281 delete $self->{_rw}; 1524 delete $self->{_rw} unless $self->{tls};
1282} 1525}
1283 1526
1284sub start_read { 1527sub start_read {
1285 my ($self) = @_; 1528 my ($self) = @_;
1286 1529
1287 unless ($self->{_rw} || $self->{_eof}) { 1530 unless ($self->{_rw} || $self->{_eof}) {
1288 Scalar::Util::weaken $self; 1531 Scalar::Util::weaken $self;
1289 1532
1290 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1533 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1291 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1534 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1292 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1535 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1293 1536
1294 if ($len > 0) { 1537 if ($len > 0) {
1295 $self->{_activity} = AnyEvent->now; 1538 $self->{_activity} = AnyEvent->now;
1296 1539
1297 $self->{filter_r} 1540 if ($self->{tls}) {
1298 ? $self->{filter_r}($self, $rbuf) 1541 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1299 : $self->{_in_drain} || $self->_drain_rbuf; 1542
1543 &_dotls ($self);
1544 } else {
1545 $self->_drain_rbuf;
1546 }
1300 1547
1301 } elsif (defined $len) { 1548 } elsif (defined $len) {
1302 delete $self->{_rw}; 1549 delete $self->{_rw};
1303 $self->{_eof} = 1; 1550 $self->{_eof} = 1;
1304 $self->_drain_rbuf unless $self->{_in_drain}; 1551 $self->_drain_rbuf;
1305 1552
1306 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1553 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1307 return $self->_error ($!, 1); 1554 return $self->_error ($!, 1);
1308 } 1555 }
1309 }); 1556 });
1310 } 1557 }
1311} 1558}
1312 1559
1560our $ERROR_SYSCALL;
1561our $ERROR_WANT_READ;
1562
1563sub _tls_error {
1564 my ($self, $err) = @_;
1565
1566 return $self->_error ($!, 1)
1567 if $err == Net::SSLeay::ERROR_SYSCALL ();
1568
1569 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1570
1571 # reduce error string to look less scary
1572 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1573
1574 if ($self->{_on_starttls}) {
1575 (delete $self->{_on_starttls})->($self, undef, $err);
1576 &_freetls;
1577 } else {
1578 &_freetls;
1579 $self->_error (Errno::EPROTO, 1, $err);
1580 }
1581}
1582
1583# poll the write BIO and send the data if applicable
1584# also decode read data if possible
1585# this is basiclaly our TLS state machine
1586# more efficient implementations are possible with openssl,
1587# but not with the buggy and incomplete Net::SSLeay.
1313sub _dotls { 1588sub _dotls {
1314 my ($self) = @_; 1589 my ($self) = @_;
1315 1590
1316 my $buf; 1591 my $tmp;
1317 1592
1318 if (length $self->{_tls_wbuf}) { 1593 if (length $self->{_tls_wbuf}) {
1319 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1594 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1320 substr $self->{_tls_wbuf}, 0, $len, ""; 1595 substr $self->{_tls_wbuf}, 0, $tmp, "";
1321 } 1596 }
1322 }
1323 1597
1598 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1599 return $self->_tls_error ($tmp)
1600 if $tmp != $ERROR_WANT_READ
1601 && ($tmp != $ERROR_SYSCALL || $!);
1602 }
1603
1324 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1604 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1325 unless (length $buf) { 1605 unless (length $tmp) {
1326 # let's treat SSL-eof as we treat normal EOF 1606 $self->{_on_starttls}
1327 delete $self->{_rw}; 1607 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1328 $self->{_eof} = 1;
1329 &_freetls; 1608 &_freetls;
1609
1610 if ($self->{on_stoptls}) {
1611 $self->{on_stoptls}($self);
1612 return;
1613 } else {
1614 # let's treat SSL-eof as we treat normal EOF
1615 delete $self->{_rw};
1616 $self->{_eof} = 1;
1617 }
1330 } 1618 }
1331 1619
1332 $self->{rbuf} .= $buf; 1620 $self->{_tls_rbuf} .= $tmp;
1333 $self->_drain_rbuf unless $self->{_in_drain}; 1621 $self->_drain_rbuf;
1334 $self->{tls} or return; # tls session might have gone away in callback 1622 $self->{tls} or return; # tls session might have gone away in callback
1335 } 1623 }
1336 1624
1337 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1625 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1338
1339 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1340 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1341 return $self->_error ($!, 1); 1626 return $self->_tls_error ($tmp)
1342 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1627 if $tmp != $ERROR_WANT_READ
1343 return $self->_error (&Errno::EIO, 1); 1628 && ($tmp != $ERROR_SYSCALL || $!);
1344 }
1345 1629
1346 # all others are fine for our purposes
1347 }
1348
1349 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1630 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1350 $self->{wbuf} .= $buf; 1631 $self->{wbuf} .= $tmp;
1351 $self->_drain_wbuf; 1632 $self->_drain_wbuf;
1352 } 1633 }
1634
1635 $self->{_on_starttls}
1636 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1637 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1353} 1638}
1354 1639
1355=item $handle->starttls ($tls[, $tls_ctx]) 1640=item $handle->starttls ($tls[, $tls_ctx])
1356 1641
1357Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1642Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1358object is created, you can also do that at a later time by calling 1643object is created, you can also do that at a later time by calling
1359C<starttls>. 1644C<starttls>.
1360 1645
1646Starting TLS is currently an asynchronous operation - when you push some
1647write data and then call C<< ->starttls >> then TLS negotiation will start
1648immediately, after which the queued write data is then sent.
1649
1361The first argument is the same as the C<tls> constructor argument (either 1650The first argument is the same as the C<tls> constructor argument (either
1362C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1651C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1363 1652
1364The second argument is the optional C<Net::SSLeay::CTX> object that is 1653The second argument is the optional C<AnyEvent::TLS> object that is used
1365used when AnyEvent::Handle has to create its own TLS connection object. 1654when AnyEvent::Handle has to create its own TLS connection object, or
1655a hash reference with C<< key => value >> pairs that will be used to
1656construct a new context.
1366 1657
1367The TLS connection object will end up in C<< $handle->{tls} >> after this 1658The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1368call and can be used or changed to your liking. Note that the handshake 1659context in C<< $handle->{tls_ctx} >> after this call and can be used or
1369might have already started when this function returns. 1660changed to your liking. Note that the handshake might have already started
1661when this function returns.
1370 1662
1371If it an error to start a TLS handshake more than once per 1663Due to bugs in OpenSSL, it might or might not be possible to do multiple
1372AnyEvent::Handle object (this is due to bugs in OpenSSL). 1664handshakes on the same stream. Best do not attempt to use the stream after
1665stopping TLS.
1373 1666
1374=cut 1667=cut
1668
1669our %TLS_CACHE; #TODO not yet documented, should we?
1375 1670
1376sub starttls { 1671sub starttls {
1377 my ($self, $ssl, $ctx) = @_; 1672 my ($self, $tls, $ctx) = @_;
1378 1673
1379 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object" 1674 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1380 if $self->{tls}; 1675 if $self->{tls};
1676
1677 $self->{tls} = $tls;
1678 $self->{tls_ctx} = $ctx if @_ > 2;
1679
1680 return unless $self->{fh};
1681
1682 require Net::SSLeay;
1683
1684 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1685 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1686
1687 $tls = $self->{tls};
1688 $ctx = $self->{tls_ctx};
1689
1690 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1691
1692 if ("HASH" eq ref $ctx) {
1693 require AnyEvent::TLS;
1694
1695 if ($ctx->{cache}) {
1696 my $key = $ctx+0;
1697 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1698 } else {
1699 $ctx = new AnyEvent::TLS %$ctx;
1700 }
1701 }
1381 1702
1382 if ($ssl eq "accept") { 1703 $self->{tls_ctx} = $ctx || TLS_CTX ();
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1704 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1384 Net::SSLeay::set_accept_state ($ssl);
1385 } elsif ($ssl eq "connect") {
1386 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1387 Net::SSLeay::set_connect_state ($ssl);
1388 }
1389
1390 $self->{tls} = $ssl;
1391 1705
1392 # basically, this is deep magic (because SSL_read should have the same issues) 1706 # basically, this is deep magic (because SSL_read should have the same issues)
1393 # but the openssl maintainers basically said: "trust us, it just works". 1707 # but the openssl maintainers basically said: "trust us, it just works".
1394 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1708 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1395 # and mismaintained ssleay-module doesn't even offer them). 1709 # and mismaintained ssleay-module doesn't even offer them).
1396 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1710 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1397 # 1711 #
1398 # in short: this is a mess. 1712 # in short: this is a mess.
1399 # 1713 #
1400 # note that we do not try to kepe the length constant between writes as we are required to do. 1714 # note that we do not try to keep the length constant between writes as we are required to do.
1401 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1715 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1402 # and we drive openssl fully in blocking mode here. 1716 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1717 # have identity issues in that area.
1403 Net::SSLeay::CTX_set_mode ($self->{tls}, 1718# Net::SSLeay::CTX_set_mode ($ssl,
1404 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1719# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1405 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1720# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1721 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1406 1722
1407 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1723 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1408 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1409 1725
1410 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1726 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1411 1727
1412 $self->{filter_w} = sub { 1728 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1413 $_[0]{_tls_wbuf} .= ${$_[1]}; 1729 if $self->{on_starttls};
1414 &_dotls;
1415 };
1416 $self->{filter_r} = sub {
1417 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1418 &_dotls;
1419 };
1420 1730
1421 &_dotls; # need to trigger the initial negotiation exchange 1731 &_dotls; # need to trigger the initial handshake
1732 $self->start_read; # make sure we actually do read
1422} 1733}
1423 1734
1424=item $handle->stoptls 1735=item $handle->stoptls
1425 1736
1426Shuts down the SSL connection - this makes a proper EOF handshake by 1737Shuts down the SSL connection - this makes a proper EOF handshake by
1427sending a close notify to the other side, but since OpenSSL doesn't 1738sending a close notify to the other side, but since OpenSSL doesn't
1428support non-blocking shut downs, it is not possible to re-use the stream 1739support non-blocking shut downs, it is not guarenteed that you can re-use
1429afterwards. 1740the stream afterwards.
1430 1741
1431=cut 1742=cut
1432 1743
1433sub stoptls { 1744sub stoptls {
1434 my ($self) = @_; 1745 my ($self) = @_;
1435 1746
1436 if ($self->{tls}) { 1747 if ($self->{tls}) {
1437 Net::SSLeay::shutdown $self->{tls}; 1748 Net::SSLeay::shutdown ($self->{tls});
1438 1749
1439 &_dotls; 1750 &_dotls;
1440 1751
1441 # we don't give a shit. no, we do, but we can't. no... 1752# # we don't give a shit. no, we do, but we can't. no...#d#
1442 # we, we... have to use openssl :/ 1753# # we, we... have to use openssl :/#d#
1443 &_freetls; 1754# &_freetls;#d#
1444 } 1755 }
1445} 1756}
1446 1757
1447sub _freetls { 1758sub _freetls {
1448 my ($self) = @_; 1759 my ($self) = @_;
1449 1760
1450 return unless $self->{tls}; 1761 return unless $self->{tls};
1451 1762
1452 Net::SSLeay::free (delete $self->{tls}); 1763 $self->{tls_ctx}->_put_session (delete $self->{tls})
1764 if ref $self->{tls};
1453 1765
1454 delete @$self{qw(_rbio filter_w _wbio filter_r)}; 1766 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1455} 1767}
1456 1768
1457sub DESTROY { 1769sub DESTROY {
1458 my $self = shift; 1770 my ($self) = @_;
1459 1771
1460 &_freetls; 1772 &_freetls;
1461 1773
1462 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1774 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1463 1775
1464 if ($linger && length $self->{wbuf}) { 1776 if ($linger && length $self->{wbuf} && $self->{fh}) {
1465 my $fh = delete $self->{fh}; 1777 my $fh = delete $self->{fh};
1466 my $wbuf = delete $self->{wbuf}; 1778 my $wbuf = delete $self->{wbuf};
1467 1779
1468 my @linger; 1780 my @linger;
1469 1781
1480 @linger = (); 1792 @linger = ();
1481 }); 1793 });
1482 } 1794 }
1483} 1795}
1484 1796
1797=item $handle->destroy
1798
1799Shuts down the handle object as much as possible - this call ensures that
1800no further callbacks will be invoked and as many resources as possible
1801will be freed. You must not call any methods on the object afterwards.
1802
1803Normally, you can just "forget" any references to an AnyEvent::Handle
1804object and it will simply shut down. This works in fatal error and EOF
1805callbacks, as well as code outside. It does I<NOT> work in a read or write
1806callback, so when you want to destroy the AnyEvent::Handle object from
1807within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1808that case.
1809
1810Destroying the handle object in this way has the advantage that callbacks
1811will be removed as well, so if those are the only reference holders (as
1812is common), then one doesn't need to do anything special to break any
1813reference cycles.
1814
1815The handle might still linger in the background and write out remaining
1816data, as specified by the C<linger> option, however.
1817
1818=cut
1819
1820sub destroy {
1821 my ($self) = @_;
1822
1823 $self->DESTROY;
1824 %$self = ();
1825}
1826
1485=item AnyEvent::Handle::TLS_CTX 1827=item AnyEvent::Handle::TLS_CTX
1486 1828
1487This function creates and returns the Net::SSLeay::CTX object used by 1829This function creates and returns the AnyEvent::TLS object used by default
1488default for TLS mode. 1830for TLS mode.
1489 1831
1490The context is created like this: 1832The context is created by calling L<AnyEvent::TLS> without any arguments.
1491
1492 Net::SSLeay::load_error_strings;
1493 Net::SSLeay::SSLeay_add_ssl_algorithms;
1494 Net::SSLeay::randomize;
1495
1496 my $CTX = Net::SSLeay::CTX_new;
1497
1498 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1499 1833
1500=cut 1834=cut
1501 1835
1502our $TLS_CTX; 1836our $TLS_CTX;
1503 1837
1504sub TLS_CTX() { 1838sub TLS_CTX() {
1505 $TLS_CTX || do { 1839 $TLS_CTX ||= do {
1506 require Net::SSLeay; 1840 require AnyEvent::TLS;
1507 1841
1508 Net::SSLeay::load_error_strings (); 1842 new AnyEvent::TLS
1509 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1510 Net::SSLeay::randomize ();
1511
1512 $TLS_CTX = Net::SSLeay::CTX_new ();
1513
1514 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1515
1516 $TLS_CTX
1517 } 1843 }
1518} 1844}
1519 1845
1520=back 1846=back
1847
1848
1849=head1 NONFREQUENTLY ASKED QUESTIONS
1850
1851=over 4
1852
1853=item I C<undef> the AnyEvent::Handle reference inside my callback and
1854still get further invocations!
1855
1856That's because AnyEvent::Handle keeps a reference to itself when handling
1857read or write callbacks.
1858
1859It is only safe to "forget" the reference inside EOF or error callbacks,
1860from within all other callbacks, you need to explicitly call the C<<
1861->destroy >> method.
1862
1863=item I get different callback invocations in TLS mode/Why can't I pause
1864reading?
1865
1866Unlike, say, TCP, TLS connections do not consist of two independent
1867communication channels, one for each direction. Or put differently. The
1868read and write directions are not independent of each other: you cannot
1869write data unless you are also prepared to read, and vice versa.
1870
1871This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1872callback invocations when you are not expecting any read data - the reason
1873is that AnyEvent::Handle always reads in TLS mode.
1874
1875During the connection, you have to make sure that you always have a
1876non-empty read-queue, or an C<on_read> watcher. At the end of the
1877connection (or when you no longer want to use it) you can call the
1878C<destroy> method.
1879
1880=item How do I read data until the other side closes the connection?
1881
1882If you just want to read your data into a perl scalar, the easiest way
1883to achieve this is by setting an C<on_read> callback that does nothing,
1884clearing the C<on_eof> callback and in the C<on_error> callback, the data
1885will be in C<$_[0]{rbuf}>:
1886
1887 $handle->on_read (sub { });
1888 $handle->on_eof (undef);
1889 $handle->on_error (sub {
1890 my $data = delete $_[0]{rbuf};
1891 });
1892
1893The reason to use C<on_error> is that TCP connections, due to latencies
1894and packets loss, might get closed quite violently with an error, when in
1895fact, all data has been received.
1896
1897It is usually better to use acknowledgements when transferring data,
1898to make sure the other side hasn't just died and you got the data
1899intact. This is also one reason why so many internet protocols have an
1900explicit QUIT command.
1901
1902=item I don't want to destroy the handle too early - how do I wait until
1903all data has been written?
1904
1905After writing your last bits of data, set the C<on_drain> callback
1906and destroy the handle in there - with the default setting of
1907C<low_water_mark> this will be called precisely when all data has been
1908written to the socket:
1909
1910 $handle->push_write (...);
1911 $handle->on_drain (sub {
1912 warn "all data submitted to the kernel\n";
1913 undef $handle;
1914 });
1915
1916If you just want to queue some data and then signal EOF to the other side,
1917consider using C<< ->push_shutdown >> instead.
1918
1919=item I want to contact a TLS/SSL server, I don't care about security.
1920
1921If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1922simply connect to it and then create the AnyEvent::Handle with the C<tls>
1923parameter:
1924
1925 tcp_connect $host, $port, sub {
1926 my ($fh) = @_;
1927
1928 my $handle = new AnyEvent::Handle
1929 fh => $fh,
1930 tls => "connect",
1931 on_error => sub { ... };
1932
1933 $handle->push_write (...);
1934 };
1935
1936=item I want to contact a TLS/SSL server, I do care about security.
1937
1938Then you should additionally enable certificate verification, including
1939peername verification, if the protocol you use supports it (see
1940L<AnyEvent::TLS>, C<verify_peername>).
1941
1942E.g. for HTTPS:
1943
1944 tcp_connect $host, $port, sub {
1945 my ($fh) = @_;
1946
1947 my $handle = new AnyEvent::Handle
1948 fh => $fh,
1949 peername => $host,
1950 tls => "connect",
1951 tls_ctx => { verify => 1, verify_peername => "https" },
1952 ...
1953
1954Note that you must specify the hostname you connected to (or whatever
1955"peername" the protocol needs) as the C<peername> argument, otherwise no
1956peername verification will be done.
1957
1958The above will use the system-dependent default set of trusted CA
1959certificates. If you want to check against a specific CA, add the
1960C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1961
1962 tls_ctx => {
1963 verify => 1,
1964 verify_peername => "https",
1965 ca_file => "my-ca-cert.pem",
1966 },
1967
1968=item I want to create a TLS/SSL server, how do I do that?
1969
1970Well, you first need to get a server certificate and key. You have
1971three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1972self-signed certificate (cheap. check the search engine of your choice,
1973there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1974nice program for that purpose).
1975
1976Then create a file with your private key (in PEM format, see
1977L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1978file should then look like this:
1979
1980 -----BEGIN RSA PRIVATE KEY-----
1981 ...header data
1982 ... lots of base64'y-stuff
1983 -----END RSA PRIVATE KEY-----
1984
1985 -----BEGIN CERTIFICATE-----
1986 ... lots of base64'y-stuff
1987 -----END CERTIFICATE-----
1988
1989The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1990specify this file as C<cert_file>:
1991
1992 tcp_server undef, $port, sub {
1993 my ($fh) = @_;
1994
1995 my $handle = new AnyEvent::Handle
1996 fh => $fh,
1997 tls => "accept",
1998 tls_ctx => { cert_file => "my-server-keycert.pem" },
1999 ...
2000
2001When you have intermediate CA certificates that your clients might not
2002know about, just append them to the C<cert_file>.
2003
2004=back
2005
1521 2006
1522=head1 SUBCLASSING AnyEvent::Handle 2007=head1 SUBCLASSING AnyEvent::Handle
1523 2008
1524In many cases, you might want to subclass AnyEvent::Handle. 2009In many cases, you might want to subclass AnyEvent::Handle.
1525 2010

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines