ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.17 by root, Sat May 24 04:17:45 2008 UTC vs.
Revision 1.86 by root, Thu Aug 21 20:41:16 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.232;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
69 73
70=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
71 75
72The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
73 77
74NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
76 81
77=item on_eof => $cb->($self) 82=item on_eof => $cb->($handle)
78 83
79Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
80 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
81While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
83waiting for data. 95waiting for data.
84 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
85=item on_error => $cb->($self) 100=item on_error => $cb->($handle, $fatal)
86 101
87This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
88ocurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
89or a read error. 104connect or a read error.
90 105
91The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 116
94On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 119
97While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
99die. 122C<croak>.
100 123
101=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
102 125
103This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
105 130
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or acces sthe C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
108 133
109When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
113 138
114=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
115 140
116This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
118 143
119To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
120 171
121=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
122 173
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
128be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
131isn't finished). 182isn't finished).
132 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
133=item read_size => <bytes> 208=item read_size => <bytes>
134 209
135The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
136on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
137 212
138=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
139 214
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
142considered empty. 217considered empty.
143 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect>
241mode.
242
243You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle.
247
248See the C<starttls> method for when need to start TLS negotiation later.
249
250=item tls_ctx => $ssl_ctx
251
252Use the given Net::SSLeay::CTX object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255
256=item json => JSON or JSON::XS object
257
258This is the json coder object used by the C<json> read and write types.
259
260If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one (on demand), which will write and expect UTF-8 encoded JSON
262texts.
263
264Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself.
266
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time.
272
144=back 273=back
145 274
146=cut 275=cut
147 276
148sub new { 277sub new {
152 281
153 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 282 $self->{fh} or Carp::croak "mandatory argument fh is missing";
154 283
155 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 284 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
156 285
157 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 286 if ($self->{tls}) {
158 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 287 require Net::SSLeay;
288 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
289 }
290
291 $self->{_activity} = AnyEvent->now;
292 $self->_timeout;
293
159 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 294 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
160 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 295 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
161 296
162 $self->start_read; 297 $self->start_read
298 if $self->{on_read};
163 299
164 $self 300 $self
165} 301}
166 302
167sub _shutdown { 303sub _shutdown {
168 my ($self) = @_; 304 my ($self) = @_;
169 305
306 delete $self->{_tw};
170 delete $self->{rw}; 307 delete $self->{_rw};
171 delete $self->{ww}; 308 delete $self->{_ww};
172 delete $self->{fh}; 309 delete $self->{fh};
173}
174 310
311 $self->stoptls;
312
313 delete $self->{on_read};
314 delete $self->{_queue};
315}
316
175sub error { 317sub _error {
176 my ($self) = @_; 318 my ($self, $errno, $fatal) = @_;
177 319
178 {
179 local $!;
180 $self->_shutdown; 320 $self->_shutdown
181 } 321 if $fatal;
322
323 $! = $errno;
182 324
183 if ($self->{on_error}) { 325 if ($self->{on_error}) {
184 $self->{on_error}($self); 326 $self->{on_error}($self, $fatal);
185 } else { 327 } else {
186 die "AnyEvent::Handle uncaught fatal error: $!"; 328 Carp::croak "AnyEvent::Handle uncaught error: $!";
187 } 329 }
188} 330}
189 331
190=item $fh = $handle->fh 332=item $fh = $handle->fh
191 333
192This method returns the filehandle of the L<AnyEvent::Handle> object. 334This method returns the file handle of the L<AnyEvent::Handle> object.
193 335
194=cut 336=cut
195 337
196sub fh { $_[0]->{fh} } 338sub fh { $_[0]{fh} }
197 339
198=item $handle->on_error ($cb) 340=item $handle->on_error ($cb)
199 341
200Replace the current C<on_error> callback (see the C<on_error> constructor argument). 342Replace the current C<on_error> callback (see the C<on_error> constructor argument).
201 343
213 355
214sub on_eof { 356sub on_eof {
215 $_[0]{on_eof} = $_[1]; 357 $_[0]{on_eof} = $_[1];
216} 358}
217 359
360=item $handle->on_timeout ($cb)
361
362Replace the current C<on_timeout> callback, or disables the callback
363(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
364argument.
365
366=cut
367
368sub on_timeout {
369 $_[0]{on_timeout} = $_[1];
370}
371
372=item $handle->autocork ($boolean)
373
374Enables or disables the current autocork behaviour (see C<autocork>
375constructor argument).
376
377=cut
378
379=item $handle->no_delay ($boolean)
380
381Enables or disables the C<no_delay> setting (see constructor argument of
382the same name for details).
383
384=cut
385
386sub no_delay {
387 $_[0]{no_delay} = $_[1];
388
389 eval {
390 local $SIG{__DIE__};
391 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
392 };
393}
394
395#############################################################################
396
397=item $handle->timeout ($seconds)
398
399Configures (or disables) the inactivity timeout.
400
401=cut
402
403sub timeout {
404 my ($self, $timeout) = @_;
405
406 $self->{timeout} = $timeout;
407 $self->_timeout;
408}
409
410# reset the timeout watcher, as neccessary
411# also check for time-outs
412sub _timeout {
413 my ($self) = @_;
414
415 if ($self->{timeout}) {
416 my $NOW = AnyEvent->now;
417
418 # when would the timeout trigger?
419 my $after = $self->{_activity} + $self->{timeout} - $NOW;
420
421 # now or in the past already?
422 if ($after <= 0) {
423 $self->{_activity} = $NOW;
424
425 if ($self->{on_timeout}) {
426 $self->{on_timeout}($self);
427 } else {
428 $self->_error (&Errno::ETIMEDOUT);
429 }
430
431 # callback could have changed timeout value, optimise
432 return unless $self->{timeout};
433
434 # calculate new after
435 $after = $self->{timeout};
436 }
437
438 Scalar::Util::weaken $self;
439 return unless $self; # ->error could have destroyed $self
440
441 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
442 delete $self->{_tw};
443 $self->_timeout;
444 });
445 } else {
446 delete $self->{_tw};
447 }
448}
449
218############################################################################# 450#############################################################################
219 451
220=back 452=back
221 453
222=head2 WRITE QUEUE 454=head2 WRITE QUEUE
225for reading. 457for reading.
226 458
227The write queue is very simple: you can add data to its end, and 459The write queue is very simple: you can add data to its end, and
228AnyEvent::Handle will automatically try to get rid of it for you. 460AnyEvent::Handle will automatically try to get rid of it for you.
229 461
230When data could be writtena nd the write buffer is shorter then the low 462When data could be written and the write buffer is shorter then the low
231water mark, the C<on_drain> callback will be invoked. 463water mark, the C<on_drain> callback will be invoked.
232 464
233=over 4 465=over 4
234 466
235=item $handle->on_drain ($cb) 467=item $handle->on_drain ($cb)
257=cut 489=cut
258 490
259sub _drain_wbuf { 491sub _drain_wbuf {
260 my ($self) = @_; 492 my ($self) = @_;
261 493
262 unless ($self->{ww}) { 494 if (!$self->{_ww} && length $self->{wbuf}) {
495
263 Scalar::Util::weaken $self; 496 Scalar::Util::weaken $self;
497
264 my $cb = sub { 498 my $cb = sub {
265 my $len = syswrite $self->{fh}, $self->{wbuf}; 499 my $len = syswrite $self->{fh}, $self->{wbuf};
266 500
267 if ($len > 0) { 501 if ($len >= 0) {
268 substr $self->{wbuf}, 0, $len, ""; 502 substr $self->{wbuf}, 0, $len, "";
503
504 $self->{_activity} = AnyEvent->now;
269 505
270 $self->{on_drain}($self) 506 $self->{on_drain}($self)
271 if $self->{low_water_mark} >= length $self->{wbuf} 507 if $self->{low_water_mark} >= length $self->{wbuf}
272 && $self->{on_drain}; 508 && $self->{on_drain};
273 509
274 delete $self->{ww} unless length $self->{wbuf}; 510 delete $self->{_ww} unless length $self->{wbuf};
275 } elsif ($! != EAGAIN && $! != EINTR) { 511 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
276 $self->error; 512 $self->_error ($!, 1);
277 } 513 }
278 }; 514 };
279 515
516 # try to write data immediately
517 $cb->() unless $self->{autocork};
518
519 # if still data left in wbuf, we need to poll
280 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 520 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
281 521 if length $self->{wbuf};
282 $cb->($self);
283 }; 522 };
523}
524
525our %WH;
526
527sub register_write_type($$) {
528 $WH{$_[0]} = $_[1];
284} 529}
285 530
286sub push_write { 531sub push_write {
287 my $self = shift; 532 my $self = shift;
288 533
534 if (@_ > 1) {
535 my $type = shift;
536
537 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
538 ->($self, @_);
539 }
540
289 if ($self->{filter_w}) { 541 if ($self->{filter_w}) {
290 $self->{filter_w}->(\$_[0]); 542 $self->{filter_w}($self, \$_[0]);
291 } else { 543 } else {
292 $self->{wbuf} .= $_[0]; 544 $self->{wbuf} .= $_[0];
293 $self->_drain_wbuf; 545 $self->_drain_wbuf;
294 } 546 }
295} 547}
296 548
549=item $handle->push_write (type => @args)
550
551Instead of formatting your data yourself, you can also let this module do
552the job by specifying a type and type-specific arguments.
553
554Predefined types are (if you have ideas for additional types, feel free to
555drop by and tell us):
556
557=over 4
558
559=item netstring => $string
560
561Formats the given value as netstring
562(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
563
564=cut
565
566register_write_type netstring => sub {
567 my ($self, $string) = @_;
568
569 sprintf "%d:%s,", (length $string), $string
570};
571
572=item packstring => $format, $data
573
574An octet string prefixed with an encoded length. The encoding C<$format>
575uses the same format as a Perl C<pack> format, but must specify a single
576integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
577optional C<!>, C<< < >> or C<< > >> modifier).
578
579=cut
580
581register_write_type packstring => sub {
582 my ($self, $format, $string) = @_;
583
584 pack "$format/a*", $string
585};
586
587=item json => $array_or_hashref
588
589Encodes the given hash or array reference into a JSON object. Unless you
590provide your own JSON object, this means it will be encoded to JSON text
591in UTF-8.
592
593JSON objects (and arrays) are self-delimiting, so you can write JSON at
594one end of a handle and read them at the other end without using any
595additional framing.
596
597The generated JSON text is guaranteed not to contain any newlines: While
598this module doesn't need delimiters after or between JSON texts to be
599able to read them, many other languages depend on that.
600
601A simple RPC protocol that interoperates easily with others is to send
602JSON arrays (or objects, although arrays are usually the better choice as
603they mimic how function argument passing works) and a newline after each
604JSON text:
605
606 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
607 $handle->push_write ("\012");
608
609An AnyEvent::Handle receiver would simply use the C<json> read type and
610rely on the fact that the newline will be skipped as leading whitespace:
611
612 $handle->push_read (json => sub { my $array = $_[1]; ... });
613
614Other languages could read single lines terminated by a newline and pass
615this line into their JSON decoder of choice.
616
617=cut
618
619register_write_type json => sub {
620 my ($self, $ref) = @_;
621
622 require JSON;
623
624 $self->{json} ? $self->{json}->encode ($ref)
625 : JSON::encode_json ($ref)
626};
627
628=item storable => $reference
629
630Freezes the given reference using L<Storable> and writes it to the
631handle. Uses the C<nfreeze> format.
632
633=cut
634
635register_write_type storable => sub {
636 my ($self, $ref) = @_;
637
638 require Storable;
639
640 pack "w/a*", Storable::nfreeze ($ref)
641};
642
643=back
644
645=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
646
647This function (not method) lets you add your own types to C<push_write>.
648Whenever the given C<type> is used, C<push_write> will invoke the code
649reference with the handle object and the remaining arguments.
650
651The code reference is supposed to return a single octet string that will
652be appended to the write buffer.
653
654Note that this is a function, and all types registered this way will be
655global, so try to use unique names.
656
657=cut
658
297############################################################################# 659#############################################################################
298 660
299=back 661=back
300 662
301=head2 READ QUEUE 663=head2 READ QUEUE
307ways, the "simple" way, using only C<on_read> and the "complex" way, using 669ways, the "simple" way, using only C<on_read> and the "complex" way, using
308a queue. 670a queue.
309 671
310In the simple case, you just install an C<on_read> callback and whenever 672In the simple case, you just install an C<on_read> callback and whenever
311new data arrives, it will be called. You can then remove some data (if 673new data arrives, it will be called. You can then remove some data (if
312enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 674enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
313or not. 675leave the data there if you want to accumulate more (e.g. when only a
676partial message has been received so far).
314 677
315In the more complex case, you want to queue multiple callbacks. In this 678In the more complex case, you want to queue multiple callbacks. In this
316case, AnyEvent::Handle will call the first queued callback each time new 679case, AnyEvent::Handle will call the first queued callback each time new
317data arrives and removes it when it has done its job (see C<push_read>, 680data arrives (also the first time it is queued) and removes it when it has
318below). 681done its job (see C<push_read>, below).
319 682
320This way you can, for example, push three line-reads, followed by reading 683This way you can, for example, push three line-reads, followed by reading
321a chunk of data, and AnyEvent::Handle will execute them in order. 684a chunk of data, and AnyEvent::Handle will execute them in order.
322 685
323Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 686Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
324the specified number of bytes which give an XML datagram. 687the specified number of bytes which give an XML datagram.
325 688
326 # in the default state, expect some header bytes 689 # in the default state, expect some header bytes
327 $handle->on_read (sub { 690 $handle->on_read (sub {
328 # some data is here, now queue the length-header-read (4 octets) 691 # some data is here, now queue the length-header-read (4 octets)
329 shift->unshift_read_chunk (4, sub { 692 shift->unshift_read (chunk => 4, sub {
330 # header arrived, decode 693 # header arrived, decode
331 my $len = unpack "N", $_[1]; 694 my $len = unpack "N", $_[1];
332 695
333 # now read the payload 696 # now read the payload
334 shift->unshift_read_chunk ($len, sub { 697 shift->unshift_read (chunk => $len, sub {
335 my $xml = $_[1]; 698 my $xml = $_[1];
336 # handle xml 699 # handle xml
337 }); 700 });
338 }); 701 });
339 }); 702 });
340 703
341Example 2: Implement a client for a protocol that replies either with 704Example 2: Implement a client for a protocol that replies either with "OK"
342"OK" and another line or "ERROR" for one request, and 64 bytes for the 705and another line or "ERROR" for the first request that is sent, and 64
343second request. Due tot he availability of a full queue, we can just 706bytes for the second request. Due to the availability of a queue, we can
344pipeline sending both requests and manipulate the queue as necessary in 707just pipeline sending both requests and manipulate the queue as necessary
345the callbacks: 708in the callbacks.
346 709
347 # request one 710When the first callback is called and sees an "OK" response, it will
711C<unshift> another line-read. This line-read will be queued I<before> the
71264-byte chunk callback.
713
714 # request one, returns either "OK + extra line" or "ERROR"
348 $handle->push_write ("request 1\015\012"); 715 $handle->push_write ("request 1\015\012");
349 716
350 # we expect "ERROR" or "OK" as response, so push a line read 717 # we expect "ERROR" or "OK" as response, so push a line read
351 $handle->push_read_line (sub { 718 $handle->push_read (line => sub {
352 # if we got an "OK", we have to _prepend_ another line, 719 # if we got an "OK", we have to _prepend_ another line,
353 # so it will be read before the second request reads its 64 bytes 720 # so it will be read before the second request reads its 64 bytes
354 # which are already in the queue when this callback is called 721 # which are already in the queue when this callback is called
355 # we don't do this in case we got an error 722 # we don't do this in case we got an error
356 if ($_[1] eq "OK") { 723 if ($_[1] eq "OK") {
357 $_[0]->unshift_read_line (sub { 724 $_[0]->unshift_read (line => sub {
358 my $response = $_[1]; 725 my $response = $_[1];
359 ... 726 ...
360 }); 727 });
361 } 728 }
362 }); 729 });
363 730
364 # request two 731 # request two, simply returns 64 octets
365 $handle->push_write ("request 2\015\012"); 732 $handle->push_write ("request 2\015\012");
366 733
367 # simply read 64 bytes, always 734 # simply read 64 bytes, always
368 $handle->push_read_chunk (64, sub { 735 $handle->push_read (chunk => 64, sub {
369 my $response = $_[1]; 736 my $response = $_[1];
370 ... 737 ...
371 }); 738 });
372 739
373=over 4 740=over 4
374 741
375=cut 742=cut
376 743
377sub _drain_rbuf { 744sub _drain_rbuf {
378 my ($self) = @_; 745 my ($self) = @_;
746
747 local $self->{_in_drain} = 1;
379 748
380 if ( 749 if (
381 defined $self->{rbuf_max} 750 defined $self->{rbuf_max}
382 && $self->{rbuf_max} < length $self->{rbuf} 751 && $self->{rbuf_max} < length $self->{rbuf}
383 ) { 752 ) {
384 $! = &Errno::ENOSPC; return $self->error; 753 $self->_error (&Errno::ENOSPC, 1), return;
385 } 754 }
386 755
387 return if $self->{in_drain}; 756 while () {
388 local $self->{in_drain} = 1;
389
390 while (my $len = length $self->{rbuf}) { 757 my $len = length $self->{rbuf};
391 no strict 'refs'; 758
392 if (my $cb = shift @{ $self->{queue} }) { 759 if (my $cb = shift @{ $self->{_queue} }) {
393 if (!$cb->($self)) { 760 unless ($cb->($self)) {
394 if ($self->{eof}) { 761 if ($self->{_eof}) {
395 # no progress can be made (not enough data and no data forthcoming) 762 # no progress can be made (not enough data and no data forthcoming)
396 $! = &Errno::EPIPE; return $self->error; 763 $self->_error (&Errno::EPIPE, 1), return;
397 } 764 }
398 765
399 unshift @{ $self->{queue} }, $cb; 766 unshift @{ $self->{_queue} }, $cb;
400 return; 767 last;
401 } 768 }
402 } elsif ($self->{on_read}) { 769 } elsif ($self->{on_read}) {
770 last unless $len;
771
403 $self->{on_read}($self); 772 $self->{on_read}($self);
404 773
405 if ( 774 if (
406 $self->{eof} # if no further data will arrive
407 && $len == length $self->{rbuf} # and no data has been consumed 775 $len == length $self->{rbuf} # if no data has been consumed
408 && !@{ $self->{queue} } # and the queue is still empty 776 && !@{ $self->{_queue} } # and the queue is still empty
409 && $self->{on_read} # and we still want to read data 777 && $self->{on_read} # but we still have on_read
410 ) { 778 ) {
779 # no further data will arrive
411 # then no progress can be made 780 # so no progress can be made
412 $! = &Errno::EPIPE; return $self->error; 781 $self->_error (&Errno::EPIPE, 1), return
782 if $self->{_eof};
783
784 last; # more data might arrive
413 } 785 }
414 } else { 786 } else {
415 # read side becomes idle 787 # read side becomes idle
416 delete $self->{rw}; 788 delete $self->{_rw};
417 return; 789 last;
418 } 790 }
419 } 791 }
420 792
421 if ($self->{eof}) { 793 if ($self->{_eof}) {
422 $self->_shutdown; 794 if ($self->{on_eof}) {
423 $self->{on_eof}($self) 795 $self->{on_eof}($self)
424 if $self->{on_eof}; 796 } else {
797 $self->_error (0, 1);
798 }
799 }
800
801 # may need to restart read watcher
802 unless ($self->{_rw}) {
803 $self->start_read
804 if $self->{on_read} || @{ $self->{_queue} };
425 } 805 }
426} 806}
427 807
428=item $handle->on_read ($cb) 808=item $handle->on_read ($cb)
429 809
435 815
436sub on_read { 816sub on_read {
437 my ($self, $cb) = @_; 817 my ($self, $cb) = @_;
438 818
439 $self->{on_read} = $cb; 819 $self->{on_read} = $cb;
820 $self->_drain_rbuf if $cb && !$self->{_in_drain};
440} 821}
441 822
442=item $handle->rbuf 823=item $handle->rbuf
443 824
444Returns the read buffer (as a modifiable lvalue). 825Returns the read buffer (as a modifiable lvalue).
463Append the given callback to the end of the queue (C<push_read>) or 844Append the given callback to the end of the queue (C<push_read>) or
464prepend it (C<unshift_read>). 845prepend it (C<unshift_read>).
465 846
466The callback is called each time some additional read data arrives. 847The callback is called each time some additional read data arrives.
467 848
468It must check wether enough data is in the read buffer already. 849It must check whether enough data is in the read buffer already.
469 850
470If not enough data is available, it must return the empty list or a false 851If not enough data is available, it must return the empty list or a false
471value, in which case it will be called repeatedly until enough data is 852value, in which case it will be called repeatedly until enough data is
472available (or an error condition is detected). 853available (or an error condition is detected).
473 854
475interested in (which can be none at all) and return a true value. After returning 856interested in (which can be none at all) and return a true value. After returning
476true, it will be removed from the queue. 857true, it will be removed from the queue.
477 858
478=cut 859=cut
479 860
861our %RH;
862
863sub register_read_type($$) {
864 $RH{$_[0]} = $_[1];
865}
866
480sub push_read { 867sub push_read {
481 my ($self, $cb) = @_; 868 my $self = shift;
869 my $cb = pop;
482 870
871 if (@_) {
872 my $type = shift;
873
874 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
875 ->($self, $cb, @_);
876 }
877
483 push @{ $self->{queue} }, $cb; 878 push @{ $self->{_queue} }, $cb;
484 $self->_drain_rbuf; 879 $self->_drain_rbuf unless $self->{_in_drain};
485} 880}
486 881
487sub unshift_read { 882sub unshift_read {
488 my ($self, $cb) = @_; 883 my $self = shift;
884 my $cb = pop;
489 885
886 if (@_) {
887 my $type = shift;
888
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
890 ->($self, $cb, @_);
891 }
892
893
490 push @{ $self->{queue} }, $cb; 894 unshift @{ $self->{_queue} }, $cb;
491 $self->_drain_rbuf; 895 $self->_drain_rbuf unless $self->{_in_drain};
492} 896}
493 897
494=item $handle->push_read_chunk ($len, $cb->($self, $data)) 898=item $handle->push_read (type => @args, $cb)
495 899
496=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 900=item $handle->unshift_read (type => @args, $cb)
497 901
498Append the given callback to the end of the queue (C<push_read_chunk>) or 902Instead of providing a callback that parses the data itself you can chose
499prepend it (C<unshift_read_chunk>). 903between a number of predefined parsing formats, for chunks of data, lines
904etc.
500 905
501The callback will be called only once C<$len> bytes have been read, and 906Predefined types are (if you have ideas for additional types, feel free to
502these C<$len> bytes will be passed to the callback. 907drop by and tell us):
503 908
504=cut 909=over 4
505 910
506sub _read_chunk($$) { 911=item chunk => $octets, $cb->($handle, $data)
912
913Invoke the callback only once C<$octets> bytes have been read. Pass the
914data read to the callback. The callback will never be called with less
915data.
916
917Example: read 2 bytes.
918
919 $handle->push_read (chunk => 2, sub {
920 warn "yay ", unpack "H*", $_[1];
921 });
922
923=cut
924
925register_read_type chunk => sub {
507 my ($self, $len, $cb) = @_; 926 my ($self, $cb, $len) = @_;
508 927
509 sub { 928 sub {
510 $len <= length $_[0]{rbuf} or return; 929 $len <= length $_[0]{rbuf} or return;
511 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 930 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
512 1 931 1
513 } 932 }
514} 933};
515 934
516sub push_read_chunk { 935=item line => [$eol, ]$cb->($handle, $line, $eol)
517 $_[0]->push_read (&_read_chunk);
518}
519
520
521sub unshift_read_chunk {
522 $_[0]->unshift_read (&_read_chunk);
523}
524
525=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
526
527=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
528
529Append the given callback to the end of the queue (C<push_read_line>) or
530prepend it (C<unshift_read_line>).
531 936
532The callback will be called only once a full line (including the end of 937The callback will be called only once a full line (including the end of
533line marker, C<$eol>) has been read. This line (excluding the end of line 938line marker, C<$eol>) has been read. This line (excluding the end of line
534marker) will be passed to the callback as second argument (C<$line>), and 939marker) will be passed to the callback as second argument (C<$line>), and
535the end of line marker as the third argument (C<$eol>). 940the end of line marker as the third argument (C<$eol>).
546Partial lines at the end of the stream will never be returned, as they are 951Partial lines at the end of the stream will never be returned, as they are
547not marked by the end of line marker. 952not marked by the end of line marker.
548 953
549=cut 954=cut
550 955
551sub _read_line($$) { 956register_read_type line => sub {
552 my $self = shift; 957 my ($self, $cb, $eol) = @_;
553 my $cb = pop;
554 my $eol = @_ ? shift : qr|(\015?\012)|;
555 my $pos;
556 958
959 if (@_ < 3) {
960 # this is more than twice as fast as the generic code below
961 sub {
962 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
963
964 $cb->($_[0], $1, $2);
965 1
966 }
967 } else {
557 $eol = quotemeta $eol unless ref $eol; 968 $eol = quotemeta $eol unless ref $eol;
558 $eol = qr|^(.*?)($eol)|s; 969 $eol = qr|^(.*?)($eol)|s;
970
971 sub {
972 $_[0]{rbuf} =~ s/$eol// or return;
973
974 $cb->($_[0], $1, $2);
975 1
976 }
977 }
978};
979
980=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
981
982Makes a regex match against the regex object C<$accept> and returns
983everything up to and including the match.
984
985Example: read a single line terminated by '\n'.
986
987 $handle->push_read (regex => qr<\n>, sub { ... });
988
989If C<$reject> is given and not undef, then it determines when the data is
990to be rejected: it is matched against the data when the C<$accept> regex
991does not match and generates an C<EBADMSG> error when it matches. This is
992useful to quickly reject wrong data (to avoid waiting for a timeout or a
993receive buffer overflow).
994
995Example: expect a single decimal number followed by whitespace, reject
996anything else (not the use of an anchor).
997
998 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
999
1000If C<$skip> is given and not C<undef>, then it will be matched against
1001the receive buffer when neither C<$accept> nor C<$reject> match,
1002and everything preceding and including the match will be accepted
1003unconditionally. This is useful to skip large amounts of data that you
1004know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1005have to start matching from the beginning. This is purely an optimisation
1006and is usually worth only when you expect more than a few kilobytes.
1007
1008Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1009expect the header to be very large (it isn't in practise, but...), we use
1010a skip regex to skip initial portions. The skip regex is tricky in that
1011it only accepts something not ending in either \015 or \012, as these are
1012required for the accept regex.
1013
1014 $handle->push_read (regex =>
1015 qr<\015\012\015\012>,
1016 undef, # no reject
1017 qr<^.*[^\015\012]>,
1018 sub { ... });
1019
1020=cut
1021
1022register_read_type regex => sub {
1023 my ($self, $cb, $accept, $reject, $skip) = @_;
1024
1025 my $data;
1026 my $rbuf = \$self->{rbuf};
559 1027
560 sub { 1028 sub {
561 $_[0]{rbuf} =~ s/$eol// or return; 1029 # accept
1030 if ($$rbuf =~ $accept) {
1031 $data .= substr $$rbuf, 0, $+[0], "";
1032 $cb->($self, $data);
1033 return 1;
1034 }
1035
1036 # reject
1037 if ($reject && $$rbuf =~ $reject) {
1038 $self->_error (&Errno::EBADMSG);
1039 }
562 1040
563 $cb->($_[0], $1, $2); 1041 # skip
1042 if ($skip && $$rbuf =~ $skip) {
1043 $data .= substr $$rbuf, 0, $+[0], "";
1044 }
1045
1046 ()
1047 }
1048};
1049
1050=item netstring => $cb->($handle, $string)
1051
1052A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1053
1054Throws an error with C<$!> set to EBADMSG on format violations.
1055
1056=cut
1057
1058register_read_type netstring => sub {
1059 my ($self, $cb) = @_;
1060
1061 sub {
1062 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1063 if ($_[0]{rbuf} =~ /[^0-9]/) {
1064 $self->_error (&Errno::EBADMSG);
1065 }
1066 return;
1067 }
1068
1069 my $len = $1;
1070
1071 $self->unshift_read (chunk => $len, sub {
1072 my $string = $_[1];
1073 $_[0]->unshift_read (chunk => 1, sub {
1074 if ($_[1] eq ",") {
1075 $cb->($_[0], $string);
1076 } else {
1077 $self->_error (&Errno::EBADMSG);
1078 }
1079 });
1080 });
1081
564 1 1082 1
565 } 1083 }
566} 1084};
567 1085
568sub push_read_line { 1086=item packstring => $format, $cb->($handle, $string)
569 $_[0]->push_read (&_read_line);
570}
571 1087
572sub unshift_read_line { 1088An octet string prefixed with an encoded length. The encoding C<$format>
573 $_[0]->unshift_read (&_read_line); 1089uses the same format as a Perl C<pack> format, but must specify a single
574} 1090integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1091optional C<!>, C<< < >> or C<< > >> modifier).
1092
1093DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1094
1095Example: read a block of data prefixed by its length in BER-encoded
1096format (very efficient).
1097
1098 $handle->push_read (packstring => "w", sub {
1099 my ($handle, $data) = @_;
1100 });
1101
1102=cut
1103
1104register_read_type packstring => sub {
1105 my ($self, $cb, $format) = @_;
1106
1107 sub {
1108 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1109 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1110 or return;
1111
1112 $format = length pack $format, $len;
1113
1114 # bypass unshift if we already have the remaining chunk
1115 if ($format + $len <= length $_[0]{rbuf}) {
1116 my $data = substr $_[0]{rbuf}, $format, $len;
1117 substr $_[0]{rbuf}, 0, $format + $len, "";
1118 $cb->($_[0], $data);
1119 } else {
1120 # remove prefix
1121 substr $_[0]{rbuf}, 0, $format, "";
1122
1123 # read remaining chunk
1124 $_[0]->unshift_read (chunk => $len, $cb);
1125 }
1126
1127 1
1128 }
1129};
1130
1131=item json => $cb->($handle, $hash_or_arrayref)
1132
1133Reads a JSON object or array, decodes it and passes it to the callback.
1134
1135If a C<json> object was passed to the constructor, then that will be used
1136for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1137
1138This read type uses the incremental parser available with JSON version
11392.09 (and JSON::XS version 2.2) and above. You have to provide a
1140dependency on your own: this module will load the JSON module, but
1141AnyEvent does not depend on it itself.
1142
1143Since JSON texts are fully self-delimiting, the C<json> read and write
1144types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1145the C<json> write type description, above, for an actual example.
1146
1147=cut
1148
1149register_read_type json => sub {
1150 my ($self, $cb) = @_;
1151
1152 require JSON;
1153
1154 my $data;
1155 my $rbuf = \$self->{rbuf};
1156
1157 my $json = $self->{json} ||= JSON->new->utf8;
1158
1159 sub {
1160 my $ref = $json->incr_parse ($self->{rbuf});
1161
1162 if ($ref) {
1163 $self->{rbuf} = $json->incr_text;
1164 $json->incr_text = "";
1165 $cb->($self, $ref);
1166
1167 1
1168 } else {
1169 $self->{rbuf} = "";
1170 ()
1171 }
1172 }
1173};
1174
1175=item storable => $cb->($handle, $ref)
1176
1177Deserialises a L<Storable> frozen representation as written by the
1178C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1179data).
1180
1181Raises C<EBADMSG> error if the data could not be decoded.
1182
1183=cut
1184
1185register_read_type storable => sub {
1186 my ($self, $cb) = @_;
1187
1188 require Storable;
1189
1190 sub {
1191 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1192 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1193 or return;
1194
1195 my $format = length pack "w", $len;
1196
1197 # bypass unshift if we already have the remaining chunk
1198 if ($format + $len <= length $_[0]{rbuf}) {
1199 my $data = substr $_[0]{rbuf}, $format, $len;
1200 substr $_[0]{rbuf}, 0, $format + $len, "";
1201 $cb->($_[0], Storable::thaw ($data));
1202 } else {
1203 # remove prefix
1204 substr $_[0]{rbuf}, 0, $format, "";
1205
1206 # read remaining chunk
1207 $_[0]->unshift_read (chunk => $len, sub {
1208 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1209 $cb->($_[0], $ref);
1210 } else {
1211 $self->_error (&Errno::EBADMSG);
1212 }
1213 });
1214 }
1215
1216 1
1217 }
1218};
1219
1220=back
1221
1222=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1223
1224This function (not method) lets you add your own types to C<push_read>.
1225
1226Whenever the given C<type> is used, C<push_read> will invoke the code
1227reference with the handle object, the callback and the remaining
1228arguments.
1229
1230The code reference is supposed to return a callback (usually a closure)
1231that works as a plain read callback (see C<< ->push_read ($cb) >>).
1232
1233It should invoke the passed callback when it is done reading (remember to
1234pass C<$handle> as first argument as all other callbacks do that).
1235
1236Note that this is a function, and all types registered this way will be
1237global, so try to use unique names.
1238
1239For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1240search for C<register_read_type>)).
575 1241
576=item $handle->stop_read 1242=item $handle->stop_read
577 1243
578=item $handle->start_read 1244=item $handle->start_read
579 1245
580In rare cases you actually do not want to read anything form the 1246In rare cases you actually do not want to read anything from the
581socket. In this case you can call C<stop_read>. Neither C<on_read> no 1247socket. In this case you can call C<stop_read>. Neither C<on_read> nor
582any queued callbacks will be executed then. To start readign again, call 1248any queued callbacks will be executed then. To start reading again, call
583C<start_read>. 1249C<start_read>.
1250
1251Note that AnyEvent::Handle will automatically C<start_read> for you when
1252you change the C<on_read> callback or push/unshift a read callback, and it
1253will automatically C<stop_read> for you when neither C<on_read> is set nor
1254there are any read requests in the queue.
584 1255
585=cut 1256=cut
586 1257
587sub stop_read { 1258sub stop_read {
588 my ($self) = @_; 1259 my ($self) = @_;
589 1260
590 delete $self->{rw}; 1261 delete $self->{_rw};
591} 1262}
592 1263
593sub start_read { 1264sub start_read {
594 my ($self) = @_; 1265 my ($self) = @_;
595 1266
596 unless ($self->{rw} || $self->{eof}) { 1267 unless ($self->{_rw} || $self->{_eof}) {
597 Scalar::Util::weaken $self; 1268 Scalar::Util::weaken $self;
598 1269
599 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1270 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
600 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1271 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
601 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1272 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
602 1273
603 if ($len > 0) { 1274 if ($len > 0) {
1275 $self->{_activity} = AnyEvent->now;
1276
604 $self->{filter_r} 1277 $self->{filter_r}
605 ? $self->{filter_r}->($rbuf) 1278 ? $self->{filter_r}($self, $rbuf)
606 : $self->_drain_rbuf; 1279 : $self->{_in_drain} || $self->_drain_rbuf;
607 1280
608 } elsif (defined $len) { 1281 } elsif (defined $len) {
609 delete $self->{rw}; 1282 delete $self->{_rw};
610 $self->{eof} = 1; 1283 $self->{_eof} = 1;
611 $self->_drain_rbuf; 1284 $self->_drain_rbuf unless $self->{_in_drain};
612 1285
613 } elsif ($! != EAGAIN && $! != EINTR) { 1286 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
614 return $self->error; 1287 return $self->_error ($!, 1);
615 } 1288 }
616 }); 1289 });
617 } 1290 }
618} 1291}
619 1292
1293sub _dotls {
1294 my ($self) = @_;
1295
1296 my $buf;
1297
1298 if (length $self->{_tls_wbuf}) {
1299 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1300 substr $self->{_tls_wbuf}, 0, $len, "";
1301 }
1302 }
1303
1304 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1305 $self->{wbuf} .= $buf;
1306 $self->_drain_wbuf;
1307 }
1308
1309 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1310 if (length $buf) {
1311 $self->{rbuf} .= $buf;
1312 $self->_drain_rbuf unless $self->{_in_drain};
1313 } else {
1314 # let's treat SSL-eof as we treat normal EOF
1315 $self->{_eof} = 1;
1316 $self->_shutdown;
1317 return;
1318 }
1319 }
1320
1321 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1322
1323 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1324 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1325 return $self->_error ($!, 1);
1326 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1327 return $self->_error (&Errno::EIO, 1);
1328 }
1329
1330 # all others are fine for our purposes
1331 }
1332}
1333
1334=item $handle->starttls ($tls[, $tls_ctx])
1335
1336Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1337object is created, you can also do that at a later time by calling
1338C<starttls>.
1339
1340The first argument is the same as the C<tls> constructor argument (either
1341C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1342
1343The second argument is the optional C<Net::SSLeay::CTX> object that is
1344used when AnyEvent::Handle has to create its own TLS connection object.
1345
1346The TLS connection object will end up in C<< $handle->{tls} >> after this
1347call and can be used or changed to your liking. Note that the handshake
1348might have already started when this function returns.
1349
1350=cut
1351
1352sub starttls {
1353 my ($self, $ssl, $ctx) = @_;
1354
1355 $self->stoptls;
1356
1357 if ($ssl eq "accept") {
1358 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1359 Net::SSLeay::set_accept_state ($ssl);
1360 } elsif ($ssl eq "connect") {
1361 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1362 Net::SSLeay::set_connect_state ($ssl);
1363 }
1364
1365 $self->{tls} = $ssl;
1366
1367 # basically, this is deep magic (because SSL_read should have the same issues)
1368 # but the openssl maintainers basically said: "trust us, it just works".
1369 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1370 # and mismaintained ssleay-module doesn't even offer them).
1371 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1372 Net::SSLeay::CTX_set_mode ($self->{tls},
1373 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1374 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1375
1376 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1378
1379 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1380
1381 $self->{filter_w} = sub {
1382 $_[0]{_tls_wbuf} .= ${$_[1]};
1383 &_dotls;
1384 };
1385 $self->{filter_r} = sub {
1386 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1387 &_dotls;
1388 };
1389}
1390
1391=item $handle->stoptls
1392
1393Destroys the SSL connection, if any. Partial read or write data will be
1394lost.
1395
1396=cut
1397
1398sub stoptls {
1399 my ($self) = @_;
1400
1401 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1402
1403 delete $self->{_rbio};
1404 delete $self->{_wbio};
1405 delete $self->{_tls_wbuf};
1406 delete $self->{filter_r};
1407 delete $self->{filter_w};
1408}
1409
1410sub DESTROY {
1411 my $self = shift;
1412
1413 $self->stoptls;
1414
1415 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1416
1417 if ($linger && length $self->{wbuf}) {
1418 my $fh = delete $self->{fh};
1419 my $wbuf = delete $self->{wbuf};
1420
1421 my @linger;
1422
1423 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1424 my $len = syswrite $fh, $wbuf, length $wbuf;
1425
1426 if ($len > 0) {
1427 substr $wbuf, 0, $len, "";
1428 } else {
1429 @linger = (); # end
1430 }
1431 });
1432 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1433 @linger = ();
1434 });
1435 }
1436}
1437
1438=item AnyEvent::Handle::TLS_CTX
1439
1440This function creates and returns the Net::SSLeay::CTX object used by
1441default for TLS mode.
1442
1443The context is created like this:
1444
1445 Net::SSLeay::load_error_strings;
1446 Net::SSLeay::SSLeay_add_ssl_algorithms;
1447 Net::SSLeay::randomize;
1448
1449 my $CTX = Net::SSLeay::CTX_new;
1450
1451 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1452
1453=cut
1454
1455our $TLS_CTX;
1456
1457sub TLS_CTX() {
1458 $TLS_CTX || do {
1459 require Net::SSLeay;
1460
1461 Net::SSLeay::load_error_strings ();
1462 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1463 Net::SSLeay::randomize ();
1464
1465 $TLS_CTX = Net::SSLeay::CTX_new ();
1466
1467 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1468
1469 $TLS_CTX
1470 }
1471}
1472
620=back 1473=back
621 1474
1475=head1 SUBCLASSING AnyEvent::Handle
1476
1477In many cases, you might want to subclass AnyEvent::Handle.
1478
1479To make this easier, a given version of AnyEvent::Handle uses these
1480conventions:
1481
1482=over 4
1483
1484=item * all constructor arguments become object members.
1485
1486At least initially, when you pass a C<tls>-argument to the constructor it
1487will end up in C<< $handle->{tls} >>. Those members might be changed or
1488mutated later on (for example C<tls> will hold the TLS connection object).
1489
1490=item * other object member names are prefixed with an C<_>.
1491
1492All object members not explicitly documented (internal use) are prefixed
1493with an underscore character, so the remaining non-C<_>-namespace is free
1494for use for subclasses.
1495
1496=item * all members not documented here and not prefixed with an underscore
1497are free to use in subclasses.
1498
1499Of course, new versions of AnyEvent::Handle may introduce more "public"
1500member variables, but thats just life, at least it is documented.
1501
1502=back
1503
622=head1 AUTHOR 1504=head1 AUTHOR
623 1505
624Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1506Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
625 1507
626=cut 1508=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines