ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.242
Committed: Wed Dec 10 04:29:33 2014 UTC (9 years, 6 months ago) by root
Branch: MAIN
CVS Tags: rel-7_08
Changes since 1.241: +0 -3 lines
Log Message:
7.08

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     If, for some reason, the handle is not acceptable, calling C<$retry> will
138     continue with the next connection target (in case of multi-homed hosts or
139     SRV records there can be multiple connection endpoints). The C<$retry>
140     callback can be invoked after the connect callback returns, i.e. one can
141     start a handshake and then decide to retry with the next host if the
142     handshake fails.
143 root 1.159
144 root 1.198 In most cases, you should ignore the C<$retry> parameter.
145 root 1.158
146 root 1.159 =item on_connect_error => $cb->($handle, $message)
147 root 1.10
148 root 1.186 This callback is called when the connection could not be
149 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
150     message describing it (usually the same as C<"$!">).
151 root 1.8
152 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
153     fatal error instead.
154 root 1.82
155 root 1.159 =back
156 root 1.80
157 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
158 root 1.10
159 root 1.52 This is the error callback, which is called when, well, some error
160     occured, such as not being able to resolve the hostname, failure to
161 root 1.198 connect, or a read error.
162 root 1.52
163     Some errors are fatal (which is indicated by C<$fatal> being true). On
164 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
165     destroy >>) after invoking the error callback (which means you are free to
166     examine the handle object). Examples of fatal errors are an EOF condition
167 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
168 root 1.198 cases where the other side can close the connection at will, it is
169 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
170 root 1.82
171 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
172 root 1.233 against, but in some cases (TLS errors), this does not work well.
173    
174     If you report the error to the user, it is recommended to always output
175     the C<$message> argument in human-readable error messages (you don't need
176     to report C<"$!"> if you report C<$message>).
177    
178     If you want to react programmatically to the error, then looking at C<$!>
179     and comparing it against some of the documented C<Errno> values is usually
180     better than looking at the C<$message>.
181 root 1.133
182 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
183 root 1.82 to simply ignore this parameter and instead abondon the handle object
184     when this callback is invoked. Examples of non-fatal errors are timeouts
185     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
186 root 1.8
187 root 1.198 On entry to the callback, the value of C<$!> contains the operating
188     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
189 root 1.133 C<EPROTO>).
190 root 1.8
191 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
192 root 1.198 you will not be notified of errors otherwise. The default just calls
193 root 1.52 C<croak>.
194 root 1.8
195 root 1.40 =item on_read => $cb->($handle)
196 root 1.8
197     This sets the default read callback, which is called when data arrives
198 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
199     callback will only be called when at least one octet of data is in the
200     read buffer).
201 root 1.8
202     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
203 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
204 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
205     the beginning from it.
206 root 1.8
207 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
208     modifies the read queue. Or do both. Or ...
209    
210 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
211 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
212     calling the C<on_eof> callback. If no progress can be made, then a fatal
213     error will be raised (with C<$!> set to C<EPIPE>).
214 elmex 1.1
215 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
216     doesn't mean you I<require> some data: if there is an EOF and there
217     are outstanding read requests then an error will be flagged. With an
218     C<on_read> callback, the C<on_eof> callback will be invoked.
219    
220 root 1.159 =item on_eof => $cb->($handle)
221    
222     Set the callback to be called when an end-of-file condition is detected,
223     i.e. in the case of a socket, when the other side has closed the
224     connection cleanly, and there are no outstanding read requests in the
225     queue (if there are read requests, then an EOF counts as an unexpected
226     connection close and will be flagged as an error).
227    
228     For sockets, this just means that the other side has stopped sending data,
229     you can still try to write data, and, in fact, one can return from the EOF
230     callback and continue writing data, as only the read part has been shut
231     down.
232    
233     If an EOF condition has been detected but no C<on_eof> callback has been
234     set, then a fatal error will be raised with C<$!> set to <0>.
235    
236 root 1.40 =item on_drain => $cb->($handle)
237 elmex 1.1
238 root 1.229 This sets the callback that is called once when the write buffer becomes
239     empty (and immediately when the handle object is created).
240 elmex 1.1
241 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
242 elmex 1.2
243 root 1.69 This callback is useful when you don't want to put all of your write data
244     into the queue at once, for example, when you want to write the contents
245     of some file to the socket you might not want to read the whole file into
246     memory and push it into the queue, but instead only read more data from
247     the file when the write queue becomes empty.
248    
249 root 1.43 =item timeout => $fractional_seconds
250    
251 root 1.176 =item rtimeout => $fractional_seconds
252    
253     =item wtimeout => $fractional_seconds
254    
255     If non-zero, then these enables an "inactivity" timeout: whenever this
256     many seconds pass without a successful read or write on the underlying
257     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
258     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
259     error will be raised).
260    
261 root 1.218 There are three variants of the timeouts that work independently of each
262     other, for both read and write (triggered when nothing was read I<OR>
263     written), just read (triggered when nothing was read), and just write:
264 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
265     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
266     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
267 root 1.43
268 root 1.218 Note that timeout processing is active even when you do not have any
269     outstanding read or write requests: If you plan to keep the connection
270     idle then you should disable the timeout temporarily or ignore the
271     timeout in the corresponding C<on_timeout> callback, in which case
272     AnyEvent::Handle will simply restart the timeout.
273 root 1.43
274 root 1.218 Zero (the default) disables the corresponding timeout.
275 root 1.43
276     =item on_timeout => $cb->($handle)
277    
278 root 1.218 =item on_rtimeout => $cb->($handle)
279    
280     =item on_wtimeout => $cb->($handle)
281    
282 root 1.43 Called whenever the inactivity timeout passes. If you return from this
283     callback, then the timeout will be reset as if some activity had happened,
284     so this condition is not fatal in any way.
285    
286 root 1.8 =item rbuf_max => <bytes>
287 elmex 1.2
288 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
289     when the read buffer ever (strictly) exceeds this size. This is useful to
290 root 1.88 avoid some forms of denial-of-service attacks.
291 elmex 1.2
292 root 1.8 For example, a server accepting connections from untrusted sources should
293     be configured to accept only so-and-so much data that it cannot act on
294     (for example, when expecting a line, an attacker could send an unlimited
295     amount of data without a callback ever being called as long as the line
296     isn't finished).
297 elmex 1.2
298 root 1.209 =item wbuf_max => <bytes>
299    
300     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
301     when the write buffer ever (strictly) exceeds this size. This is useful to
302     avoid some forms of denial-of-service attacks.
303    
304     Although the units of this parameter is bytes, this is the I<raw> number
305     of bytes not yet accepted by the kernel. This can make a difference when
306     you e.g. use TLS, as TLS typically makes your write data larger (but it
307     can also make it smaller due to compression).
308    
309     As an example of when this limit is useful, take a chat server that sends
310     chat messages to a client. If the client does not read those in a timely
311     manner then the send buffer in the server would grow unbounded.
312    
313 root 1.70 =item autocork => <boolean>
314    
315 root 1.198 When disabled (the default), C<push_write> will try to immediately
316     write the data to the handle if possible. This avoids having to register
317 root 1.88 a write watcher and wait for the next event loop iteration, but can
318     be inefficient if you write multiple small chunks (on the wire, this
319     disadvantage is usually avoided by your kernel's nagle algorithm, see
320     C<no_delay>, but this option can save costly syscalls).
321 root 1.70
322 root 1.198 When enabled, writes will always be queued till the next event loop
323 root 1.70 iteration. This is efficient when you do many small writes per iteration,
324 root 1.88 but less efficient when you do a single write only per iteration (or when
325     the write buffer often is full). It also increases write latency.
326 root 1.70
327     =item no_delay => <boolean>
328    
329     When doing small writes on sockets, your operating system kernel might
330     wait a bit for more data before actually sending it out. This is called
331     the Nagle algorithm, and usually it is beneficial.
332    
333 root 1.88 In some situations you want as low a delay as possible, which can be
334     accomplishd by setting this option to a true value.
335 root 1.70
336 root 1.198 The default is your operating system's default behaviour (most likely
337     enabled). This option explicitly enables or disables it, if possible.
338 root 1.70
339 root 1.182 =item keepalive => <boolean>
340    
341     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
342     normally, TCP connections have no time-out once established, so TCP
343 root 1.186 connections, once established, can stay alive forever even when the other
344 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
345 root 1.198 TCP connections when the other side becomes unreachable. While the default
346 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
347     and, if the other side doesn't reply, take down the TCP connection some 10
348     to 15 minutes later.
349    
350     It is harmless to specify this option for file handles that do not support
351     keepalives, and enabling it on connections that are potentially long-lived
352     is usually a good idea.
353    
354     =item oobinline => <boolean>
355    
356     BSD majorly fucked up the implementation of TCP urgent data. The result
357     is that almost no OS implements TCP according to the specs, and every OS
358     implements it slightly differently.
359    
360 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
361     is enabled) gives you the most portable way of getting urgent data, by
362     putting it into the stream.
363    
364     Since BSD emulation of OOB data on top of TCP's urgent data can have
365     security implications, AnyEvent::Handle sets this flag automatically
366 root 1.184 unless explicitly specified. Note that setting this flag after
367     establishing a connection I<may> be a bit too late (data loss could
368     already have occured on BSD systems), but at least it will protect you
369     from most attacks.
370 root 1.182
371 root 1.8 =item read_size => <bytes>
372 elmex 1.2
373 root 1.221 The initial read block size, the number of bytes this module will try
374     to read during each loop iteration. Each handle object will consume
375     at least this amount of memory for the read buffer as well, so when
376     handling many connections watch out for memory requirements). See also
377     C<max_read_size>. Default: C<2048>.
378 root 1.203
379     =item max_read_size => <bytes>
380    
381     The maximum read buffer size used by the dynamic adjustment
382     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
383     one go it will double C<read_size> up to the maximum given by this
384     option. Default: C<131072> or C<read_size>, whichever is higher.
385 root 1.8
386     =item low_water_mark => <bytes>
387    
388 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
389     buffer: If the buffer reaches this size or gets even samller it is
390 root 1.8 considered empty.
391 elmex 1.2
392 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
393     the write buffer before it is fully drained, but this is a rare case, as
394     the operating system kernel usually buffers data as well, so the default
395     is good in almost all cases.
396    
397 root 1.62 =item linger => <seconds>
398    
399 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
400 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
401     write data and will install a watcher that will write this data to the
402     socket. No errors will be reported (this mostly matches how the operating
403     system treats outstanding data at socket close time).
404 root 1.62
405 root 1.88 This will not work for partial TLS data that could not be encoded
406 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
407     help.
408 root 1.62
409 root 1.133 =item peername => $string
410    
411 root 1.134 A string used to identify the remote site - usually the DNS hostname
412     (I<not> IDN!) used to create the connection, rarely the IP address.
413 root 1.131
414 root 1.133 Apart from being useful in error messages, this string is also used in TLS
415 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
416 root 1.198 verification will be skipped when C<peername> is not specified or is
417 root 1.144 C<undef>.
418 root 1.131
419 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
420    
421 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
422 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
423 root 1.88 established and will transparently encrypt/decrypt data afterwards.
424 root 1.19
425 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
426     appropriate error message.
427    
428 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
429 root 1.88 automatically when you try to create a TLS handle): this module doesn't
430     have a dependency on that module, so if your module requires it, you have
431 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
432     old, you get an C<EPROTO> error.
433 root 1.26
434 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
435     C<accept>, and for the TLS client side of a connection, use C<connect>
436     mode.
437 root 1.19
438     You can also provide your own TLS connection object, but you have
439     to make sure that you call either C<Net::SSLeay::set_connect_state>
440     or C<Net::SSLeay::set_accept_state> on it before you pass it to
441 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
442     object.
443    
444     At some future point, AnyEvent::Handle might switch to another TLS
445     implementation, then the option to use your own session object will go
446     away.
447 root 1.19
448 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
449     passing in the wrong integer will lead to certain crash. This most often
450     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
451     segmentation fault.
452    
453 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
454 root 1.26
455 root 1.131 =item tls_ctx => $anyevent_tls
456 root 1.19
457 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
458 root 1.207 (unless a connection object was specified directly). If this
459     parameter is missing (or C<undef>), then AnyEvent::Handle will use
460     C<AnyEvent::Handle::TLS_CTX>.
461 root 1.19
462 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
463     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
464     new TLS context object.
465    
466 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
467 root 1.142
468     This callback will be invoked when the TLS/SSL handshake has finished. If
469     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
470     (C<on_stoptls> will not be called in this case).
471    
472     The session in C<< $handle->{tls} >> can still be examined in this
473     callback, even when the handshake was not successful.
474    
475 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
476     callback is in effect, instead, the error message will be passed to C<on_starttls>.
477    
478     Without this callback, handshake failures lead to C<on_error> being
479 root 1.198 called as usual.
480 root 1.143
481 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
482 root 1.143 need to do that, start an zero-second timer instead whose callback can
483     then call C<< ->starttls >> again.
484    
485 root 1.142 =item on_stoptls => $cb->($handle)
486    
487     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
488     set, then it will be invoked after freeing the TLS session. If it is not,
489     then a TLS shutdown condition will be treated like a normal EOF condition
490     on the handle.
491    
492     The session in C<< $handle->{tls} >> can still be examined in this
493     callback.
494    
495     This callback will only be called on TLS shutdowns, not when the
496     underlying handle signals EOF.
497    
498 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
499 root 1.40
500     This is the json coder object used by the C<json> read and write types.
501    
502 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
503 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
504     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
505     guaranteed not to contain any newline character.
506    
507     For security reasons, this encoder will likely I<not> handle numbers and
508     strings, only arrays and objects/hashes. The reason is that originally
509     JSON was self-delimited, but Dougles Crockford thought it was a splendid
510     idea to redefine JSON incompatibly, so this is no longer true.
511    
512     For protocols that used back-to-back JSON texts, this might lead to
513     run-ins, where two or more JSON texts will be interpreted as one JSON
514     text.
515    
516     For this reason, if the default encoder uses L<JSON::XS>, it will default
517     to not allowing anything but arrays and objects/hashes, at least for the
518     forseeable future (it will change at some point). This might or might not
519     be true for the L<JSON> module, so this might cause a security issue.
520    
521     If you depend on either behaviour, you should create your own json object
522     and pass it in explicitly.
523 root 1.40
524 root 1.238 =item cbor => L<CBOR::XS> object
525    
526     This is the cbor coder object used by the C<cbor> read and write types.
527    
528     If you don't supply it, then AnyEvent::Handle will create and use a
529     suitable one (on demand), which will write CBOR without using extensions,
530 root 1.241 if possible.
531 root 1.238
532     Note that you are responsible to depend on the L<CBOR::XS> module if you
533     want to use this functionality, as AnyEvent does not have a dependency on
534     it itself.
535 root 1.40
536 elmex 1.1 =back
537    
538     =cut
539    
540     sub new {
541 root 1.8 my $class = shift;
542     my $self = bless { @_ }, $class;
543    
544 root 1.159 if ($self->{fh}) {
545     $self->_start;
546     return unless $self->{fh}; # could be gone by now
547    
548     } elsif ($self->{connect}) {
549     require AnyEvent::Socket;
550    
551     $self->{peername} = $self->{connect}[0]
552     unless exists $self->{peername};
553    
554     $self->{_skip_drain_rbuf} = 1;
555    
556     {
557     Scalar::Util::weaken (my $self = $self);
558    
559     $self->{_connect} =
560     AnyEvent::Socket::tcp_connect (
561     $self->{connect}[0],
562     $self->{connect}[1],
563     sub {
564     my ($fh, $host, $port, $retry) = @_;
565    
566 root 1.206 delete $self->{_connect}; # no longer needed
567 root 1.205
568 root 1.159 if ($fh) {
569     $self->{fh} = $fh;
570    
571     delete $self->{_skip_drain_rbuf};
572     $self->_start;
573    
574     $self->{on_connect}
575     and $self->{on_connect}($self, $host, $port, sub {
576 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
577 root 1.159 $self->{_skip_drain_rbuf} = 1;
578     &$retry;
579     });
580    
581     } else {
582     if ($self->{on_connect_error}) {
583     $self->{on_connect_error}($self, "$!");
584 root 1.217 $self->destroy if $self;
585 root 1.159 } else {
586 root 1.161 $self->_error ($!, 1);
587 root 1.159 }
588     }
589     },
590     sub {
591     local $self->{fh} = $_[0];
592    
593 root 1.161 $self->{on_prepare}
594 root 1.210 ? $self->{on_prepare}->($self)
595 root 1.161 : ()
596 root 1.159 }
597     );
598     }
599    
600     } else {
601     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
602     }
603    
604     $self
605     }
606    
607     sub _start {
608     my ($self) = @_;
609 root 1.8
610 root 1.194 # too many clueless people try to use udp and similar sockets
611     # with AnyEvent::Handle, do them a favour.
612 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
613     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
614 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
615 root 1.194
616 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
617 elmex 1.1
618 root 1.176 $self->{_activity} =
619     $self->{_ractivity} =
620     $self->{_wactivity} = AE::now;
621    
622 root 1.203 $self->{read_size} ||= 2048;
623     $self->{max_read_size} = $self->{read_size}
624     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
625    
626 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
627     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
628     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
629    
630 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
631     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
632    
633     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
634 root 1.131
635 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
636 root 1.94 if $self->{tls};
637 root 1.19
638 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
639 root 1.10
640 root 1.66 $self->start_read
641 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
642 root 1.160
643     $self->_drain_wbuf;
644 root 1.8 }
645 elmex 1.2
646 root 1.52 sub _error {
647 root 1.133 my ($self, $errno, $fatal, $message) = @_;
648 root 1.8
649 root 1.52 $! = $errno;
650 root 1.133 $message ||= "$!";
651 root 1.37
652 root 1.52 if ($self->{on_error}) {
653 root 1.133 $self->{on_error}($self, $fatal, $message);
654 root 1.151 $self->destroy if $fatal;
655 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
656 root 1.149 $self->destroy;
657 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
658 root 1.52 }
659 elmex 1.1 }
660    
661 root 1.8 =item $fh = $handle->fh
662 elmex 1.1
663 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
664 elmex 1.1
665     =cut
666    
667 root 1.38 sub fh { $_[0]{fh} }
668 elmex 1.1
669 root 1.8 =item $handle->on_error ($cb)
670 elmex 1.1
671 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
672 elmex 1.1
673 root 1.8 =cut
674    
675     sub on_error {
676     $_[0]{on_error} = $_[1];
677     }
678    
679     =item $handle->on_eof ($cb)
680    
681     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
682 elmex 1.1
683     =cut
684    
685 root 1.8 sub on_eof {
686     $_[0]{on_eof} = $_[1];
687     }
688    
689 root 1.43 =item $handle->on_timeout ($cb)
690    
691 root 1.176 =item $handle->on_rtimeout ($cb)
692    
693     =item $handle->on_wtimeout ($cb)
694    
695     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
696     callback, or disables the callback (but not the timeout) if C<$cb> =
697     C<undef>. See the C<timeout> constructor argument and method.
698 root 1.43
699     =cut
700    
701 root 1.176 # see below
702 root 1.43
703 root 1.70 =item $handle->autocork ($boolean)
704    
705     Enables or disables the current autocork behaviour (see C<autocork>
706 root 1.105 constructor argument). Changes will only take effect on the next write.
707 root 1.70
708     =cut
709    
710 root 1.105 sub autocork {
711     $_[0]{autocork} = $_[1];
712     }
713    
714 root 1.70 =item $handle->no_delay ($boolean)
715    
716     Enables or disables the C<no_delay> setting (see constructor argument of
717     the same name for details).
718    
719     =cut
720    
721     sub no_delay {
722     $_[0]{no_delay} = $_[1];
723    
724 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
725     if $_[0]{fh};
726 root 1.182 }
727    
728     =item $handle->keepalive ($boolean)
729    
730     Enables or disables the C<keepalive> setting (see constructor argument of
731     the same name for details).
732    
733     =cut
734    
735     sub keepalive {
736     $_[0]{keepalive} = $_[1];
737    
738     eval {
739     local $SIG{__DIE__};
740     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
741     if $_[0]{fh};
742     };
743     }
744    
745     =item $handle->oobinline ($boolean)
746    
747     Enables or disables the C<oobinline> setting (see constructor argument of
748     the same name for details).
749    
750     =cut
751    
752     sub oobinline {
753     $_[0]{oobinline} = $_[1];
754    
755     eval {
756     local $SIG{__DIE__};
757     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
758     if $_[0]{fh};
759     };
760     }
761    
762     =item $handle->keepalive ($boolean)
763    
764     Enables or disables the C<keepalive> setting (see constructor argument of
765     the same name for details).
766    
767     =cut
768    
769     sub keepalive {
770     $_[0]{keepalive} = $_[1];
771    
772     eval {
773     local $SIG{__DIE__};
774     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
775 root 1.159 if $_[0]{fh};
776 root 1.70 };
777     }
778    
779 root 1.142 =item $handle->on_starttls ($cb)
780    
781     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
782    
783     =cut
784    
785     sub on_starttls {
786     $_[0]{on_starttls} = $_[1];
787     }
788    
789     =item $handle->on_stoptls ($cb)
790    
791     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
792    
793     =cut
794    
795 root 1.189 sub on_stoptls {
796 root 1.142 $_[0]{on_stoptls} = $_[1];
797     }
798    
799 root 1.168 =item $handle->rbuf_max ($max_octets)
800    
801     Configures the C<rbuf_max> setting (C<undef> disables it).
802    
803 root 1.209 =item $handle->wbuf_max ($max_octets)
804    
805     Configures the C<wbuf_max> setting (C<undef> disables it).
806    
807 root 1.168 =cut
808    
809     sub rbuf_max {
810     $_[0]{rbuf_max} = $_[1];
811     }
812    
813 root 1.215 sub wbuf_max {
814 root 1.209 $_[0]{wbuf_max} = $_[1];
815     }
816    
817 root 1.43 #############################################################################
818    
819     =item $handle->timeout ($seconds)
820    
821 root 1.176 =item $handle->rtimeout ($seconds)
822    
823     =item $handle->wtimeout ($seconds)
824    
825 root 1.43 Configures (or disables) the inactivity timeout.
826    
827 root 1.218 The timeout will be checked instantly, so this method might destroy the
828     handle before it returns.
829    
830 root 1.176 =item $handle->timeout_reset
831    
832     =item $handle->rtimeout_reset
833    
834     =item $handle->wtimeout_reset
835    
836     Reset the activity timeout, as if data was received or sent.
837    
838     These methods are cheap to call.
839    
840 root 1.43 =cut
841    
842 root 1.176 for my $dir ("", "r", "w") {
843     my $timeout = "${dir}timeout";
844     my $tw = "_${dir}tw";
845     my $on_timeout = "on_${dir}timeout";
846     my $activity = "_${dir}activity";
847     my $cb;
848    
849     *$on_timeout = sub {
850     $_[0]{$on_timeout} = $_[1];
851     };
852    
853     *$timeout = sub {
854     my ($self, $new_value) = @_;
855 root 1.43
856 root 1.201 $new_value >= 0
857     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
858    
859 root 1.176 $self->{$timeout} = $new_value;
860     delete $self->{$tw}; &$cb;
861     };
862 root 1.43
863 root 1.176 *{"${dir}timeout_reset"} = sub {
864     $_[0]{$activity} = AE::now;
865     };
866 root 1.43
867 root 1.176 # main workhorse:
868     # reset the timeout watcher, as neccessary
869     # also check for time-outs
870     $cb = sub {
871     my ($self) = @_;
872    
873     if ($self->{$timeout} && $self->{fh}) {
874     my $NOW = AE::now;
875    
876     # when would the timeout trigger?
877     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
878    
879     # now or in the past already?
880     if ($after <= 0) {
881     $self->{$activity} = $NOW;
882 root 1.43
883 root 1.176 if ($self->{$on_timeout}) {
884     $self->{$on_timeout}($self);
885     } else {
886     $self->_error (Errno::ETIMEDOUT);
887     }
888 root 1.43
889 root 1.176 # callback could have changed timeout value, optimise
890     return unless $self->{$timeout};
891 root 1.43
892 root 1.176 # calculate new after
893     $after = $self->{$timeout};
894 root 1.43 }
895    
896 root 1.176 Scalar::Util::weaken $self;
897     return unless $self; # ->error could have destroyed $self
898 root 1.43
899 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
900     delete $self->{$tw};
901     $cb->($self);
902     };
903     } else {
904     delete $self->{$tw};
905 root 1.43 }
906     }
907     }
908    
909 root 1.9 #############################################################################
910    
911     =back
912    
913     =head2 WRITE QUEUE
914    
915     AnyEvent::Handle manages two queues per handle, one for writing and one
916     for reading.
917    
918     The write queue is very simple: you can add data to its end, and
919     AnyEvent::Handle will automatically try to get rid of it for you.
920    
921 elmex 1.20 When data could be written and the write buffer is shorter then the low
922 root 1.229 water mark, the C<on_drain> callback will be invoked once.
923 root 1.9
924     =over 4
925    
926 root 1.8 =item $handle->on_drain ($cb)
927    
928     Sets the C<on_drain> callback or clears it (see the description of
929     C<on_drain> in the constructor).
930    
931 root 1.193 This method may invoke callbacks (and therefore the handle might be
932     destroyed after it returns).
933    
934 root 1.8 =cut
935    
936     sub on_drain {
937 elmex 1.1 my ($self, $cb) = @_;
938    
939 root 1.8 $self->{on_drain} = $cb;
940    
941     $cb->($self)
942 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
943 root 1.8 }
944    
945     =item $handle->push_write ($data)
946    
947 root 1.209 Queues the given scalar to be written. You can push as much data as
948     you want (only limited by the available memory and C<wbuf_max>), as
949     C<AnyEvent::Handle> buffers it independently of the kernel.
950 root 1.8
951 root 1.193 This method may invoke callbacks (and therefore the handle might be
952     destroyed after it returns).
953    
954 root 1.8 =cut
955    
956 root 1.17 sub _drain_wbuf {
957     my ($self) = @_;
958 root 1.8
959 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
960 root 1.35
961 root 1.8 Scalar::Util::weaken $self;
962 root 1.35
963 root 1.8 my $cb = sub {
964     my $len = syswrite $self->{fh}, $self->{wbuf};
965    
966 root 1.146 if (defined $len) {
967 root 1.8 substr $self->{wbuf}, 0, $len, "";
968    
969 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
970 root 1.43
971 root 1.8 $self->{on_drain}($self)
972 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
973 root 1.8 && $self->{on_drain};
974    
975 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
976 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
977 root 1.52 $self->_error ($!, 1);
978 elmex 1.1 }
979 root 1.8 };
980    
981 root 1.35 # try to write data immediately
982 root 1.70 $cb->() unless $self->{autocork};
983 root 1.8
984 root 1.35 # if still data left in wbuf, we need to poll
985 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
986 root 1.35 if length $self->{wbuf};
987 root 1.209
988     if (
989     defined $self->{wbuf_max}
990     && $self->{wbuf_max} < length $self->{wbuf}
991     ) {
992     $self->_error (Errno::ENOSPC, 1), return;
993     }
994 root 1.8 };
995     }
996    
997 root 1.30 our %WH;
998    
999 root 1.185 # deprecated
1000 root 1.30 sub register_write_type($$) {
1001     $WH{$_[0]} = $_[1];
1002     }
1003    
1004 root 1.17 sub push_write {
1005     my $self = shift;
1006    
1007 root 1.29 if (@_ > 1) {
1008     my $type = shift;
1009    
1010 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
1011     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
1012 root 1.29 ->($self, @_);
1013     }
1014    
1015 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1016     # and diagnose the problem earlier and better.
1017    
1018 root 1.93 if ($self->{tls}) {
1019 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1020 root 1.160 &_dotls ($self) if $self->{fh};
1021 root 1.17 } else {
1022 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1023 root 1.159 $self->_drain_wbuf if $self->{fh};
1024 root 1.17 }
1025     }
1026    
1027 root 1.29 =item $handle->push_write (type => @args)
1028    
1029 root 1.185 Instead of formatting your data yourself, you can also let this module
1030     do the job by specifying a type and type-specific arguments. You
1031     can also specify the (fully qualified) name of a package, in which
1032     case AnyEvent tries to load the package and then expects to find the
1033 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1034 root 1.29
1035 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1036     drop by and tell us):
1037 root 1.29
1038     =over 4
1039    
1040     =item netstring => $string
1041    
1042     Formats the given value as netstring
1043     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1044    
1045     =cut
1046    
1047     register_write_type netstring => sub {
1048     my ($self, $string) = @_;
1049    
1050 root 1.96 (length $string) . ":$string,"
1051 root 1.29 };
1052    
1053 root 1.61 =item packstring => $format, $data
1054    
1055     An octet string prefixed with an encoded length. The encoding C<$format>
1056     uses the same format as a Perl C<pack> format, but must specify a single
1057     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1058     optional C<!>, C<< < >> or C<< > >> modifier).
1059    
1060     =cut
1061    
1062     register_write_type packstring => sub {
1063     my ($self, $format, $string) = @_;
1064    
1065 root 1.65 pack "$format/a*", $string
1066 root 1.61 };
1067    
1068 root 1.39 =item json => $array_or_hashref
1069    
1070 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1071     provide your own JSON object, this means it will be encoded to JSON text
1072     in UTF-8.
1073    
1074 root 1.241 The default encoder might or might not handle every type of JSON value -
1075     it might be limited to arrays and objects for security reasons. See the
1076     C<json> constructor attribute for more details.
1077    
1078     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1079     and hashes, you can write JSON at one end of a handle and read them at the
1080     other end without using any additional framing.
1081    
1082     The JSON text generated by the default encoder is guaranteed not to
1083     contain any newlines: While this module doesn't need delimiters after or
1084     between JSON texts to be able to read them, many other languages depend on
1085     them.
1086 root 1.41
1087 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1088     to send JSON arrays (or objects, although arrays are usually the better
1089     choice as they mimic how function argument passing works) and a newline
1090     after each JSON text:
1091 root 1.41
1092     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1093     $handle->push_write ("\012");
1094    
1095     An AnyEvent::Handle receiver would simply use the C<json> read type and
1096     rely on the fact that the newline will be skipped as leading whitespace:
1097    
1098     $handle->push_read (json => sub { my $array = $_[1]; ... });
1099    
1100     Other languages could read single lines terminated by a newline and pass
1101     this line into their JSON decoder of choice.
1102    
1103 root 1.238 =item cbor => $perl_scalar
1104    
1105     Encodes the given scalar into a CBOR value. Unless you provide your own
1106     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1107     using any extensions, if possible.
1108    
1109     CBOR values are self-delimiting, so you can write CBOR at one end of
1110     a handle and read them at the other end without using any additional
1111     framing.
1112    
1113     A simple nd very very fast RPC protocol that interoperates with
1114     other languages is to send CBOR and receive CBOR values (arrays are
1115     recommended):
1116    
1117     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1118    
1119     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1120    
1121     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1122    
1123 root 1.40 =cut
1124    
1125 root 1.179 sub json_coder() {
1126     eval { require JSON::XS; JSON::XS->new->utf8 }
1127 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1128 root 1.179 }
1129    
1130 root 1.40 register_write_type json => sub {
1131     my ($self, $ref) = @_;
1132    
1133 root 1.238 ($self->{json} ||= json_coder)
1134     ->encode ($ref)
1135     };
1136    
1137     sub cbor_coder() {
1138     require CBOR::XS;
1139     CBOR::XS->new
1140     }
1141    
1142     register_write_type cbor => sub {
1143     my ($self, $scalar) = @_;
1144 root 1.40
1145 root 1.238 ($self->{cbor} ||= cbor_coder)
1146     ->encode ($scalar)
1147 root 1.40 };
1148    
1149 root 1.63 =item storable => $reference
1150    
1151     Freezes the given reference using L<Storable> and writes it to the
1152     handle. Uses the C<nfreeze> format.
1153    
1154     =cut
1155    
1156     register_write_type storable => sub {
1157     my ($self, $ref) = @_;
1158    
1159 root 1.224 require Storable unless $Storable::VERSION;
1160 root 1.63
1161 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1162 root 1.63 };
1163    
1164 root 1.53 =back
1165    
1166 root 1.133 =item $handle->push_shutdown
1167    
1168     Sometimes you know you want to close the socket after writing your data
1169     before it was actually written. One way to do that is to replace your
1170 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1171     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1172     replaces the C<on_drain> callback with:
1173 root 1.133
1174 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1175 root 1.133
1176     This simply shuts down the write side and signals an EOF condition to the
1177     the peer.
1178    
1179     You can rely on the normal read queue and C<on_eof> handling
1180     afterwards. This is the cleanest way to close a connection.
1181    
1182 root 1.193 This method may invoke callbacks (and therefore the handle might be
1183     destroyed after it returns).
1184    
1185 root 1.133 =cut
1186    
1187     sub push_shutdown {
1188 root 1.142 my ($self) = @_;
1189    
1190     delete $self->{low_water_mark};
1191     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1192 root 1.133 }
1193    
1194 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1195    
1196     Instead of one of the predefined types, you can also specify the name of
1197     a package. AnyEvent will try to load the package and then expects to find
1198     a function named C<anyevent_write_type> inside. If it isn't found, it
1199     progressively tries to load the parent package until it either finds the
1200     function (good) or runs out of packages (bad).
1201    
1202     Whenever the given C<type> is used, C<push_write> will the function with
1203     the handle object and the remaining arguments.
1204    
1205     The function is supposed to return a single octet string that will be
1206 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1207 root 1.185 "arguments to on-the-wire-format" converter.
1208 root 1.30
1209 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1210     arguments using the first one.
1211 root 1.29
1212 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1213 root 1.29
1214 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1215     # the "My" modules to be auto-loaded, or just about anywhere when the
1216     # My::Type::anyevent_write_type is defined before invoking it.
1217    
1218     package My::Type;
1219    
1220     sub anyevent_write_type {
1221     my ($handle, $delim, @args) = @_;
1222    
1223     join $delim, @args
1224     }
1225 root 1.29
1226 root 1.30 =cut
1227 root 1.29
1228 root 1.8 #############################################################################
1229    
1230 root 1.9 =back
1231    
1232     =head2 READ QUEUE
1233    
1234     AnyEvent::Handle manages two queues per handle, one for writing and one
1235     for reading.
1236    
1237     The read queue is more complex than the write queue. It can be used in two
1238     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1239     a queue.
1240    
1241     In the simple case, you just install an C<on_read> callback and whenever
1242     new data arrives, it will be called. You can then remove some data (if
1243 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1244 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1245 root 1.197 partial message has been received so far), or change the read queue with
1246     e.g. C<push_read>.
1247 root 1.9
1248     In the more complex case, you want to queue multiple callbacks. In this
1249     case, AnyEvent::Handle will call the first queued callback each time new
1250 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1251 root 1.61 done its job (see C<push_read>, below).
1252 root 1.9
1253     This way you can, for example, push three line-reads, followed by reading
1254     a chunk of data, and AnyEvent::Handle will execute them in order.
1255    
1256     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1257     the specified number of bytes which give an XML datagram.
1258    
1259     # in the default state, expect some header bytes
1260     $handle->on_read (sub {
1261     # some data is here, now queue the length-header-read (4 octets)
1262 root 1.52 shift->unshift_read (chunk => 4, sub {
1263 root 1.9 # header arrived, decode
1264     my $len = unpack "N", $_[1];
1265    
1266     # now read the payload
1267 root 1.52 shift->unshift_read (chunk => $len, sub {
1268 root 1.9 my $xml = $_[1];
1269     # handle xml
1270     });
1271     });
1272     });
1273    
1274 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1275     and another line or "ERROR" for the first request that is sent, and 64
1276     bytes for the second request. Due to the availability of a queue, we can
1277     just pipeline sending both requests and manipulate the queue as necessary
1278     in the callbacks.
1279    
1280     When the first callback is called and sees an "OK" response, it will
1281     C<unshift> another line-read. This line-read will be queued I<before> the
1282     64-byte chunk callback.
1283 root 1.9
1284 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1285 root 1.9 $handle->push_write ("request 1\015\012");
1286    
1287     # we expect "ERROR" or "OK" as response, so push a line read
1288 root 1.52 $handle->push_read (line => sub {
1289 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1290     # so it will be read before the second request reads its 64 bytes
1291     # which are already in the queue when this callback is called
1292     # we don't do this in case we got an error
1293     if ($_[1] eq "OK") {
1294 root 1.52 $_[0]->unshift_read (line => sub {
1295 root 1.9 my $response = $_[1];
1296     ...
1297     });
1298     }
1299     });
1300    
1301 root 1.69 # request two, simply returns 64 octets
1302 root 1.9 $handle->push_write ("request 2\015\012");
1303    
1304     # simply read 64 bytes, always
1305 root 1.52 $handle->push_read (chunk => 64, sub {
1306 root 1.9 my $response = $_[1];
1307     ...
1308     });
1309    
1310     =over 4
1311    
1312 root 1.10 =cut
1313    
1314 root 1.8 sub _drain_rbuf {
1315     my ($self) = @_;
1316 elmex 1.1
1317 root 1.159 # avoid recursion
1318 root 1.167 return if $self->{_skip_drain_rbuf};
1319 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1320 root 1.59
1321     while () {
1322 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1323     # we are draining the buffer, and this can only happen with TLS.
1324 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1325     if exists $self->{_tls_rbuf};
1326 root 1.115
1327 root 1.59 my $len = length $self->{rbuf};
1328 elmex 1.1
1329 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1330 root 1.29 unless ($cb->($self)) {
1331 root 1.163 # no progress can be made
1332     # (not enough data and no data forthcoming)
1333     $self->_error (Errno::EPIPE, 1), return
1334     if $self->{_eof};
1335 root 1.10
1336 root 1.38 unshift @{ $self->{_queue} }, $cb;
1337 root 1.55 last;
1338 root 1.8 }
1339     } elsif ($self->{on_read}) {
1340 root 1.61 last unless $len;
1341    
1342 root 1.8 $self->{on_read}($self);
1343    
1344     if (
1345 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1346     && !@{ $self->{_queue} } # and the queue is still empty
1347     && $self->{on_read} # but we still have on_read
1348 root 1.8 ) {
1349 root 1.55 # no further data will arrive
1350     # so no progress can be made
1351 root 1.150 $self->_error (Errno::EPIPE, 1), return
1352 root 1.55 if $self->{_eof};
1353    
1354     last; # more data might arrive
1355 elmex 1.1 }
1356 root 1.8 } else {
1357     # read side becomes idle
1358 root 1.93 delete $self->{_rw} unless $self->{tls};
1359 root 1.55 last;
1360 root 1.8 }
1361     }
1362    
1363 root 1.80 if ($self->{_eof}) {
1364 root 1.163 $self->{on_eof}
1365     ? $self->{on_eof}($self)
1366     : $self->_error (0, 1, "Unexpected end-of-file");
1367    
1368     return;
1369 root 1.80 }
1370 root 1.55
1371 root 1.169 if (
1372     defined $self->{rbuf_max}
1373     && $self->{rbuf_max} < length $self->{rbuf}
1374     ) {
1375     $self->_error (Errno::ENOSPC, 1), return;
1376     }
1377    
1378 root 1.55 # may need to restart read watcher
1379     unless ($self->{_rw}) {
1380     $self->start_read
1381     if $self->{on_read} || @{ $self->{_queue} };
1382     }
1383 elmex 1.1 }
1384    
1385 root 1.8 =item $handle->on_read ($cb)
1386 elmex 1.1
1387 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1388     the new callback is C<undef>). See the description of C<on_read> in the
1389     constructor.
1390 elmex 1.1
1391 root 1.193 This method may invoke callbacks (and therefore the handle might be
1392     destroyed after it returns).
1393    
1394 root 1.8 =cut
1395    
1396     sub on_read {
1397     my ($self, $cb) = @_;
1398 elmex 1.1
1399 root 1.8 $self->{on_read} = $cb;
1400 root 1.159 $self->_drain_rbuf if $cb;
1401 elmex 1.1 }
1402    
1403 root 1.8 =item $handle->rbuf
1404    
1405 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1406     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1407     much faster, and no less clean).
1408    
1409     The only operation allowed on the read buffer (apart from looking at it)
1410     is removing data from its beginning. Otherwise modifying or appending to
1411     it is not allowed and will lead to hard-to-track-down bugs.
1412    
1413     NOTE: The read buffer should only be used or modified in the C<on_read>
1414     callback or when C<push_read> or C<unshift_read> are used with a single
1415     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1416     will manage the read buffer on their own.
1417 elmex 1.1
1418     =cut
1419    
1420 elmex 1.2 sub rbuf : lvalue {
1421 root 1.8 $_[0]{rbuf}
1422 elmex 1.2 }
1423 elmex 1.1
1424 root 1.8 =item $handle->push_read ($cb)
1425    
1426     =item $handle->unshift_read ($cb)
1427    
1428     Append the given callback to the end of the queue (C<push_read>) or
1429     prepend it (C<unshift_read>).
1430    
1431     The callback is called each time some additional read data arrives.
1432 elmex 1.1
1433 elmex 1.20 It must check whether enough data is in the read buffer already.
1434 elmex 1.1
1435 root 1.8 If not enough data is available, it must return the empty list or a false
1436     value, in which case it will be called repeatedly until enough data is
1437     available (or an error condition is detected).
1438    
1439     If enough data was available, then the callback must remove all data it is
1440     interested in (which can be none at all) and return a true value. After returning
1441     true, it will be removed from the queue.
1442 elmex 1.1
1443 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1444     destroyed after it returns).
1445    
1446 elmex 1.1 =cut
1447    
1448 root 1.30 our %RH;
1449    
1450     sub register_read_type($$) {
1451     $RH{$_[0]} = $_[1];
1452     }
1453    
1454 root 1.8 sub push_read {
1455 root 1.28 my $self = shift;
1456     my $cb = pop;
1457    
1458     if (@_) {
1459     my $type = shift;
1460    
1461 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1462     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1463 root 1.28 ->($self, $cb, @_);
1464     }
1465 elmex 1.1
1466 root 1.38 push @{ $self->{_queue} }, $cb;
1467 root 1.159 $self->_drain_rbuf;
1468 elmex 1.1 }
1469    
1470 root 1.8 sub unshift_read {
1471 root 1.28 my $self = shift;
1472     my $cb = pop;
1473    
1474     if (@_) {
1475     my $type = shift;
1476    
1477 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1478     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1479 root 1.28 ->($self, $cb, @_);
1480     }
1481    
1482 root 1.38 unshift @{ $self->{_queue} }, $cb;
1483 root 1.159 $self->_drain_rbuf;
1484 root 1.8 }
1485 elmex 1.1
1486 root 1.28 =item $handle->push_read (type => @args, $cb)
1487 elmex 1.1
1488 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1489 elmex 1.1
1490 root 1.28 Instead of providing a callback that parses the data itself you can chose
1491     between a number of predefined parsing formats, for chunks of data, lines
1492 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1493     which case AnyEvent tries to load the package and then expects to find the
1494     C<anyevent_read_type> function inside (see "custom read types", below).
1495 elmex 1.1
1496 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1497     drop by and tell us):
1498 root 1.28
1499     =over 4
1500    
1501 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1502 root 1.28
1503     Invoke the callback only once C<$octets> bytes have been read. Pass the
1504     data read to the callback. The callback will never be called with less
1505     data.
1506    
1507     Example: read 2 bytes.
1508    
1509     $handle->push_read (chunk => 2, sub {
1510 root 1.225 say "yay " . unpack "H*", $_[1];
1511 root 1.28 });
1512 elmex 1.1
1513     =cut
1514    
1515 root 1.28 register_read_type chunk => sub {
1516     my ($self, $cb, $len) = @_;
1517 elmex 1.1
1518 root 1.8 sub {
1519     $len <= length $_[0]{rbuf} or return;
1520 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1521 root 1.8 1
1522     }
1523 root 1.28 };
1524 root 1.8
1525 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1526 elmex 1.1
1527 root 1.8 The callback will be called only once a full line (including the end of
1528     line marker, C<$eol>) has been read. This line (excluding the end of line
1529     marker) will be passed to the callback as second argument (C<$line>), and
1530     the end of line marker as the third argument (C<$eol>).
1531 elmex 1.1
1532 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1533     will be interpreted as a fixed record end marker, or it can be a regex
1534     object (e.g. created by C<qr>), in which case it is interpreted as a
1535     regular expression.
1536 elmex 1.1
1537 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1538     undef), then C<qr|\015?\012|> is used (which is good for most internet
1539     protocols).
1540 elmex 1.1
1541 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1542     not marked by the end of line marker.
1543 elmex 1.1
1544 root 1.8 =cut
1545 elmex 1.1
1546 root 1.28 register_read_type line => sub {
1547     my ($self, $cb, $eol) = @_;
1548 elmex 1.1
1549 root 1.76 if (@_ < 3) {
1550 root 1.237 # this is faster then the generic code below
1551 root 1.76 sub {
1552 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1553     or return;
1554 elmex 1.1
1555 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1556     $cb->($_[0], $str, "$1");
1557 root 1.76 1
1558     }
1559     } else {
1560     $eol = quotemeta $eol unless ref $eol;
1561     $eol = qr|^(.*?)($eol)|s;
1562    
1563     sub {
1564     $_[0]{rbuf} =~ s/$eol// or return;
1565 elmex 1.1
1566 root 1.227 $cb->($_[0], "$1", "$2");
1567 root 1.76 1
1568     }
1569 root 1.8 }
1570 root 1.28 };
1571 elmex 1.1
1572 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1573 root 1.36
1574     Makes a regex match against the regex object C<$accept> and returns
1575     everything up to and including the match.
1576    
1577     Example: read a single line terminated by '\n'.
1578    
1579     $handle->push_read (regex => qr<\n>, sub { ... });
1580    
1581     If C<$reject> is given and not undef, then it determines when the data is
1582     to be rejected: it is matched against the data when the C<$accept> regex
1583     does not match and generates an C<EBADMSG> error when it matches. This is
1584     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1585     receive buffer overflow).
1586    
1587     Example: expect a single decimal number followed by whitespace, reject
1588     anything else (not the use of an anchor).
1589    
1590     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1591    
1592     If C<$skip> is given and not C<undef>, then it will be matched against
1593     the receive buffer when neither C<$accept> nor C<$reject> match,
1594     and everything preceding and including the match will be accepted
1595     unconditionally. This is useful to skip large amounts of data that you
1596     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1597     have to start matching from the beginning. This is purely an optimisation
1598 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1599 root 1.36
1600     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1601 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1602 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1603     it only accepts something not ending in either \015 or \012, as these are
1604     required for the accept regex.
1605    
1606     $handle->push_read (regex =>
1607     qr<\015\012\015\012>,
1608     undef, # no reject
1609     qr<^.*[^\015\012]>,
1610     sub { ... });
1611    
1612     =cut
1613    
1614     register_read_type regex => sub {
1615     my ($self, $cb, $accept, $reject, $skip) = @_;
1616    
1617     my $data;
1618     my $rbuf = \$self->{rbuf};
1619    
1620     sub {
1621     # accept
1622     if ($$rbuf =~ $accept) {
1623     $data .= substr $$rbuf, 0, $+[0], "";
1624 root 1.220 $cb->($_[0], $data);
1625 root 1.36 return 1;
1626     }
1627    
1628     # reject
1629     if ($reject && $$rbuf =~ $reject) {
1630 root 1.220 $_[0]->_error (Errno::EBADMSG);
1631 root 1.36 }
1632    
1633     # skip
1634     if ($skip && $$rbuf =~ $skip) {
1635     $data .= substr $$rbuf, 0, $+[0], "";
1636     }
1637    
1638     ()
1639     }
1640     };
1641    
1642 root 1.61 =item netstring => $cb->($handle, $string)
1643    
1644     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1645    
1646     Throws an error with C<$!> set to EBADMSG on format violations.
1647    
1648     =cut
1649    
1650     register_read_type netstring => sub {
1651     my ($self, $cb) = @_;
1652    
1653     sub {
1654     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1655     if ($_[0]{rbuf} =~ /[^0-9]/) {
1656 root 1.220 $_[0]->_error (Errno::EBADMSG);
1657 root 1.61 }
1658     return;
1659     }
1660    
1661     my $len = $1;
1662    
1663 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1664 root 1.61 my $string = $_[1];
1665     $_[0]->unshift_read (chunk => 1, sub {
1666     if ($_[1] eq ",") {
1667     $cb->($_[0], $string);
1668     } else {
1669 root 1.220 $_[0]->_error (Errno::EBADMSG);
1670 root 1.61 }
1671     });
1672     });
1673    
1674     1
1675     }
1676     };
1677    
1678     =item packstring => $format, $cb->($handle, $string)
1679    
1680     An octet string prefixed with an encoded length. The encoding C<$format>
1681     uses the same format as a Perl C<pack> format, but must specify a single
1682     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1683     optional C<!>, C<< < >> or C<< > >> modifier).
1684    
1685 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1686     EPP uses a prefix of C<N> (4 octtes).
1687 root 1.61
1688     Example: read a block of data prefixed by its length in BER-encoded
1689     format (very efficient).
1690    
1691     $handle->push_read (packstring => "w", sub {
1692     my ($handle, $data) = @_;
1693     });
1694    
1695     =cut
1696    
1697     register_read_type packstring => sub {
1698     my ($self, $cb, $format) = @_;
1699    
1700     sub {
1701     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1702 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1703 root 1.61 or return;
1704    
1705 root 1.77 $format = length pack $format, $len;
1706 root 1.61
1707 root 1.77 # bypass unshift if we already have the remaining chunk
1708     if ($format + $len <= length $_[0]{rbuf}) {
1709     my $data = substr $_[0]{rbuf}, $format, $len;
1710     substr $_[0]{rbuf}, 0, $format + $len, "";
1711     $cb->($_[0], $data);
1712     } else {
1713     # remove prefix
1714     substr $_[0]{rbuf}, 0, $format, "";
1715    
1716     # read remaining chunk
1717     $_[0]->unshift_read (chunk => $len, $cb);
1718     }
1719 root 1.61
1720     1
1721     }
1722     };
1723    
1724 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1725    
1726 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1727     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1728 root 1.40
1729 root 1.240 If a C<json> object was passed to the constructor, then that will be
1730     used for the final decode, otherwise it will create a L<JSON::XS> or
1731     L<JSON::PP> coder object expecting UTF-8.
1732 root 1.40
1733     This read type uses the incremental parser available with JSON version
1734 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1735 root 1.40
1736     Since JSON texts are fully self-delimiting, the C<json> read and write
1737 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1738     the C<json> write type description, above, for an actual example.
1739 root 1.40
1740     =cut
1741    
1742     register_read_type json => sub {
1743 root 1.63 my ($self, $cb) = @_;
1744 root 1.40
1745 root 1.179 my $json = $self->{json} ||= json_coder;
1746 root 1.40
1747     my $data;
1748    
1749     sub {
1750 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1751 root 1.110
1752 root 1.113 if ($ref) {
1753 root 1.220 $_[0]{rbuf} = $json->incr_text;
1754 root 1.113 $json->incr_text = "";
1755 root 1.220 $cb->($_[0], $ref);
1756 root 1.110
1757     1
1758 root 1.113 } elsif ($@) {
1759 root 1.111 # error case
1760 root 1.110 $json->incr_skip;
1761 root 1.40
1762 root 1.220 $_[0]{rbuf} = $json->incr_text;
1763 root 1.40 $json->incr_text = "";
1764    
1765 root 1.220 $_[0]->_error (Errno::EBADMSG);
1766 root 1.114
1767 root 1.113 ()
1768     } else {
1769 root 1.220 $_[0]{rbuf} = "";
1770 root 1.114
1771 root 1.113 ()
1772     }
1773 root 1.40 }
1774     };
1775    
1776 root 1.238 =item cbor => $cb->($handle, $scalar)
1777    
1778     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1779     error occurs, an C<EBADMSG> error will be raised.
1780    
1781     If a L<CBOR::XS> object was passed to the constructor, then that will be
1782     used for the final decode, otherwise it will create a CBOR coder without
1783     enabling any options.
1784    
1785     You have to provide a dependency to L<CBOR::XS> on your own: this module
1786     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1787     itself.
1788    
1789     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1790     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1791     the C<cbor> write type description, above, for an actual example.
1792    
1793     =cut
1794    
1795     register_read_type cbor => sub {
1796     my ($self, $cb) = @_;
1797    
1798     my $cbor = $self->{cbor} ||= cbor_coder;
1799    
1800     my $data;
1801    
1802     sub {
1803     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1804    
1805     if (@value) {
1806     $cb->($_[0], @value);
1807    
1808     1
1809     } elsif ($@) {
1810     # error case
1811     $cbor->incr_reset;
1812    
1813     $_[0]->_error (Errno::EBADMSG);
1814    
1815     ()
1816     } else {
1817     ()
1818     }
1819     }
1820     };
1821    
1822 root 1.63 =item storable => $cb->($handle, $ref)
1823    
1824     Deserialises a L<Storable> frozen representation as written by the
1825     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1826     data).
1827    
1828     Raises C<EBADMSG> error if the data could not be decoded.
1829    
1830     =cut
1831    
1832     register_read_type storable => sub {
1833     my ($self, $cb) = @_;
1834    
1835 root 1.224 require Storable unless $Storable::VERSION;
1836 root 1.63
1837     sub {
1838     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1839 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1840 root 1.63 or return;
1841    
1842 root 1.77 my $format = length pack "w", $len;
1843 root 1.63
1844 root 1.77 # bypass unshift if we already have the remaining chunk
1845     if ($format + $len <= length $_[0]{rbuf}) {
1846     my $data = substr $_[0]{rbuf}, $format, $len;
1847     substr $_[0]{rbuf}, 0, $format + $len, "";
1848 root 1.232
1849     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1850     or return $_[0]->_error (Errno::EBADMSG);
1851 root 1.77 } else {
1852     # remove prefix
1853     substr $_[0]{rbuf}, 0, $format, "";
1854    
1855     # read remaining chunk
1856     $_[0]->unshift_read (chunk => $len, sub {
1857 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1858     or $_[0]->_error (Errno::EBADMSG);
1859 root 1.77 });
1860     }
1861    
1862     1
1863 root 1.63 }
1864     };
1865    
1866 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1867    
1868     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1869     record without consuming anything. Only SSL version 3 or higher
1870     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1871     SSL2-compatible framing is supported).
1872    
1873     If it detects that the input data is likely TLS, it calls the callback
1874     with a true value for C<$detect> and the (on-wire) TLS version as second
1875     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1876     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1877     be definitely not TLS, it calls the callback with a false value for
1878     C<$detect>.
1879    
1880     The callback could use this information to decide whether or not to start
1881     TLS negotiation.
1882    
1883     In all cases the data read so far is passed to the following read
1884     handlers.
1885    
1886     Usually you want to use the C<tls_autostart> read type instead.
1887    
1888     If you want to design a protocol that works in the presence of TLS
1889     dtection, make sure that any non-TLS data doesn't start with the octet 22
1890     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1891     read type does are a bit more strict, but might losen in the future to
1892     accomodate protocol changes.
1893    
1894     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1895     L<Net::SSLeay>).
1896    
1897     =item tls_autostart => $tls[, $tls_ctx]
1898    
1899     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1900     to start tls by calling C<starttls> with the given arguments.
1901    
1902     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1903     been configured to accept, as servers do not normally send a handshake on
1904     their own and ths cannot be detected in this way.
1905    
1906     See C<tls_detect> above for more details.
1907    
1908     Example: give the client a chance to start TLS before accepting a text
1909     line.
1910    
1911     $hdl->push_read (tls_detect => "accept");
1912     $hdl->push_read (line => sub {
1913     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1914     });
1915    
1916     =cut
1917    
1918     register_read_type tls_detect => sub {
1919     my ($self, $cb) = @_;
1920    
1921     sub {
1922     # this regex matches a full or partial tls record
1923     if (
1924     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1925     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1926     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1927     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1928     ) {
1929     return if 3 != length $1; # partial match, can't decide yet
1930    
1931     # full match, valid TLS record
1932     my ($major, $minor) = unpack "CC", $1;
1933     $cb->($self, "accept", $major + $minor * 0.1);
1934     } else {
1935     # mismatch == guaranteed not TLS
1936     $cb->($self, undef);
1937     }
1938    
1939     1
1940     }
1941     };
1942    
1943     register_read_type tls_autostart => sub {
1944     my ($self, @tls) = @_;
1945    
1946     $RH{tls_detect}($self, sub {
1947     return unless $_[1];
1948     $_[0]->starttls (@tls);
1949     })
1950     };
1951    
1952 root 1.28 =back
1953    
1954 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1955 root 1.30
1956 root 1.185 Instead of one of the predefined types, you can also specify the name
1957     of a package. AnyEvent will try to load the package and then expects to
1958     find a function named C<anyevent_read_type> inside. If it isn't found, it
1959     progressively tries to load the parent package until it either finds the
1960     function (good) or runs out of packages (bad).
1961    
1962     Whenever this type is used, C<push_read> will invoke the function with the
1963     handle object, the original callback and the remaining arguments.
1964    
1965     The function is supposed to return a callback (usually a closure) that
1966     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1967     mentally treat the function as a "configurable read type to read callback"
1968     converter.
1969    
1970     It should invoke the original callback when it is done reading (remember
1971     to pass C<$handle> as first argument as all other callbacks do that,
1972     although there is no strict requirement on this).
1973 root 1.30
1974 root 1.185 For examples, see the source of this module (F<perldoc -m
1975     AnyEvent::Handle>, search for C<register_read_type>)).
1976 root 1.30
1977 root 1.10 =item $handle->stop_read
1978    
1979     =item $handle->start_read
1980    
1981 root 1.18 In rare cases you actually do not want to read anything from the
1982 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1983 root 1.22 any queued callbacks will be executed then. To start reading again, call
1984 root 1.10 C<start_read>.
1985    
1986 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1987     you change the C<on_read> callback or push/unshift a read callback, and it
1988     will automatically C<stop_read> for you when neither C<on_read> is set nor
1989     there are any read requests in the queue.
1990    
1991 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1992     as TLS does not support half-duplex connections. In current versions they
1993     work as expected, as this behaviour is required to avoid certain resource
1994     attacks, where the program would be forced to read (and buffer) arbitrary
1995     amounts of data before being able to send some data. The drawback is that
1996     some readings of the the SSL/TLS specifications basically require this
1997     attack to be working, as SSL/TLS implementations might stall sending data
1998     during a rehandshake.
1999    
2000     As a guideline, during the initial handshake, you should not stop reading,
2001 root 1.226 and as a client, it might cause problems, depending on your application.
2002 root 1.93
2003 root 1.10 =cut
2004    
2005     sub stop_read {
2006     my ($self) = @_;
2007 elmex 1.1
2008 root 1.213 delete $self->{_rw};
2009 root 1.8 }
2010 elmex 1.1
2011 root 1.10 sub start_read {
2012     my ($self) = @_;
2013    
2014 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2015 root 1.10 Scalar::Util::weaken $self;
2016    
2017 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2018 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2019 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2020 root 1.10
2021     if ($len > 0) {
2022 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2023 root 1.43
2024 root 1.93 if ($self->{tls}) {
2025     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2026 root 1.97
2027 root 1.93 &_dotls ($self);
2028     } else {
2029 root 1.159 $self->_drain_rbuf;
2030 root 1.93 }
2031 root 1.10
2032 root 1.203 if ($len == $self->{read_size}) {
2033     $self->{read_size} *= 2;
2034     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2035     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2036     }
2037    
2038 root 1.10 } elsif (defined $len) {
2039 root 1.38 delete $self->{_rw};
2040     $self->{_eof} = 1;
2041 root 1.159 $self->_drain_rbuf;
2042 root 1.10
2043 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
2044 root 1.52 return $self->_error ($!, 1);
2045 root 1.10 }
2046 root 1.175 };
2047 root 1.10 }
2048 elmex 1.1 }
2049    
2050 root 1.133 our $ERROR_SYSCALL;
2051     our $ERROR_WANT_READ;
2052    
2053     sub _tls_error {
2054     my ($self, $err) = @_;
2055    
2056     return $self->_error ($!, 1)
2057     if $err == Net::SSLeay::ERROR_SYSCALL ();
2058    
2059 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2060 root 1.137
2061     # reduce error string to look less scary
2062     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2063    
2064 root 1.143 if ($self->{_on_starttls}) {
2065     (delete $self->{_on_starttls})->($self, undef, $err);
2066     &_freetls;
2067     } else {
2068     &_freetls;
2069 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2070 root 1.143 }
2071 root 1.133 }
2072    
2073 root 1.97 # poll the write BIO and send the data if applicable
2074 root 1.133 # also decode read data if possible
2075     # this is basiclaly our TLS state machine
2076     # more efficient implementations are possible with openssl,
2077     # but not with the buggy and incomplete Net::SSLeay.
2078 root 1.19 sub _dotls {
2079     my ($self) = @_;
2080    
2081 root 1.97 my $tmp;
2082 root 1.56
2083 root 1.239 while (length $self->{_tls_wbuf}) {
2084     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2085     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2086    
2087     return $self->_tls_error ($tmp)
2088     if $tmp != $ERROR_WANT_READ
2089     && ($tmp != $ERROR_SYSCALL || $!);
2090    
2091     last;
2092 root 1.22 }
2093 root 1.133
2094 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2095 root 1.19 }
2096    
2097 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2098     unless (length $tmp) {
2099 root 1.143 $self->{_on_starttls}
2100     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2101 root 1.92 &_freetls;
2102 root 1.143
2103 root 1.142 if ($self->{on_stoptls}) {
2104     $self->{on_stoptls}($self);
2105     return;
2106     } else {
2107     # let's treat SSL-eof as we treat normal EOF
2108     delete $self->{_rw};
2109     $self->{_eof} = 1;
2110     }
2111 root 1.56 }
2112 root 1.91
2113 root 1.116 $self->{_tls_rbuf} .= $tmp;
2114 root 1.159 $self->_drain_rbuf;
2115 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2116 root 1.23 }
2117    
2118 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2119 root 1.133 return $self->_tls_error ($tmp)
2120     if $tmp != $ERROR_WANT_READ
2121 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2122 root 1.91
2123 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2124     $self->{wbuf} .= $tmp;
2125 root 1.91 $self->_drain_wbuf;
2126 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2127 root 1.91 }
2128 root 1.142
2129     $self->{_on_starttls}
2130     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2131 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2132 root 1.19 }
2133    
2134 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2135    
2136     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2137     object is created, you can also do that at a later time by calling
2138 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2139 root 1.25
2140 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2141     write data and then call C<< ->starttls >> then TLS negotiation will start
2142 root 1.234 immediately, after which the queued write data is then sent. This might
2143     change in future versions, so best make sure you have no outstanding write
2144     data when calling this method.
2145 root 1.157
2146 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2147     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2148    
2149 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2150     when AnyEvent::Handle has to create its own TLS connection object, or
2151     a hash reference with C<< key => value >> pairs that will be used to
2152     construct a new context.
2153    
2154     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2155     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2156     changed to your liking. Note that the handshake might have already started
2157     when this function returns.
2158 root 1.38
2159 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2160 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2161     stream after stopping TLS.
2162 root 1.92
2163 root 1.193 This method may invoke callbacks (and therefore the handle might be
2164     destroyed after it returns).
2165    
2166 root 1.25 =cut
2167    
2168 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2169    
2170 root 1.19 sub starttls {
2171 root 1.160 my ($self, $tls, $ctx) = @_;
2172    
2173     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2174     if $self->{tls};
2175    
2176 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2177     eval {
2178     require Net::SSLeay;
2179     require AnyEvent::TLS;
2180     1
2181     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2182     }
2183    
2184 root 1.160 $self->{tls} = $tls;
2185     $self->{tls_ctx} = $ctx if @_ > 2;
2186    
2187     return unless $self->{fh};
2188 root 1.19
2189 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2190     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2191 root 1.133
2192 root 1.180 $tls = delete $self->{tls};
2193 root 1.160 $ctx = $self->{tls_ctx};
2194 root 1.131
2195 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2196    
2197 root 1.131 if ("HASH" eq ref $ctx) {
2198 root 1.137 if ($ctx->{cache}) {
2199     my $key = $ctx+0;
2200     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2201     } else {
2202     $ctx = new AnyEvent::TLS %$ctx;
2203     }
2204 root 1.131 }
2205 root 1.92
2206 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2207 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2208 root 1.19
2209 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2210     # but the openssl maintainers basically said: "trust us, it just works".
2211     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2212     # and mismaintained ssleay-module doesn't even offer them).
2213 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2214 root 1.87 #
2215     # in short: this is a mess.
2216     #
2217 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2218 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2219 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2220     # have identity issues in that area.
2221 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2222     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2223     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2224 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2225 root 1.21
2226 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2227     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2228 root 1.19
2229 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2230     $self->{rbuf} = "";
2231 root 1.172
2232 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2233 root 1.19
2234 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2235 root 1.143 if $self->{on_starttls};
2236 root 1.142
2237 root 1.93 &_dotls; # need to trigger the initial handshake
2238     $self->start_read; # make sure we actually do read
2239 root 1.19 }
2240    
2241 root 1.25 =item $handle->stoptls
2242    
2243 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2244     sending a close notify to the other side, but since OpenSSL doesn't
2245 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2246 root 1.160 the stream afterwards.
2247 root 1.25
2248 root 1.193 This method may invoke callbacks (and therefore the handle might be
2249     destroyed after it returns).
2250    
2251 root 1.25 =cut
2252    
2253     sub stoptls {
2254     my ($self) = @_;
2255    
2256 root 1.192 if ($self->{tls} && $self->{fh}) {
2257 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2258 root 1.92
2259     &_dotls;
2260    
2261 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2262     # # we, we... have to use openssl :/#d#
2263     # &_freetls;#d#
2264 root 1.92 }
2265     }
2266    
2267     sub _freetls {
2268     my ($self) = @_;
2269    
2270     return unless $self->{tls};
2271 root 1.38
2272 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2273 root 1.171 if $self->{tls} > 0;
2274 root 1.92
2275 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2276 root 1.25 }
2277    
2278 root 1.216 =item $handle->resettls
2279    
2280     This rarely-used method simply resets and TLS state on the handle, usually
2281     causing data loss.
2282    
2283     One case where it may be useful is when you want to skip over the data in
2284     the stream but you are not interested in interpreting it, so data loss is
2285     no concern.
2286    
2287     =cut
2288    
2289     *resettls = \&_freetls;
2290    
2291 root 1.19 sub DESTROY {
2292 root 1.120 my ($self) = @_;
2293 root 1.19
2294 root 1.92 &_freetls;
2295 root 1.62
2296     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2297    
2298 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2299 root 1.62 my $fh = delete $self->{fh};
2300     my $wbuf = delete $self->{wbuf};
2301    
2302     my @linger;
2303    
2304 root 1.175 push @linger, AE::io $fh, 1, sub {
2305 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2306    
2307     if ($len > 0) {
2308     substr $wbuf, 0, $len, "";
2309 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2310 root 1.62 @linger = (); # end
2311     }
2312 root 1.175 };
2313     push @linger, AE::timer $linger, 0, sub {
2314 root 1.62 @linger = ();
2315 root 1.175 };
2316 root 1.62 }
2317 root 1.19 }
2318    
2319 root 1.99 =item $handle->destroy
2320    
2321 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2322 root 1.141 no further callbacks will be invoked and as many resources as possible
2323 root 1.165 will be freed. Any method you will call on the handle object after
2324     destroying it in this way will be silently ignored (and it will return the
2325     empty list).
2326 root 1.99
2327 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2328     object and it will simply shut down. This works in fatal error and EOF
2329     callbacks, as well as code outside. It does I<NOT> work in a read or write
2330     callback, so when you want to destroy the AnyEvent::Handle object from
2331     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2332     that case.
2333    
2334 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2335     will be removed as well, so if those are the only reference holders (as
2336     is common), then one doesn't need to do anything special to break any
2337     reference cycles.
2338    
2339 root 1.99 The handle might still linger in the background and write out remaining
2340     data, as specified by the C<linger> option, however.
2341    
2342     =cut
2343    
2344     sub destroy {
2345     my ($self) = @_;
2346    
2347     $self->DESTROY;
2348     %$self = ();
2349 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2350     }
2351    
2352 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2353     #nop
2354 root 1.99 }
2355    
2356 root 1.192 =item $handle->destroyed
2357    
2358     Returns false as long as the handle hasn't been destroyed by a call to C<<
2359     ->destroy >>, true otherwise.
2360    
2361     Can be useful to decide whether the handle is still valid after some
2362     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2363     C<< ->starttls >> and other methods can call user callbacks, which in turn
2364     can destroy the handle, so work can be avoided by checking sometimes:
2365    
2366     $hdl->starttls ("accept");
2367     return if $hdl->destroyed;
2368     $hdl->push_write (...
2369    
2370     Note that the call to C<push_write> will silently be ignored if the handle
2371     has been destroyed, so often you can just ignore the possibility of the
2372     handle being destroyed.
2373    
2374     =cut
2375    
2376     sub destroyed { 0 }
2377     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2378    
2379 root 1.19 =item AnyEvent::Handle::TLS_CTX
2380    
2381 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2382     for TLS mode.
2383 root 1.19
2384 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2385 root 1.19
2386     =cut
2387    
2388     our $TLS_CTX;
2389    
2390     sub TLS_CTX() {
2391 root 1.131 $TLS_CTX ||= do {
2392     require AnyEvent::TLS;
2393 root 1.19
2394 root 1.131 new AnyEvent::TLS
2395 root 1.19 }
2396     }
2397    
2398 elmex 1.1 =back
2399    
2400 root 1.95
2401     =head1 NONFREQUENTLY ASKED QUESTIONS
2402    
2403     =over 4
2404    
2405 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2406     still get further invocations!
2407    
2408     That's because AnyEvent::Handle keeps a reference to itself when handling
2409     read or write callbacks.
2410    
2411     It is only safe to "forget" the reference inside EOF or error callbacks,
2412     from within all other callbacks, you need to explicitly call the C<<
2413     ->destroy >> method.
2414    
2415 root 1.208 =item Why is my C<on_eof> callback never called?
2416    
2417     Probably because your C<on_error> callback is being called instead: When
2418     you have outstanding requests in your read queue, then an EOF is
2419     considered an error as you clearly expected some data.
2420    
2421     To avoid this, make sure you have an empty read queue whenever your handle
2422 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2423 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2424     queue.
2425    
2426     See also the next question, which explains this in a bit more detail.
2427    
2428     =item How can I serve requests in a loop?
2429    
2430     Most protocols consist of some setup phase (authentication for example)
2431     followed by a request handling phase, where the server waits for requests
2432     and handles them, in a loop.
2433    
2434     There are two important variants: The first (traditional, better) variant
2435     handles requests until the server gets some QUIT command, causing it to
2436     close the connection first (highly desirable for a busy TCP server). A
2437     client dropping the connection is an error, which means this variant can
2438     detect an unexpected detection close.
2439    
2440 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2441 root 1.208 pushing the "read request start" handler on it:
2442    
2443     # we assume a request starts with a single line
2444     my @start_request; @start_request = (line => sub {
2445     my ($hdl, $line) = @_;
2446    
2447     ... handle request
2448    
2449     # push next request read, possibly from a nested callback
2450     $hdl->push_read (@start_request);
2451     });
2452    
2453     # auth done, now go into request handling loop
2454     # now push the first @start_request
2455     $hdl->push_read (@start_request);
2456    
2457     By always having an outstanding C<push_read>, the handle always expects
2458     some data and raises the C<EPIPE> error when the connction is dropped
2459     unexpectedly.
2460    
2461     The second variant is a protocol where the client can drop the connection
2462     at any time. For TCP, this means that the server machine may run out of
2463 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2464 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2465     kinds of protocols are common (and sometimes even the best solution to the
2466     problem).
2467    
2468     Having an outstanding read request at all times is possible if you ignore
2469     C<EPIPE> errors, but this doesn't help with when the client drops the
2470     connection during a request, which would still be an error.
2471    
2472     A better solution is to push the initial request read in an C<on_read>
2473     callback. This avoids an error, as when the server doesn't expect data
2474     (i.e. is idly waiting for the next request, an EOF will not raise an
2475     error, but simply result in an C<on_eof> callback. It is also a bit slower
2476     and simpler:
2477    
2478     # auth done, now go into request handling loop
2479     $hdl->on_read (sub {
2480     my ($hdl) = @_;
2481    
2482     # called each time we receive data but the read queue is empty
2483     # simply start read the request
2484    
2485     $hdl->push_read (line => sub {
2486     my ($hdl, $line) = @_;
2487    
2488     ... handle request
2489    
2490     # do nothing special when the request has been handled, just
2491     # let the request queue go empty.
2492     });
2493     });
2494    
2495 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2496     reading?
2497    
2498     Unlike, say, TCP, TLS connections do not consist of two independent
2499 root 1.198 communication channels, one for each direction. Or put differently, the
2500 root 1.101 read and write directions are not independent of each other: you cannot
2501     write data unless you are also prepared to read, and vice versa.
2502    
2503 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2504 root 1.101 callback invocations when you are not expecting any read data - the reason
2505     is that AnyEvent::Handle always reads in TLS mode.
2506    
2507     During the connection, you have to make sure that you always have a
2508     non-empty read-queue, or an C<on_read> watcher. At the end of the
2509     connection (or when you no longer want to use it) you can call the
2510     C<destroy> method.
2511    
2512 root 1.95 =item How do I read data until the other side closes the connection?
2513    
2514 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2515     to achieve this is by setting an C<on_read> callback that does nothing,
2516     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2517     will be in C<$_[0]{rbuf}>:
2518 root 1.95
2519     $handle->on_read (sub { });
2520     $handle->on_eof (undef);
2521     $handle->on_error (sub {
2522     my $data = delete $_[0]{rbuf};
2523     });
2524    
2525 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2526     which is not normally allowed by the API. It is expressly permitted in
2527     this case only, as the handle object needs to be destroyed afterwards.
2528    
2529 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2530     and packets loss, might get closed quite violently with an error, when in
2531 root 1.198 fact all data has been received.
2532 root 1.95
2533 root 1.101 It is usually better to use acknowledgements when transferring data,
2534 root 1.95 to make sure the other side hasn't just died and you got the data
2535     intact. This is also one reason why so many internet protocols have an
2536     explicit QUIT command.
2537    
2538 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2539     all data has been written?
2540 root 1.95
2541     After writing your last bits of data, set the C<on_drain> callback
2542     and destroy the handle in there - with the default setting of
2543     C<low_water_mark> this will be called precisely when all data has been
2544     written to the socket:
2545    
2546     $handle->push_write (...);
2547     $handle->on_drain (sub {
2548 root 1.231 AE::log debug => "All data submitted to the kernel.";
2549 root 1.95 undef $handle;
2550     });
2551    
2552 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2553     consider using C<< ->push_shutdown >> instead.
2554    
2555     =item I want to contact a TLS/SSL server, I don't care about security.
2556    
2557     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2558 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2559 root 1.143 parameter:
2560    
2561 root 1.144 tcp_connect $host, $port, sub {
2562     my ($fh) = @_;
2563 root 1.143
2564 root 1.144 my $handle = new AnyEvent::Handle
2565     fh => $fh,
2566     tls => "connect",
2567     on_error => sub { ... };
2568    
2569     $handle->push_write (...);
2570     };
2571 root 1.143
2572     =item I want to contact a TLS/SSL server, I do care about security.
2573    
2574 root 1.144 Then you should additionally enable certificate verification, including
2575     peername verification, if the protocol you use supports it (see
2576     L<AnyEvent::TLS>, C<verify_peername>).
2577    
2578     E.g. for HTTPS:
2579    
2580     tcp_connect $host, $port, sub {
2581     my ($fh) = @_;
2582    
2583     my $handle = new AnyEvent::Handle
2584     fh => $fh,
2585     peername => $host,
2586     tls => "connect",
2587     tls_ctx => { verify => 1, verify_peername => "https" },
2588     ...
2589    
2590     Note that you must specify the hostname you connected to (or whatever
2591     "peername" the protocol needs) as the C<peername> argument, otherwise no
2592     peername verification will be done.
2593    
2594     The above will use the system-dependent default set of trusted CA
2595     certificates. If you want to check against a specific CA, add the
2596     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2597    
2598     tls_ctx => {
2599     verify => 1,
2600     verify_peername => "https",
2601     ca_file => "my-ca-cert.pem",
2602     },
2603    
2604     =item I want to create a TLS/SSL server, how do I do that?
2605    
2606     Well, you first need to get a server certificate and key. You have
2607     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2608     self-signed certificate (cheap. check the search engine of your choice,
2609     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2610     nice program for that purpose).
2611    
2612     Then create a file with your private key (in PEM format, see
2613     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2614     file should then look like this:
2615    
2616     -----BEGIN RSA PRIVATE KEY-----
2617     ...header data
2618     ... lots of base64'y-stuff
2619     -----END RSA PRIVATE KEY-----
2620    
2621     -----BEGIN CERTIFICATE-----
2622     ... lots of base64'y-stuff
2623     -----END CERTIFICATE-----
2624    
2625     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2626     specify this file as C<cert_file>:
2627    
2628     tcp_server undef, $port, sub {
2629     my ($fh) = @_;
2630    
2631     my $handle = new AnyEvent::Handle
2632     fh => $fh,
2633     tls => "accept",
2634     tls_ctx => { cert_file => "my-server-keycert.pem" },
2635     ...
2636 root 1.143
2637 root 1.144 When you have intermediate CA certificates that your clients might not
2638     know about, just append them to the C<cert_file>.
2639 root 1.143
2640 root 1.95 =back
2641    
2642 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2643    
2644     In many cases, you might want to subclass AnyEvent::Handle.
2645    
2646     To make this easier, a given version of AnyEvent::Handle uses these
2647     conventions:
2648    
2649     =over 4
2650    
2651     =item * all constructor arguments become object members.
2652    
2653     At least initially, when you pass a C<tls>-argument to the constructor it
2654 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2655 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2656    
2657     =item * other object member names are prefixed with an C<_>.
2658    
2659     All object members not explicitly documented (internal use) are prefixed
2660     with an underscore character, so the remaining non-C<_>-namespace is free
2661     for use for subclasses.
2662    
2663     =item * all members not documented here and not prefixed with an underscore
2664     are free to use in subclasses.
2665    
2666     Of course, new versions of AnyEvent::Handle may introduce more "public"
2667 root 1.198 member variables, but that's just life. At least it is documented.
2668 root 1.38
2669     =back
2670    
2671 elmex 1.1 =head1 AUTHOR
2672    
2673 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2674 elmex 1.1
2675     =cut
2676    
2677 root 1.230 1
2678