ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.47
Committed: Thu May 29 00:25:28 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.46: +0 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = '0.04';
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called on EOF.
81
82 While not mandatory, it is highly recommended to set an eof callback,
83 otherwise you might end up with a closed socket while you are still
84 waiting for data.
85
86 =item on_error => $cb->($handle)
87
88 This is the fatal error callback, that is called when, well, a fatal error
89 occurs, such as not being able to resolve the hostname, failure to connect
90 or a read error.
91
92 The object will not be in a usable state when this callback has been
93 called.
94
95 On callback entrance, the value of C<$!> contains the operating system
96 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
97
98 The callback should throw an exception. If it returns, then
99 AnyEvent::Handle will C<croak> for you.
100
101 While not mandatory, it is I<highly> recommended to set this callback, as
102 you will not be notified of errors otherwise. The default simply calls
103 die.
104
105 =item on_read => $cb->($handle)
106
107 This sets the default read callback, which is called when data arrives
108 and no read request is in the queue.
109
110 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 method or access the C<$handle->{rbuf}> member directly.
112
113 When an EOF condition is detected then AnyEvent::Handle will first try to
114 feed all the remaining data to the queued callbacks and C<on_read> before
115 calling the C<on_eof> callback. If no progress can be made, then a fatal
116 error will be raised (with C<$!> set to C<EPIPE>).
117
118 =item on_drain => $cb->($handle)
119
120 This sets the callback that is called when the write buffer becomes empty
121 (or when the callback is set and the buffer is empty already).
122
123 To append to the write buffer, use the C<< ->push_write >> method.
124
125 =item timeout => $fractional_seconds
126
127 If non-zero, then this enables an "inactivity" timeout: whenever this many
128 seconds pass without a successful read or write on the underlying file
129 handle, the C<on_timeout> callback will be invoked (and if that one is
130 missing, an C<ETIMEDOUT> error will be raised).
131
132 Note that timeout processing is also active when you currently do not have
133 any outstanding read or write requests: If you plan to keep the connection
134 idle then you should disable the timout temporarily or ignore the timeout
135 in the C<on_timeout> callback.
136
137 Zero (the default) disables this timeout.
138
139 =item on_timeout => $cb->($handle)
140
141 Called whenever the inactivity timeout passes. If you return from this
142 callback, then the timeout will be reset as if some activity had happened,
143 so this condition is not fatal in any way.
144
145 =item rbuf_max => <bytes>
146
147 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148 when the read buffer ever (strictly) exceeds this size. This is useful to
149 avoid denial-of-service attacks.
150
151 For example, a server accepting connections from untrusted sources should
152 be configured to accept only so-and-so much data that it cannot act on
153 (for example, when expecting a line, an attacker could send an unlimited
154 amount of data without a callback ever being called as long as the line
155 isn't finished).
156
157 =item read_size => <bytes>
158
159 The default read block size (the amount of bytes this module will try to read
160 during each (loop iteration). Default: C<8192>.
161
162 =item low_water_mark => <bytes>
163
164 Sets the amount of bytes (default: C<0>) that make up an "empty" write
165 buffer: If the write reaches this size or gets even samller it is
166 considered empty.
167
168 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
169
170 When this parameter is given, it enables TLS (SSL) mode, that means it
171 will start making tls handshake and will transparently encrypt/decrypt
172 data.
173
174 TLS mode requires Net::SSLeay to be installed (it will be loaded
175 automatically when you try to create a TLS handle).
176
177 For the TLS server side, use C<accept>, and for the TLS client side of a
178 connection, use C<connect> mode.
179
180 You can also provide your own TLS connection object, but you have
181 to make sure that you call either C<Net::SSLeay::set_connect_state>
182 or C<Net::SSLeay::set_accept_state> on it before you pass it to
183 AnyEvent::Handle.
184
185 See the C<starttls> method if you need to start TLs negotiation later.
186
187 =item tls_ctx => $ssl_ctx
188
189 Use the given Net::SSLeay::CTX object to create the new TLS connection
190 (unless a connection object was specified directly). If this parameter is
191 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192
193 =item json => JSON or JSON::XS object
194
195 This is the json coder object used by the C<json> read and write types.
196
197 If you don't supply it, then AnyEvent::Handle will create and use a
198 suitable one, which will write and expect UTF-8 encoded JSON texts.
199
200 Note that you are responsible to depend on the JSON module if you want to
201 use this functionality, as AnyEvent does not have a dependency itself.
202
203 =item filter_r => $cb
204
205 =item filter_w => $cb
206
207 These exist, but are undocumented at this time.
208
209 =back
210
211 =cut
212
213 sub new {
214 my $class = shift;
215
216 my $self = bless { @_ }, $class;
217
218 $self->{fh} or Carp::croak "mandatory argument fh is missing";
219
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221
222 if ($self->{tls}) {
223 require Net::SSLeay;
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
225 }
226
227 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228 # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229 # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231
232 $self->{_activity} = AnyEvent->now;
233 $self->_timeout;
234
235 $self->start_read;
236
237 $self
238 }
239
240 sub _shutdown {
241 my ($self) = @_;
242
243 delete $self->{_tw};
244 delete $self->{_rw};
245 delete $self->{_ww};
246 delete $self->{fh};
247 }
248
249 sub error {
250 my ($self) = @_;
251
252 {
253 local $!;
254 $self->_shutdown;
255 }
256
257 $self->{on_error}($self)
258 if $self->{on_error};
259
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
261 }
262
263 =item $fh = $handle->fh
264
265 This method returns the file handle of the L<AnyEvent::Handle> object.
266
267 =cut
268
269 sub fh { $_[0]{fh} }
270
271 =item $handle->on_error ($cb)
272
273 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
274
275 =cut
276
277 sub on_error {
278 $_[0]{on_error} = $_[1];
279 }
280
281 =item $handle->on_eof ($cb)
282
283 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
284
285 =cut
286
287 sub on_eof {
288 $_[0]{on_eof} = $_[1];
289 }
290
291 =item $handle->on_timeout ($cb)
292
293 Replace the current C<on_timeout> callback, or disables the callback
294 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
295 argument.
296
297 =cut
298
299 sub on_timeout {
300 $_[0]{on_timeout} = $_[1];
301 }
302
303 #############################################################################
304
305 =item $handle->timeout ($seconds)
306
307 Configures (or disables) the inactivity timeout.
308
309 =cut
310
311 sub timeout {
312 my ($self, $timeout) = @_;
313
314 $self->{timeout} = $timeout;
315 $self->_timeout;
316 }
317
318 # reset the timeout watcher, as neccessary
319 # also check for time-outs
320 sub _timeout {
321 my ($self) = @_;
322
323 if ($self->{timeout}) {
324 my $NOW = AnyEvent->now;
325
326 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW;
328
329 # now or in the past already?
330 if ($after <= 0) {
331 $self->{_activity} = $NOW;
332
333 if ($self->{on_timeout}) {
334 $self->{on_timeout}->($self);
335 } else {
336 $! = Errno::ETIMEDOUT;
337 $self->error;
338 }
339
340 # callbakx could have changed timeout value, optimise
341 return unless $self->{timeout};
342
343 # calculate new after
344 $after = $self->{timeout};
345 }
346
347 Scalar::Util::weaken $self;
348
349 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
350 delete $self->{_tw};
351 $self->_timeout;
352 });
353 } else {
354 delete $self->{_tw};
355 }
356 }
357
358 #############################################################################
359
360 =back
361
362 =head2 WRITE QUEUE
363
364 AnyEvent::Handle manages two queues per handle, one for writing and one
365 for reading.
366
367 The write queue is very simple: you can add data to its end, and
368 AnyEvent::Handle will automatically try to get rid of it for you.
369
370 When data could be written and the write buffer is shorter then the low
371 water mark, the C<on_drain> callback will be invoked.
372
373 =over 4
374
375 =item $handle->on_drain ($cb)
376
377 Sets the C<on_drain> callback or clears it (see the description of
378 C<on_drain> in the constructor).
379
380 =cut
381
382 sub on_drain {
383 my ($self, $cb) = @_;
384
385 $self->{on_drain} = $cb;
386
387 $cb->($self)
388 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
389 }
390
391 =item $handle->push_write ($data)
392
393 Queues the given scalar to be written. You can push as much data as you
394 want (only limited by the available memory), as C<AnyEvent::Handle>
395 buffers it independently of the kernel.
396
397 =cut
398
399 sub _drain_wbuf {
400 my ($self) = @_;
401
402 if (!$self->{_ww} && length $self->{wbuf}) {
403
404 Scalar::Util::weaken $self;
405
406 my $cb = sub {
407 my $len = syswrite $self->{fh}, $self->{wbuf};
408
409 if ($len >= 0) {
410 substr $self->{wbuf}, 0, $len, "";
411
412 $self->{_activity} = AnyEvent->now;
413
414 $self->{on_drain}($self)
415 if $self->{low_water_mark} >= length $self->{wbuf}
416 && $self->{on_drain};
417
418 delete $self->{_ww} unless length $self->{wbuf};
419 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
420 $self->error;
421 }
422 };
423
424 # try to write data immediately
425 $cb->();
426
427 # if still data left in wbuf, we need to poll
428 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
429 if length $self->{wbuf};
430 };
431 }
432
433 our %WH;
434
435 sub register_write_type($$) {
436 $WH{$_[0]} = $_[1];
437 }
438
439 sub push_write {
440 my $self = shift;
441
442 if (@_ > 1) {
443 my $type = shift;
444
445 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
446 ->($self, @_);
447 }
448
449 if ($self->{filter_w}) {
450 $self->{filter_w}->($self, \$_[0]);
451 } else {
452 $self->{wbuf} .= $_[0];
453 $self->_drain_wbuf;
454 }
455 }
456
457 =item $handle->push_write (type => @args)
458
459 =item $handle->unshift_write (type => @args)
460
461 Instead of formatting your data yourself, you can also let this module do
462 the job by specifying a type and type-specific arguments.
463
464 Predefined types are (if you have ideas for additional types, feel free to
465 drop by and tell us):
466
467 =over 4
468
469 =item netstring => $string
470
471 Formats the given value as netstring
472 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473
474 =back
475
476 =cut
477
478 register_write_type netstring => sub {
479 my ($self, $string) = @_;
480
481 sprintf "%d:%s,", (length $string), $string
482 };
483
484 =item json => $array_or_hashref
485
486 Encodes the given hash or array reference into a JSON object. Unless you
487 provide your own JSON object, this means it will be encoded to JSON text
488 in UTF-8.
489
490 JSON objects (and arrays) are self-delimiting, so you can write JSON at
491 one end of a handle and read them at the other end without using any
492 additional framing.
493
494 The generated JSON text is guaranteed not to contain any newlines: While
495 this module doesn't need delimiters after or between JSON texts to be
496 able to read them, many other languages depend on that.
497
498 A simple RPC protocol that interoperates easily with others is to send
499 JSON arrays (or objects, although arrays are usually the better choice as
500 they mimic how function argument passing works) and a newline after each
501 JSON text:
502
503 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
504 $handle->push_write ("\012");
505
506 An AnyEvent::Handle receiver would simply use the C<json> read type and
507 rely on the fact that the newline will be skipped as leading whitespace:
508
509 $handle->push_read (json => sub { my $array = $_[1]; ... });
510
511 Other languages could read single lines terminated by a newline and pass
512 this line into their JSON decoder of choice.
513
514 =cut
515
516 register_write_type json => sub {
517 my ($self, $ref) = @_;
518
519 require JSON;
520
521 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref)
523 };
524
525 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526
527 This function (not method) lets you add your own types to C<push_write>.
528 Whenever the given C<type> is used, C<push_write> will invoke the code
529 reference with the handle object and the remaining arguments.
530
531 The code reference is supposed to return a single octet string that will
532 be appended to the write buffer.
533
534 Note that this is a function, and all types registered this way will be
535 global, so try to use unique names.
536
537 =cut
538
539 #############################################################################
540
541 =back
542
543 =head2 READ QUEUE
544
545 AnyEvent::Handle manages two queues per handle, one for writing and one
546 for reading.
547
548 The read queue is more complex than the write queue. It can be used in two
549 ways, the "simple" way, using only C<on_read> and the "complex" way, using
550 a queue.
551
552 In the simple case, you just install an C<on_read> callback and whenever
553 new data arrives, it will be called. You can then remove some data (if
554 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
555 or not.
556
557 In the more complex case, you want to queue multiple callbacks. In this
558 case, AnyEvent::Handle will call the first queued callback each time new
559 data arrives and removes it when it has done its job (see C<push_read>,
560 below).
561
562 This way you can, for example, push three line-reads, followed by reading
563 a chunk of data, and AnyEvent::Handle will execute them in order.
564
565 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
566 the specified number of bytes which give an XML datagram.
567
568 # in the default state, expect some header bytes
569 $handle->on_read (sub {
570 # some data is here, now queue the length-header-read (4 octets)
571 shift->unshift_read_chunk (4, sub {
572 # header arrived, decode
573 my $len = unpack "N", $_[1];
574
575 # now read the payload
576 shift->unshift_read_chunk ($len, sub {
577 my $xml = $_[1];
578 # handle xml
579 });
580 });
581 });
582
583 Example 2: Implement a client for a protocol that replies either with
584 "OK" and another line or "ERROR" for one request, and 64 bytes for the
585 second request. Due tot he availability of a full queue, we can just
586 pipeline sending both requests and manipulate the queue as necessary in
587 the callbacks:
588
589 # request one
590 $handle->push_write ("request 1\015\012");
591
592 # we expect "ERROR" or "OK" as response, so push a line read
593 $handle->push_read_line (sub {
594 # if we got an "OK", we have to _prepend_ another line,
595 # so it will be read before the second request reads its 64 bytes
596 # which are already in the queue when this callback is called
597 # we don't do this in case we got an error
598 if ($_[1] eq "OK") {
599 $_[0]->unshift_read_line (sub {
600 my $response = $_[1];
601 ...
602 });
603 }
604 });
605
606 # request two
607 $handle->push_write ("request 2\015\012");
608
609 # simply read 64 bytes, always
610 $handle->push_read_chunk (64, sub {
611 my $response = $_[1];
612 ...
613 });
614
615 =over 4
616
617 =cut
618
619 sub _drain_rbuf {
620 my ($self) = @_;
621
622 if (
623 defined $self->{rbuf_max}
624 && $self->{rbuf_max} < length $self->{rbuf}
625 ) {
626 $! = &Errno::ENOSPC;
627 $self->error;
628 }
629
630 return if $self->{in_drain};
631 local $self->{in_drain} = 1;
632
633 while (my $len = length $self->{rbuf}) {
634 no strict 'refs';
635 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) {
637 if ($self->{_eof}) {
638 # no progress can be made (not enough data and no data forthcoming)
639 $! = &Errno::EPIPE;
640 $self->error;
641 }
642
643 unshift @{ $self->{_queue} }, $cb;
644 return;
645 }
646 } elsif ($self->{on_read}) {
647 $self->{on_read}($self);
648
649 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data
654 ) {
655 # then no progress can be made
656 $! = &Errno::EPIPE;
657 $self->error;
658 }
659 } else {
660 # read side becomes idle
661 delete $self->{_rw};
662 return;
663 }
664 }
665
666 if ($self->{_eof}) {
667 $self->_shutdown;
668 $self->{on_eof}($self)
669 if $self->{on_eof};
670 }
671 }
672
673 =item $handle->on_read ($cb)
674
675 This replaces the currently set C<on_read> callback, or clears it (when
676 the new callback is C<undef>). See the description of C<on_read> in the
677 constructor.
678
679 =cut
680
681 sub on_read {
682 my ($self, $cb) = @_;
683
684 $self->{on_read} = $cb;
685 }
686
687 =item $handle->rbuf
688
689 Returns the read buffer (as a modifiable lvalue).
690
691 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
692 you want.
693
694 NOTE: The read buffer should only be used or modified if the C<on_read>,
695 C<push_read> or C<unshift_read> methods are used. The other read methods
696 automatically manage the read buffer.
697
698 =cut
699
700 sub rbuf : lvalue {
701 $_[0]{rbuf}
702 }
703
704 =item $handle->push_read ($cb)
705
706 =item $handle->unshift_read ($cb)
707
708 Append the given callback to the end of the queue (C<push_read>) or
709 prepend it (C<unshift_read>).
710
711 The callback is called each time some additional read data arrives.
712
713 It must check whether enough data is in the read buffer already.
714
715 If not enough data is available, it must return the empty list or a false
716 value, in which case it will be called repeatedly until enough data is
717 available (or an error condition is detected).
718
719 If enough data was available, then the callback must remove all data it is
720 interested in (which can be none at all) and return a true value. After returning
721 true, it will be removed from the queue.
722
723 =cut
724
725 our %RH;
726
727 sub register_read_type($$) {
728 $RH{$_[0]} = $_[1];
729 }
730
731 sub push_read {
732 my $self = shift;
733 my $cb = pop;
734
735 if (@_) {
736 my $type = shift;
737
738 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
739 ->($self, $cb, @_);
740 }
741
742 push @{ $self->{_queue} }, $cb;
743 $self->_drain_rbuf;
744 }
745
746 sub unshift_read {
747 my $self = shift;
748 my $cb = pop;
749
750 if (@_) {
751 my $type = shift;
752
753 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
754 ->($self, $cb, @_);
755 }
756
757
758 unshift @{ $self->{_queue} }, $cb;
759 $self->_drain_rbuf;
760 }
761
762 =item $handle->push_read (type => @args, $cb)
763
764 =item $handle->unshift_read (type => @args, $cb)
765
766 Instead of providing a callback that parses the data itself you can chose
767 between a number of predefined parsing formats, for chunks of data, lines
768 etc.
769
770 Predefined types are (if you have ideas for additional types, feel free to
771 drop by and tell us):
772
773 =over 4
774
775 =item chunk => $octets, $cb->($handle, $data)
776
777 Invoke the callback only once C<$octets> bytes have been read. Pass the
778 data read to the callback. The callback will never be called with less
779 data.
780
781 Example: read 2 bytes.
782
783 $handle->push_read (chunk => 2, sub {
784 warn "yay ", unpack "H*", $_[1];
785 });
786
787 =cut
788
789 register_read_type chunk => sub {
790 my ($self, $cb, $len) = @_;
791
792 sub {
793 $len <= length $_[0]{rbuf} or return;
794 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
795 1
796 }
797 };
798
799 # compatibility with older API
800 sub push_read_chunk {
801 $_[0]->push_read (chunk => $_[1], $_[2]);
802 }
803
804 sub unshift_read_chunk {
805 $_[0]->unshift_read (chunk => $_[1], $_[2]);
806 }
807
808 =item line => [$eol, ]$cb->($handle, $line, $eol)
809
810 The callback will be called only once a full line (including the end of
811 line marker, C<$eol>) has been read. This line (excluding the end of line
812 marker) will be passed to the callback as second argument (C<$line>), and
813 the end of line marker as the third argument (C<$eol>).
814
815 The end of line marker, C<$eol>, can be either a string, in which case it
816 will be interpreted as a fixed record end marker, or it can be a regex
817 object (e.g. created by C<qr>), in which case it is interpreted as a
818 regular expression.
819
820 The end of line marker argument C<$eol> is optional, if it is missing (NOT
821 undef), then C<qr|\015?\012|> is used (which is good for most internet
822 protocols).
823
824 Partial lines at the end of the stream will never be returned, as they are
825 not marked by the end of line marker.
826
827 =cut
828
829 register_read_type line => sub {
830 my ($self, $cb, $eol) = @_;
831
832 $eol = qr|(\015?\012)| if @_ < 3;
833 $eol = quotemeta $eol unless ref $eol;
834 $eol = qr|^(.*?)($eol)|s;
835
836 sub {
837 $_[0]{rbuf} =~ s/$eol// or return;
838
839 $cb->($_[0], $1, $2);
840 1
841 }
842 };
843
844 # compatibility with older API
845 sub push_read_line {
846 my $self = shift;
847 $self->push_read (line => @_);
848 }
849
850 sub unshift_read_line {
851 my $self = shift;
852 $self->unshift_read (line => @_);
853 }
854
855 =item netstring => $cb->($handle, $string)
856
857 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
858
859 Throws an error with C<$!> set to EBADMSG on format violations.
860
861 =cut
862
863 register_read_type netstring => sub {
864 my ($self, $cb) = @_;
865
866 sub {
867 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
868 if ($_[0]{rbuf} =~ /[^0-9]/) {
869 $! = &Errno::EBADMSG;
870 $self->error;
871 }
872 return;
873 }
874
875 my $len = $1;
876
877 $self->unshift_read (chunk => $len, sub {
878 my $string = $_[1];
879 $_[0]->unshift_read (chunk => 1, sub {
880 if ($_[1] eq ",") {
881 $cb->($_[0], $string);
882 } else {
883 $! = &Errno::EBADMSG;
884 $self->error;
885 }
886 });
887 });
888
889 1
890 }
891 };
892
893 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
894
895 Makes a regex match against the regex object C<$accept> and returns
896 everything up to and including the match.
897
898 Example: read a single line terminated by '\n'.
899
900 $handle->push_read (regex => qr<\n>, sub { ... });
901
902 If C<$reject> is given and not undef, then it determines when the data is
903 to be rejected: it is matched against the data when the C<$accept> regex
904 does not match and generates an C<EBADMSG> error when it matches. This is
905 useful to quickly reject wrong data (to avoid waiting for a timeout or a
906 receive buffer overflow).
907
908 Example: expect a single decimal number followed by whitespace, reject
909 anything else (not the use of an anchor).
910
911 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
912
913 If C<$skip> is given and not C<undef>, then it will be matched against
914 the receive buffer when neither C<$accept> nor C<$reject> match,
915 and everything preceding and including the match will be accepted
916 unconditionally. This is useful to skip large amounts of data that you
917 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
918 have to start matching from the beginning. This is purely an optimisation
919 and is usually worth only when you expect more than a few kilobytes.
920
921 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
922 expect the header to be very large (it isn't in practise, but...), we use
923 a skip regex to skip initial portions. The skip regex is tricky in that
924 it only accepts something not ending in either \015 or \012, as these are
925 required for the accept regex.
926
927 $handle->push_read (regex =>
928 qr<\015\012\015\012>,
929 undef, # no reject
930 qr<^.*[^\015\012]>,
931 sub { ... });
932
933 =cut
934
935 register_read_type regex => sub {
936 my ($self, $cb, $accept, $reject, $skip) = @_;
937
938 my $data;
939 my $rbuf = \$self->{rbuf};
940
941 sub {
942 # accept
943 if ($$rbuf =~ $accept) {
944 $data .= substr $$rbuf, 0, $+[0], "";
945 $cb->($self, $data);
946 return 1;
947 }
948
949 # reject
950 if ($reject && $$rbuf =~ $reject) {
951 $! = &Errno::EBADMSG;
952 $self->error;
953 }
954
955 # skip
956 if ($skip && $$rbuf =~ $skip) {
957 $data .= substr $$rbuf, 0, $+[0], "";
958 }
959
960 ()
961 }
962 };
963
964 =item json => $cb->($handle, $hash_or_arrayref)
965
966 Reads a JSON object or array, decodes it and passes it to the callback.
967
968 If a C<json> object was passed to the constructor, then that will be used
969 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
970
971 This read type uses the incremental parser available with JSON version
972 2.09 (and JSON::XS version 2.2) and above. You have to provide a
973 dependency on your own: this module will load the JSON module, but
974 AnyEvent does not depend on it itself.
975
976 Since JSON texts are fully self-delimiting, the C<json> read and write
977 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
978 the C<json> write type description, above, for an actual example.
979
980 =cut
981
982 register_read_type json => sub {
983 my ($self, $cb, $accept, $reject, $skip) = @_;
984
985 require JSON;
986
987 my $data;
988 my $rbuf = \$self->{rbuf};
989
990 my $json = $self->{json} ||= JSON->new->utf8;
991
992 sub {
993 my $ref = $json->incr_parse ($self->{rbuf});
994
995 if ($ref) {
996 $self->{rbuf} = $json->incr_text;
997 $json->incr_text = "";
998 $cb->($self, $ref);
999
1000 1
1001 } else {
1002 $self->{rbuf} = "";
1003 ()
1004 }
1005 }
1006 };
1007
1008 =back
1009
1010 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1011
1012 This function (not method) lets you add your own types to C<push_read>.
1013
1014 Whenever the given C<type> is used, C<push_read> will invoke the code
1015 reference with the handle object, the callback and the remaining
1016 arguments.
1017
1018 The code reference is supposed to return a callback (usually a closure)
1019 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1020
1021 It should invoke the passed callback when it is done reading (remember to
1022 pass C<$handle> as first argument as all other callbacks do that).
1023
1024 Note that this is a function, and all types registered this way will be
1025 global, so try to use unique names.
1026
1027 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1028 search for C<register_read_type>)).
1029
1030 =item $handle->stop_read
1031
1032 =item $handle->start_read
1033
1034 In rare cases you actually do not want to read anything from the
1035 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1036 any queued callbacks will be executed then. To start reading again, call
1037 C<start_read>.
1038
1039 =cut
1040
1041 sub stop_read {
1042 my ($self) = @_;
1043
1044 delete $self->{_rw};
1045 }
1046
1047 sub start_read {
1048 my ($self) = @_;
1049
1050 unless ($self->{_rw} || $self->{_eof}) {
1051 Scalar::Util::weaken $self;
1052
1053 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1054 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1055 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1056
1057 if ($len > 0) {
1058 $self->{_activity} = AnyEvent->now;
1059
1060 $self->{filter_r}
1061 ? $self->{filter_r}->($self, $rbuf)
1062 : $self->_drain_rbuf;
1063
1064 } elsif (defined $len) {
1065 delete $self->{_rw};
1066 $self->{_eof} = 1;
1067 $self->_drain_rbuf;
1068
1069 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1070 return $self->error;
1071 }
1072 });
1073 }
1074 }
1075
1076 sub _dotls {
1077 my ($self) = @_;
1078
1079 if (length $self->{_tls_wbuf}) {
1080 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1081 substr $self->{_tls_wbuf}, 0, $len, "";
1082 }
1083 }
1084
1085 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1086 $self->{wbuf} .= $buf;
1087 $self->_drain_wbuf;
1088 }
1089
1090 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1091 $self->{rbuf} .= $buf;
1092 $self->_drain_rbuf;
1093 }
1094
1095 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1096
1097 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1098 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1099 $self->error;
1100 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1101 $! = &Errno::EIO;
1102 $self->error;
1103 }
1104
1105 # all others are fine for our purposes
1106 }
1107 }
1108
1109 =item $handle->starttls ($tls[, $tls_ctx])
1110
1111 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1112 object is created, you can also do that at a later time by calling
1113 C<starttls>.
1114
1115 The first argument is the same as the C<tls> constructor argument (either
1116 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1117
1118 The second argument is the optional C<Net::SSLeay::CTX> object that is
1119 used when AnyEvent::Handle has to create its own TLS connection object.
1120
1121 The TLS connection object will end up in C<< $handle->{tls} >> after this
1122 call and can be used or changed to your liking. Note that the handshake
1123 might have already started when this function returns.
1124
1125 =cut
1126
1127 # TODO: maybe document...
1128 sub starttls {
1129 my ($self, $ssl, $ctx) = @_;
1130
1131 $self->stoptls;
1132
1133 if ($ssl eq "accept") {
1134 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1135 Net::SSLeay::set_accept_state ($ssl);
1136 } elsif ($ssl eq "connect") {
1137 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1138 Net::SSLeay::set_connect_state ($ssl);
1139 }
1140
1141 $self->{tls} = $ssl;
1142
1143 # basically, this is deep magic (because SSL_read should have the same issues)
1144 # but the openssl maintainers basically said: "trust us, it just works".
1145 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1146 # and mismaintained ssleay-module doesn't even offer them).
1147 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1148 Net::SSLeay::CTX_set_mode ($self->{tls},
1149 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1150 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1151
1152 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1153 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154
1155 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1156
1157 $self->{filter_w} = sub {
1158 $_[0]{_tls_wbuf} .= ${$_[1]};
1159 &_dotls;
1160 };
1161 $self->{filter_r} = sub {
1162 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1163 &_dotls;
1164 };
1165 }
1166
1167 =item $handle->stoptls
1168
1169 Destroys the SSL connection, if any. Partial read or write data will be
1170 lost.
1171
1172 =cut
1173
1174 sub stoptls {
1175 my ($self) = @_;
1176
1177 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1178
1179 delete $self->{_rbio};
1180 delete $self->{_wbio};
1181 delete $self->{_tls_wbuf};
1182 delete $self->{filter_r};
1183 delete $self->{filter_w};
1184 }
1185
1186 sub DESTROY {
1187 my $self = shift;
1188
1189 $self->stoptls;
1190 }
1191
1192 =item AnyEvent::Handle::TLS_CTX
1193
1194 This function creates and returns the Net::SSLeay::CTX object used by
1195 default for TLS mode.
1196
1197 The context is created like this:
1198
1199 Net::SSLeay::load_error_strings;
1200 Net::SSLeay::SSLeay_add_ssl_algorithms;
1201 Net::SSLeay::randomize;
1202
1203 my $CTX = Net::SSLeay::CTX_new;
1204
1205 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1206
1207 =cut
1208
1209 our $TLS_CTX;
1210
1211 sub TLS_CTX() {
1212 $TLS_CTX || do {
1213 require Net::SSLeay;
1214
1215 Net::SSLeay::load_error_strings ();
1216 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1217 Net::SSLeay::randomize ();
1218
1219 $TLS_CTX = Net::SSLeay::CTX_new ();
1220
1221 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1222
1223 $TLS_CTX
1224 }
1225 }
1226
1227 =back
1228
1229 =head1 SUBCLASSING AnyEvent::Handle
1230
1231 In many cases, you might want to subclass AnyEvent::Handle.
1232
1233 To make this easier, a given version of AnyEvent::Handle uses these
1234 conventions:
1235
1236 =over 4
1237
1238 =item * all constructor arguments become object members.
1239
1240 At least initially, when you pass a C<tls>-argument to the constructor it
1241 will end up in C<< $handle->{tls} >>. Those members might be changes or
1242 mutated later on (for example C<tls> will hold the TLS connection object).
1243
1244 =item * other object member names are prefixed with an C<_>.
1245
1246 All object members not explicitly documented (internal use) are prefixed
1247 with an underscore character, so the remaining non-C<_>-namespace is free
1248 for use for subclasses.
1249
1250 =item * all members not documented here and not prefixed with an underscore
1251 are free to use in subclasses.
1252
1253 Of course, new versions of AnyEvent::Handle may introduce more "public"
1254 member variables, but thats just life, at least it is documented.
1255
1256 =back
1257
1258 =head1 AUTHOR
1259
1260 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1261
1262 =cut
1263
1264 1; # End of AnyEvent::Handle