ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.88 by root, Thu Aug 21 23:48:35 2008 UTC vs.
Revision 1.163 by root, Mon Jul 27 22:08:52 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.233; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 108timeout is to be used).
91down.
92 109
93While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 111
97If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
100=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
101 137
102This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 140connect or a read error.
105 141
106Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
111 154
112Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 159
117On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
119 163
120While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
122C<croak>. 166C<croak>.
123 167
127and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
129read buffer). 173read buffer).
130 174
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
133 179
134When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
232write data and will install a watcher that will write this data to the 299write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating 300socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time). 301system treats outstanding data at socket close time).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
238 316
239=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
240 318
241When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
242AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
243established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
244 325
245TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
246automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
247have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
248to add the dependency yourself. 329to add the dependency yourself.
252mode. 333mode.
253 334
254You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
255to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
256or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
257AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
258 349
259See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
260 351
261=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
262 353
263Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
264(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
265missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
266 393
267=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
268 395
269This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
270 397
273texts. 400texts.
274 401
275Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
276use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
277 404
278=item filter_r => $cb
279
280=item filter_w => $cb
281
282These exist, but are undocumented at this time. (They are used internally
283by the TLS code).
284
285=back 405=back
286 406
287=cut 407=cut
288 408
289sub new { 409sub new {
290 my $class = shift; 410 my $class = shift;
291
292 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
293 412
294 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
295 476
296 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
297
298 if ($self->{tls}) {
299 require Net::SSLeay;
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
301 }
302 478
303 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
304 $self->_timeout; 480 $self->_timeout;
305 481
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
309 $self->start_read 489 $self->start_read
310 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
311 491
312 $self 492 $self->_drain_wbuf;
313} 493}
314 494
315sub _shutdown { 495#sub _shutdown {
316 my ($self) = @_; 496# my ($self) = @_;
317 497#
318 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 500#
321 delete $self->{fh}; 501# &_freetls;
322 502#}
323 $self->stoptls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 503
329sub _error { 504sub _error {
330 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 506
335 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
336 509
337 if ($self->{on_error}) { 510 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
339 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 516 }
342} 517}
343 518
344=item $fh = $handle->fh 519=item $fh = $handle->fh
345 520
382} 557}
383 558
384=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
385 560
386Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 562constructor argument). Changes will only take effect on the next write.
388 563
389=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
390 569
391=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
392 571
393Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 573the same name for details).
398sub no_delay { 577sub no_delay {
399 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
400 579
401 eval { 580 eval {
402 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
404 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
405} 605}
406 606
407############################################################################# 607#############################################################################
408 608
409=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
422# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
423# also check for time-outs 623# also check for time-outs
424sub _timeout { 624sub _timeout {
425 my ($self) = @_; 625 my ($self) = @_;
426 626
427 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
429 629
430 # when would the timeout trigger? 630 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 632
435 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
436 636
437 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
439 } else { 639 } else {
440 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
441 } 641 }
442 642
443 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 644 return unless $self->{timeout};
445 645
487 my ($self, $cb) = @_; 687 my ($self, $cb) = @_;
488 688
489 $self->{on_drain} = $cb; 689 $self->{on_drain} = $cb;
490 690
491 $cb->($self) 691 $cb->($self)
492 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 692 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493} 693}
494 694
495=item $handle->push_write ($data) 695=item $handle->push_write ($data)
496 696
497Queues the given scalar to be written. You can push as much data as you 697Queues the given scalar to be written. You can push as much data as you
508 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
509 709
510 my $cb = sub { 710 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
512 712
513 if ($len >= 0) { 713 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
515 715
516 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
517 717
518 $self->{on_drain}($self) 718 $self->{on_drain}($self)
519 if $self->{low_water_mark} >= length $self->{wbuf} 719 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 && $self->{on_drain}; 720 && $self->{on_drain};
521 721
522 delete $self->{_ww} unless length $self->{wbuf}; 722 delete $self->{_ww} unless length $self->{wbuf};
523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 723 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 $self->_error ($!, 1); 724 $self->_error ($!, 1);
548 748
549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 749 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550 ->($self, @_); 750 ->($self, @_);
551 } 751 }
552 752
553 if ($self->{filter_w}) { 753 if ($self->{tls}) {
554 $self->{filter_w}($self, \$_[0]); 754 $self->{_tls_wbuf} .= $_[0];
755 &_dotls ($self) if $self->{fh};
555 } else { 756 } else {
556 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
557 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
558 } 759 }
559} 760}
560 761
561=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
562 763
576=cut 777=cut
577 778
578register_write_type netstring => sub { 779register_write_type netstring => sub {
579 my ($self, $string) = @_; 780 my ($self, $string) = @_;
580 781
581 sprintf "%d:%s,", (length $string), $string 782 (length $string) . ":$string,"
582}; 783};
583 784
584=item packstring => $format, $data 785=item packstring => $format, $data
585 786
586An octet string prefixed with an encoded length. The encoding C<$format> 787An octet string prefixed with an encoded length. The encoding C<$format>
651 852
652 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
653}; 854};
654 855
655=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
656 882
657=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
658 884
659This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
660Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
754=cut 980=cut
755 981
756sub _drain_rbuf { 982sub _drain_rbuf {
757 my ($self) = @_; 983 my ($self) = @_;
758 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
759 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
760 988
761 if ( 989 if (
762 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
763 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
764 ) { 992 ) {
765 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
766 } 994 }
767 995
768 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
1001
769 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
770 1003
771 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
772 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
773 if ($self->{_eof}) { 1006 # no progress can be made
774 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
775 $self->_error (&Errno::EPIPE, 1), return; 1008 $self->_error (Errno::EPIPE, 1), return
776 } 1009 if $self->{_eof};
777 1010
778 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
779 last; 1012 last;
780 } 1013 }
781 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
788 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
789 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
790 ) { 1023 ) {
791 # no further data will arrive 1024 # no further data will arrive
792 # so no progress can be made 1025 # so no progress can be made
793 $self->_error (&Errno::EPIPE, 1), return 1026 $self->_error (Errno::EPIPE, 1), return
794 if $self->{_eof}; 1027 if $self->{_eof};
795 1028
796 last; # more data might arrive 1029 last; # more data might arrive
797 } 1030 }
798 } else { 1031 } else {
799 # read side becomes idle 1032 # read side becomes idle
800 delete $self->{_rw}; 1033 delete $self->{_rw} unless $self->{tls};
801 last; 1034 last;
802 } 1035 }
803 } 1036 }
804 1037
805 if ($self->{_eof}) { 1038 if ($self->{_eof}) {
806 if ($self->{on_eof}) { 1039 $self->{on_eof}
807 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
808 } else { 1041 : $self->_error (0, 1, "Unexpected end-of-file");
809 $self->_error (0, 1); 1042
810 } 1043 return;
811 } 1044 }
812 1045
813 # may need to restart read watcher 1046 # may need to restart read watcher
814 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
815 $self->start_read 1048 $self->start_read
827 1060
828sub on_read { 1061sub on_read {
829 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
830 1063
831 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
832 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
833} 1066}
834 1067
835=item $handle->rbuf 1068=item $handle->rbuf
836 1069
837Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
838 1071
839You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
840you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
841 1077
842NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
843C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
844automatically manage the read buffer. 1080automatically manage the read buffer.
845 1081
886 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
887 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
888 } 1124 }
889 1125
890 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
891 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
892} 1128}
893 1129
894sub unshift_read { 1130sub unshift_read {
895 my $self = shift; 1131 my $self = shift;
896 my $cb = pop; 1132 my $cb = pop;
902 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
903 } 1139 }
904 1140
905 1141
906 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
907 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
908} 1144}
909 1145
910=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
911 1147
912=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
1045 return 1; 1281 return 1;
1046 } 1282 }
1047 1283
1048 # reject 1284 # reject
1049 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
1050 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
1051 } 1287 }
1052 1288
1053 # skip 1289 # skip
1054 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
1055 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
1071 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
1072 1308
1073 sub { 1309 sub {
1074 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1075 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1076 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1077 } 1313 }
1078 return; 1314 return;
1079 } 1315 }
1080 1316
1081 my $len = $1; 1317 my $len = $1;
1084 my $string = $_[1]; 1320 my $string = $_[1];
1085 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1086 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1087 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1088 } else { 1324 } else {
1089 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1090 } 1326 }
1091 }); 1327 });
1092 }); 1328 });
1093 1329
1094 1 1330 1
1100An octet string prefixed with an encoded length. The encoding C<$format> 1336An octet string prefixed with an encoded length. The encoding C<$format>
1101uses the same format as a Perl C<pack> format, but must specify a single 1337uses the same format as a Perl C<pack> format, but must specify a single
1102integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1338integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1103optional C<!>, C<< < >> or C<< > >> modifier). 1339optional C<!>, C<< < >> or C<< > >> modifier).
1104 1340
1105DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1341For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342EPP uses a prefix of C<N> (4 octtes).
1106 1343
1107Example: read a block of data prefixed by its length in BER-encoded 1344Example: read a block of data prefixed by its length in BER-encoded
1108format (very efficient). 1345format (very efficient).
1109 1346
1110 $handle->push_read (packstring => "w", sub { 1347 $handle->push_read (packstring => "w", sub {
1140 } 1377 }
1141}; 1378};
1142 1379
1143=item json => $cb->($handle, $hash_or_arrayref) 1380=item json => $cb->($handle, $hash_or_arrayref)
1144 1381
1145Reads a JSON object or array, decodes it and passes it to the callback. 1382Reads a JSON object or array, decodes it and passes it to the
1383callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1146 1384
1147If a C<json> object was passed to the constructor, then that will be used 1385If a C<json> object was passed to the constructor, then that will be used
1148for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1386for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1149 1387
1150This read type uses the incremental parser available with JSON version 1388This read type uses the incremental parser available with JSON version
1159=cut 1397=cut
1160 1398
1161register_read_type json => sub { 1399register_read_type json => sub {
1162 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1163 1401
1164 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1165 1405
1166 my $data; 1406 my $data;
1167 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1168 1408
1169 my $json = $self->{json} ||= JSON->new->utf8;
1170
1171 sub { 1409 sub {
1172 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1173 1411
1174 if ($ref) { 1412 if ($ref) {
1175 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1176 $json->incr_text = ""; 1414 $json->incr_text = "";
1177 $cb->($self, $ref); 1415 $cb->($self, $ref);
1178 1416
1179 1 1417 1
1418 } elsif ($@) {
1419 # error case
1420 $json->incr_skip;
1421
1422 $self->{rbuf} = $json->incr_text;
1423 $json->incr_text = "";
1424
1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1180 } else { 1428 } else {
1181 $self->{rbuf} = ""; 1429 $self->{rbuf} = "";
1430
1182 () 1431 ()
1183 } 1432 }
1184 } 1433 }
1185}; 1434};
1186 1435
1218 # read remaining chunk 1467 # read remaining chunk
1219 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1220 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1221 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1222 } else { 1471 } else {
1223 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1224 } 1473 }
1225 }); 1474 });
1226 } 1475 }
1227 1476
1228 1 1477 1
1263Note that AnyEvent::Handle will automatically C<start_read> for you when 1512Note that AnyEvent::Handle will automatically C<start_read> for you when
1264you change the C<on_read> callback or push/unshift a read callback, and it 1513you change the C<on_read> callback or push/unshift a read callback, and it
1265will automatically C<stop_read> for you when neither C<on_read> is set nor 1514will automatically C<stop_read> for you when neither C<on_read> is set nor
1266there are any read requests in the queue. 1515there are any read requests in the queue.
1267 1516
1517These methods will have no effect when in TLS mode (as TLS doesn't support
1518half-duplex connections).
1519
1268=cut 1520=cut
1269 1521
1270sub stop_read { 1522sub stop_read {
1271 my ($self) = @_; 1523 my ($self) = @_;
1272 1524
1273 delete $self->{_rw}; 1525 delete $self->{_rw} unless $self->{tls};
1274} 1526}
1275 1527
1276sub start_read { 1528sub start_read {
1277 my ($self) = @_; 1529 my ($self) = @_;
1278 1530
1279 unless ($self->{_rw} || $self->{_eof}) { 1531 unless ($self->{_rw} || $self->{_eof}) {
1280 Scalar::Util::weaken $self; 1532 Scalar::Util::weaken $self;
1281 1533
1282 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1534 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1283 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1535 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1284 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1536 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1285 1537
1286 if ($len > 0) { 1538 if ($len > 0) {
1287 $self->{_activity} = AnyEvent->now; 1539 $self->{_activity} = AnyEvent->now;
1288 1540
1289 $self->{filter_r} 1541 if ($self->{tls}) {
1290 ? $self->{filter_r}($self, $rbuf) 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1291 : $self->{_in_drain} || $self->_drain_rbuf; 1543
1544 &_dotls ($self);
1545 } else {
1546 $self->_drain_rbuf;
1547 }
1292 1548
1293 } elsif (defined $len) { 1549 } elsif (defined $len) {
1294 delete $self->{_rw}; 1550 delete $self->{_rw};
1295 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1296 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1297 1553
1298 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1299 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1300 } 1556 }
1301 }); 1557 });
1302 } 1558 }
1303} 1559}
1304 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1305sub _dotls { 1589sub _dotls {
1306 my ($self) = @_; 1590 my ($self) = @_;
1307 1591
1308 my $buf; 1592 my $tmp;
1309 1593
1310 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1311 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1312 substr $self->{_tls_wbuf}, 0, $len, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1313 } 1597 }
1314 }
1315 1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1603 }
1604
1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1606 unless (length $tmp) {
1607 $self->{_on_starttls}
1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1619 }
1620
1621 $self->{_tls_rbuf} .= $tmp;
1622 $self->_drain_rbuf;
1623 $self->{tls} or return; # tls session might have gone away in callback
1624 }
1625
1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1627 return $self->_tls_error ($tmp)
1628 if $tmp != $ERROR_WANT_READ
1629 && ($tmp != $ERROR_SYSCALL || $!);
1630
1316 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1317 $self->{wbuf} .= $buf; 1632 $self->{wbuf} .= $tmp;
1318 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1319 } 1634 }
1320 1635
1321 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1636 $self->{_on_starttls}
1322 if (length $buf) { 1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1323 $self->{rbuf} .= $buf; 1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1324 $self->_drain_rbuf unless $self->{_in_drain};
1325 } else {
1326 # let's treat SSL-eof as we treat normal EOF
1327 $self->{_eof} = 1;
1328 $self->_shutdown;
1329 return;
1330 }
1331 }
1332
1333 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1334
1335 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1336 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1337 return $self->_error ($!, 1);
1338 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1339 return $self->_error (&Errno::EIO, 1);
1340 }
1341
1342 # all others are fine for our purposes
1343 }
1344} 1639}
1345 1640
1346=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1347 1642
1348Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1349object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1350C<starttls>. 1645C<starttls>.
1351 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1352The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1353C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1354 1653
1355The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1356used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1357 1658
1358The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1359call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1360might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1361 1663
1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1667
1362=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1363 1671
1364sub starttls { 1672sub starttls {
1365 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1366 1674
1367 $self->stoptls; 1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1368 1677
1369 if ($ssl eq "accept") { 1678 $self->{tls} = $tls;
1370 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1679 $self->{tls_ctx} = $ctx if @_ > 2;
1371 Net::SSLeay::set_accept_state ($ssl); 1680
1372 } elsif ($ssl eq "connect") { 1681 return unless $self->{fh};
1373 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1682
1374 Net::SSLeay::set_connect_state ($ssl); 1683 require Net::SSLeay;
1684
1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1375 } 1703
1376 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1377 $self->{tls} = $ssl; 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1378 1706
1379 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1380 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1381 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1382 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1383 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1711 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1384 # 1712 #
1385 # in short: this is a mess. 1713 # in short: this is a mess.
1386 # 1714 #
1387 # note that we do not try to kepe the length constant between writes as we are required to do. 1715 # note that we do not try to keep the length constant between writes as we are required to do.
1388 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1389 # and we drive openssl fully in blocking mode here. 1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1718 # have identity issues in that area.
1390 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1391 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1392 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1393 1723
1394 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1395 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1396 1726
1397 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1398 1728
1399 $self->{filter_w} = sub { 1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1400 $_[0]{_tls_wbuf} .= ${$_[1]}; 1730 if $self->{on_starttls};
1401 &_dotls; 1731
1402 }; 1732 &_dotls; # need to trigger the initial handshake
1403 $self->{filter_r} = sub { 1733 $self->start_read; # make sure we actually do read
1404 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1405 &_dotls;
1406 };
1407} 1734}
1408 1735
1409=item $handle->stoptls 1736=item $handle->stoptls
1410 1737
1411Destroys the SSL connection, if any. Partial read or write data will be 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1412lost. 1739sending a close notify to the other side, but since OpenSSL doesn't
1740support non-blocking shut downs, it is not guarenteed that you can re-use
1741the stream afterwards.
1413 1742
1414=cut 1743=cut
1415 1744
1416sub stoptls { 1745sub stoptls {
1417 my ($self) = @_; 1746 my ($self) = @_;
1418 1747
1419 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1748 if ($self->{tls}) {
1749 Net::SSLeay::shutdown ($self->{tls});
1420 1750
1421 delete $self->{_rbio}; 1751 &_dotls;
1422 delete $self->{_wbio}; 1752
1423 delete $self->{_tls_wbuf}; 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1424 delete $self->{filter_r}; 1754# # we, we... have to use openssl :/#d#
1425 delete $self->{filter_w}; 1755# &_freetls;#d#
1756 }
1757}
1758
1759sub _freetls {
1760 my ($self) = @_;
1761
1762 return unless $self->{tls};
1763
1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1766
1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1426} 1768}
1427 1769
1428sub DESTROY { 1770sub DESTROY {
1429 my $self = shift; 1771 my ($self) = @_;
1430 1772
1431 $self->stoptls; 1773 &_freetls;
1432 1774
1433 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1434 1776
1435 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1436 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1437 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1438 1780
1439 my @linger; 1781 my @linger;
1440 1782
1451 @linger = (); 1793 @linger = ();
1452 }); 1794 });
1453 } 1795 }
1454} 1796}
1455 1797
1798=item $handle->destroy
1799
1800Shuts down the handle object as much as possible - this call ensures that
1801no further callbacks will be invoked and as many resources as possible
1802will be freed. You must not call any methods on the object afterwards.
1803
1804Normally, you can just "forget" any references to an AnyEvent::Handle
1805object and it will simply shut down. This works in fatal error and EOF
1806callbacks, as well as code outside. It does I<NOT> work in a read or write
1807callback, so when you want to destroy the AnyEvent::Handle object from
1808within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1809that case.
1810
1811Destroying the handle object in this way has the advantage that callbacks
1812will be removed as well, so if those are the only reference holders (as
1813is common), then one doesn't need to do anything special to break any
1814reference cycles.
1815
1816The handle might still linger in the background and write out remaining
1817data, as specified by the C<linger> option, however.
1818
1819=cut
1820
1821sub destroy {
1822 my ($self) = @_;
1823
1824 $self->DESTROY;
1825 %$self = ();
1826}
1827
1456=item AnyEvent::Handle::TLS_CTX 1828=item AnyEvent::Handle::TLS_CTX
1457 1829
1458This function creates and returns the Net::SSLeay::CTX object used by 1830This function creates and returns the AnyEvent::TLS object used by default
1459default for TLS mode. 1831for TLS mode.
1460 1832
1461The context is created like this: 1833The context is created by calling L<AnyEvent::TLS> without any arguments.
1462
1463 Net::SSLeay::load_error_strings;
1464 Net::SSLeay::SSLeay_add_ssl_algorithms;
1465 Net::SSLeay::randomize;
1466
1467 my $CTX = Net::SSLeay::CTX_new;
1468
1469 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1470 1834
1471=cut 1835=cut
1472 1836
1473our $TLS_CTX; 1837our $TLS_CTX;
1474 1838
1475sub TLS_CTX() { 1839sub TLS_CTX() {
1476 $TLS_CTX || do { 1840 $TLS_CTX ||= do {
1477 require Net::SSLeay; 1841 require AnyEvent::TLS;
1478 1842
1479 Net::SSLeay::load_error_strings (); 1843 new AnyEvent::TLS
1480 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1481 Net::SSLeay::randomize ();
1482
1483 $TLS_CTX = Net::SSLeay::CTX_new ();
1484
1485 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1486
1487 $TLS_CTX
1488 } 1844 }
1489} 1845}
1490 1846
1491=back 1847=back
1848
1849
1850=head1 NONFREQUENTLY ASKED QUESTIONS
1851
1852=over 4
1853
1854=item I C<undef> the AnyEvent::Handle reference inside my callback and
1855still get further invocations!
1856
1857That's because AnyEvent::Handle keeps a reference to itself when handling
1858read or write callbacks.
1859
1860It is only safe to "forget" the reference inside EOF or error callbacks,
1861from within all other callbacks, you need to explicitly call the C<<
1862->destroy >> method.
1863
1864=item I get different callback invocations in TLS mode/Why can't I pause
1865reading?
1866
1867Unlike, say, TCP, TLS connections do not consist of two independent
1868communication channels, one for each direction. Or put differently. The
1869read and write directions are not independent of each other: you cannot
1870write data unless you are also prepared to read, and vice versa.
1871
1872This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1873callback invocations when you are not expecting any read data - the reason
1874is that AnyEvent::Handle always reads in TLS mode.
1875
1876During the connection, you have to make sure that you always have a
1877non-empty read-queue, or an C<on_read> watcher. At the end of the
1878connection (or when you no longer want to use it) you can call the
1879C<destroy> method.
1880
1881=item How do I read data until the other side closes the connection?
1882
1883If you just want to read your data into a perl scalar, the easiest way
1884to achieve this is by setting an C<on_read> callback that does nothing,
1885clearing the C<on_eof> callback and in the C<on_error> callback, the data
1886will be in C<$_[0]{rbuf}>:
1887
1888 $handle->on_read (sub { });
1889 $handle->on_eof (undef);
1890 $handle->on_error (sub {
1891 my $data = delete $_[0]{rbuf};
1892 });
1893
1894The reason to use C<on_error> is that TCP connections, due to latencies
1895and packets loss, might get closed quite violently with an error, when in
1896fact, all data has been received.
1897
1898It is usually better to use acknowledgements when transferring data,
1899to make sure the other side hasn't just died and you got the data
1900intact. This is also one reason why so many internet protocols have an
1901explicit QUIT command.
1902
1903=item I don't want to destroy the handle too early - how do I wait until
1904all data has been written?
1905
1906After writing your last bits of data, set the C<on_drain> callback
1907and destroy the handle in there - with the default setting of
1908C<low_water_mark> this will be called precisely when all data has been
1909written to the socket:
1910
1911 $handle->push_write (...);
1912 $handle->on_drain (sub {
1913 warn "all data submitted to the kernel\n";
1914 undef $handle;
1915 });
1916
1917If you just want to queue some data and then signal EOF to the other side,
1918consider using C<< ->push_shutdown >> instead.
1919
1920=item I want to contact a TLS/SSL server, I don't care about security.
1921
1922If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1923simply connect to it and then create the AnyEvent::Handle with the C<tls>
1924parameter:
1925
1926 tcp_connect $host, $port, sub {
1927 my ($fh) = @_;
1928
1929 my $handle = new AnyEvent::Handle
1930 fh => $fh,
1931 tls => "connect",
1932 on_error => sub { ... };
1933
1934 $handle->push_write (...);
1935 };
1936
1937=item I want to contact a TLS/SSL server, I do care about security.
1938
1939Then you should additionally enable certificate verification, including
1940peername verification, if the protocol you use supports it (see
1941L<AnyEvent::TLS>, C<verify_peername>).
1942
1943E.g. for HTTPS:
1944
1945 tcp_connect $host, $port, sub {
1946 my ($fh) = @_;
1947
1948 my $handle = new AnyEvent::Handle
1949 fh => $fh,
1950 peername => $host,
1951 tls => "connect",
1952 tls_ctx => { verify => 1, verify_peername => "https" },
1953 ...
1954
1955Note that you must specify the hostname you connected to (or whatever
1956"peername" the protocol needs) as the C<peername> argument, otherwise no
1957peername verification will be done.
1958
1959The above will use the system-dependent default set of trusted CA
1960certificates. If you want to check against a specific CA, add the
1961C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1962
1963 tls_ctx => {
1964 verify => 1,
1965 verify_peername => "https",
1966 ca_file => "my-ca-cert.pem",
1967 },
1968
1969=item I want to create a TLS/SSL server, how do I do that?
1970
1971Well, you first need to get a server certificate and key. You have
1972three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1973self-signed certificate (cheap. check the search engine of your choice,
1974there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1975nice program for that purpose).
1976
1977Then create a file with your private key (in PEM format, see
1978L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1979file should then look like this:
1980
1981 -----BEGIN RSA PRIVATE KEY-----
1982 ...header data
1983 ... lots of base64'y-stuff
1984 -----END RSA PRIVATE KEY-----
1985
1986 -----BEGIN CERTIFICATE-----
1987 ... lots of base64'y-stuff
1988 -----END CERTIFICATE-----
1989
1990The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1991specify this file as C<cert_file>:
1992
1993 tcp_server undef, $port, sub {
1994 my ($fh) = @_;
1995
1996 my $handle = new AnyEvent::Handle
1997 fh => $fh,
1998 tls => "accept",
1999 tls_ctx => { cert_file => "my-server-keycert.pem" },
2000 ...
2001
2002When you have intermediate CA certificates that your clients might not
2003know about, just append them to the C<cert_file>.
2004
2005=back
2006
1492 2007
1493=head1 SUBCLASSING AnyEvent::Handle 2008=head1 SUBCLASSING AnyEvent::Handle
1494 2009
1495In many cases, you might want to subclass AnyEvent::Handle. 2010In many cases, you might want to subclass AnyEvent::Handle.
1496 2011

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines