ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.52 by root, Mon Jun 2 09:10:38 2008 UTC vs.
Revision 1.182 by root, Thu Sep 3 12:35:01 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.1;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
107=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
108 170
109This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
111 175
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
114 180
115When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
119 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
120=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
121 208
122This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
124 211
125To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
126 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
127=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
128 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
129If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
130seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
131handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
132missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
133 237
134Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
138 243
139Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
140 245
141=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
142 247
146 251
147=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
148 253
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
152 257
153For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
157isn't finished). 262isn't finished).
158 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag gives you
312the most portable way of getting urgent data, by putting it into the
313stream.
314
159=item read_size => <bytes> 315=item read_size => <bytes>
160 316
161The default read block size (the amount of bytes this module will try to read 317The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 318try to read during each loop iteration, which affects memory
319requirements). Default: C<8192>.
163 320
164=item low_water_mark => <bytes> 321=item low_water_mark => <bytes>
165 322
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 323Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 324buffer: If the write reaches this size or gets even samller it is
168considered empty. 325considered empty.
169 326
327Sometimes it can be beneficial (for performance reasons) to add data to
328the write buffer before it is fully drained, but this is a rare case, as
329the operating system kernel usually buffers data as well, so the default
330is good in almost all cases.
331
332=item linger => <seconds>
333
334If non-zero (default: C<3600>), then the destructor of the
335AnyEvent::Handle object will check whether there is still outstanding
336write data and will install a watcher that will write this data to the
337socket. No errors will be reported (this mostly matches how the operating
338system treats outstanding data at socket close time).
339
340This will not work for partial TLS data that could not be encoded
341yet. This data will be lost. Calling the C<stoptls> method in time might
342help.
343
344=item peername => $string
345
346A string used to identify the remote site - usually the DNS hostname
347(I<not> IDN!) used to create the connection, rarely the IP address.
348
349Apart from being useful in error messages, this string is also used in TLS
350peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
351verification will be skipped when C<peername> is not specified or
352C<undef>.
353
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 354=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 355
172When this parameter is given, it enables TLS (SSL) mode, that means it 356When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 357AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 358established and will transparently encrypt/decrypt data afterwards.
359
360All TLS protocol errors will be signalled as C<EPROTO>, with an
361appropriate error message.
175 362
176TLS mode requires Net::SSLeay to be installed (it will be loaded 363TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 364automatically when you try to create a TLS handle): this module doesn't
365have a dependency on that module, so if your module requires it, you have
366to add the dependency yourself.
178 367
179For the TLS server side, use C<accept>, and for the TLS client side of a 368Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 369C<accept>, and for the TLS client side of a connection, use C<connect>
370mode.
181 371
182You can also provide your own TLS connection object, but you have 372You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 373to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 374or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 375AnyEvent::Handle. Also, this module will take ownership of this connection
376object.
186 377
378At some future point, AnyEvent::Handle might switch to another TLS
379implementation, then the option to use your own session object will go
380away.
381
382B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
383passing in the wrong integer will lead to certain crash. This most often
384happens when one uses a stylish C<< tls => 1 >> and is surprised about the
385segmentation fault.
386
187See the C<starttls> method if you need to start TLs negotiation later. 387See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 388
189=item tls_ctx => $ssl_ctx 389=item tls_ctx => $anyevent_tls
190 390
191Use the given Net::SSLeay::CTX object to create the new TLS connection 391Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 392(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 393missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 394
395Instead of an object, you can also specify a hash reference with C<< key
396=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
397new TLS context object.
398
399=item on_starttls => $cb->($handle, $success[, $error_message])
400
401This callback will be invoked when the TLS/SSL handshake has finished. If
402C<$success> is true, then the TLS handshake succeeded, otherwise it failed
403(C<on_stoptls> will not be called in this case).
404
405The session in C<< $handle->{tls} >> can still be examined in this
406callback, even when the handshake was not successful.
407
408TLS handshake failures will not cause C<on_error> to be invoked when this
409callback is in effect, instead, the error message will be passed to C<on_starttls>.
410
411Without this callback, handshake failures lead to C<on_error> being
412called, as normal.
413
414Note that you cannot call C<starttls> right again in this callback. If you
415need to do that, start an zero-second timer instead whose callback can
416then call C<< ->starttls >> again.
417
418=item on_stoptls => $cb->($handle)
419
420When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
421set, then it will be invoked after freeing the TLS session. If it is not,
422then a TLS shutdown condition will be treated like a normal EOF condition
423on the handle.
424
425The session in C<< $handle->{tls} >> can still be examined in this
426callback.
427
428This callback will only be called on TLS shutdowns, not when the
429underlying handle signals EOF.
430
195=item json => JSON or JSON::XS object 431=item json => JSON or JSON::XS object
196 432
197This is the json coder object used by the C<json> read and write types. 433This is the json coder object used by the C<json> read and write types.
198 434
199If you don't supply it, then AnyEvent::Handle will create and use a 435If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 436suitable one (on demand), which will write and expect UTF-8 encoded JSON
437texts.
201 438
202Note that you are responsible to depend on the JSON module if you want to 439Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 440use this functionality, as AnyEvent does not have a dependency itself.
204 441
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 442=back
212 443
213=cut 444=cut
214 445
215sub new { 446sub new {
216 my $class = shift; 447 my $class = shift;
217
218 my $self = bless { @_ }, $class; 448 my $self = bless { @_ }, $class;
219 449
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 450 if ($self->{fh}) {
451 $self->_start;
452 return unless $self->{fh}; # could be gone by now
453
454 } elsif ($self->{connect}) {
455 require AnyEvent::Socket;
456
457 $self->{peername} = $self->{connect}[0]
458 unless exists $self->{peername};
459
460 $self->{_skip_drain_rbuf} = 1;
461
462 {
463 Scalar::Util::weaken (my $self = $self);
464
465 $self->{_connect} =
466 AnyEvent::Socket::tcp_connect (
467 $self->{connect}[0],
468 $self->{connect}[1],
469 sub {
470 my ($fh, $host, $port, $retry) = @_;
471
472 if ($fh) {
473 $self->{fh} = $fh;
474
475 delete $self->{_skip_drain_rbuf};
476 $self->_start;
477
478 $self->{on_connect}
479 and $self->{on_connect}($self, $host, $port, sub {
480 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
481 $self->{_skip_drain_rbuf} = 1;
482 &$retry;
483 });
484
485 } else {
486 if ($self->{on_connect_error}) {
487 $self->{on_connect_error}($self, "$!");
488 $self->destroy;
489 } else {
490 $self->_error ($!, 1);
491 }
492 }
493 },
494 sub {
495 local $self->{fh} = $_[0];
496
497 $self->{on_prepare}
498 ? $self->{on_prepare}->($self)
499 : ()
500 }
501 );
502 }
503
504 } else {
505 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
506 }
507
508 $self
509}
510
511sub _start {
512 my ($self) = @_;
221 513
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 514 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 515
224 if ($self->{tls}) { 516 $self->{_activity} =
225 require Net::SSLeay; 517 $self->{_ractivity} =
518 $self->{_wactivity} = AE::now;
519
520 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
521 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
522 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
523
524 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay};
525 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive};
526 $self->oobinline (delete $self->{oobinline}) if exists $self->{oobinline};
527
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 528 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 529 if $self->{tls};
228 530
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 531 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 532
234 $self->{_activity} = AnyEvent->now;
235 $self->_timeout;
236
237 $self->start_read; 533 $self->start_read
534 if $self->{on_read} || @{ $self->{_queue} };
238 535
239 $self 536 $self->_drain_wbuf;
240}
241
242sub _shutdown {
243 my ($self) = @_;
244
245 delete $self->{_tw};
246 delete $self->{_rw};
247 delete $self->{_ww};
248 delete $self->{fh};
249
250 $self->stoptls;
251} 537}
252 538
253sub _error { 539sub _error {
254 my ($self, $errno, $fatal) = @_; 540 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 541
259 $! = $errno; 542 $! = $errno;
543 $message ||= "$!";
260 544
261 if ($self->{on_error}) { 545 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 546 $self->{on_error}($self, $fatal, $message);
263 } else { 547 $self->destroy if $fatal;
548 } elsif ($self->{fh}) {
549 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 550 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 551 }
266} 552}
267 553
268=item $fh = $handle->fh 554=item $fh = $handle->fh
269 555
270This method returns the file handle of the L<AnyEvent::Handle> object. 556This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 557
272=cut 558=cut
273 559
274sub fh { $_[0]{fh} } 560sub fh { $_[0]{fh} }
275 561
293 $_[0]{on_eof} = $_[1]; 579 $_[0]{on_eof} = $_[1];
294} 580}
295 581
296=item $handle->on_timeout ($cb) 582=item $handle->on_timeout ($cb)
297 583
298Replace the current C<on_timeout> callback, or disables the callback 584=item $handle->on_rtimeout ($cb)
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
300argument.
301 585
302=cut 586=item $handle->on_wtimeout ($cb)
303 587
304sub on_timeout { 588Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
589callback, or disables the callback (but not the timeout) if C<$cb> =
590C<undef>. See the C<timeout> constructor argument and method.
591
592=cut
593
594# see below
595
596=item $handle->autocork ($boolean)
597
598Enables or disables the current autocork behaviour (see C<autocork>
599constructor argument). Changes will only take effect on the next write.
600
601=cut
602
603sub autocork {
604 $_[0]{autocork} = $_[1];
605}
606
607=item $handle->no_delay ($boolean)
608
609Enables or disables the C<no_delay> setting (see constructor argument of
610the same name for details).
611
612=cut
613
614sub no_delay {
615 $_[0]{no_delay} = $_[1];
616
617 eval {
618 local $SIG{__DIE__};
619 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
620 if $_[0]{fh};
621 };
622}
623
624=item $handle->keepalive ($boolean)
625
626Enables or disables the C<keepalive> setting (see constructor argument of
627the same name for details).
628
629=cut
630
631sub keepalive {
632 $_[0]{keepalive} = $_[1];
633
634 eval {
635 local $SIG{__DIE__};
636 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
637 if $_[0]{fh};
638 };
639}
640
641=item $handle->oobinline ($boolean)
642
643Enables or disables the C<oobinline> setting (see constructor argument of
644the same name for details).
645
646=cut
647
648sub oobinline {
649 $_[0]{oobinline} = $_[1];
650
651 eval {
652 local $SIG{__DIE__};
653 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
654 if $_[0]{fh};
655 };
656}
657
658=item $handle->keepalive ($boolean)
659
660Enables or disables the C<keepalive> setting (see constructor argument of
661the same name for details).
662
663=cut
664
665sub keepalive {
666 $_[0]{keepalive} = $_[1];
667
668 eval {
669 local $SIG{__DIE__};
670 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
671 if $_[0]{fh};
672 };
673}
674
675=item $handle->on_starttls ($cb)
676
677Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
678
679=cut
680
681sub on_starttls {
682 $_[0]{on_starttls} = $_[1];
683}
684
685=item $handle->on_stoptls ($cb)
686
687Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
688
689=cut
690
691sub on_starttls {
305 $_[0]{on_timeout} = $_[1]; 692 $_[0]{on_stoptls} = $_[1];
693}
694
695=item $handle->rbuf_max ($max_octets)
696
697Configures the C<rbuf_max> setting (C<undef> disables it).
698
699=cut
700
701sub rbuf_max {
702 $_[0]{rbuf_max} = $_[1];
306} 703}
307 704
308############################################################################# 705#############################################################################
309 706
310=item $handle->timeout ($seconds) 707=item $handle->timeout ($seconds)
311 708
709=item $handle->rtimeout ($seconds)
710
711=item $handle->wtimeout ($seconds)
712
312Configures (or disables) the inactivity timeout. 713Configures (or disables) the inactivity timeout.
313 714
314=cut 715=item $handle->timeout_reset
315 716
316sub timeout { 717=item $handle->rtimeout_reset
718
719=item $handle->wtimeout_reset
720
721Reset the activity timeout, as if data was received or sent.
722
723These methods are cheap to call.
724
725=cut
726
727for my $dir ("", "r", "w") {
728 my $timeout = "${dir}timeout";
729 my $tw = "_${dir}tw";
730 my $on_timeout = "on_${dir}timeout";
731 my $activity = "_${dir}activity";
732 my $cb;
733
734 *$on_timeout = sub {
735 $_[0]{$on_timeout} = $_[1];
736 };
737
738 *$timeout = sub {
317 my ($self, $timeout) = @_; 739 my ($self, $new_value) = @_;
318 740
319 $self->{timeout} = $timeout; 741 $self->{$timeout} = $new_value;
320 $self->_timeout; 742 delete $self->{$tw}; &$cb;
321} 743 };
322 744
745 *{"${dir}timeout_reset"} = sub {
746 $_[0]{$activity} = AE::now;
747 };
748
749 # main workhorse:
323# reset the timeout watcher, as neccessary 750 # reset the timeout watcher, as neccessary
324# also check for time-outs 751 # also check for time-outs
325sub _timeout { 752 $cb = sub {
326 my ($self) = @_; 753 my ($self) = @_;
327 754
328 if ($self->{timeout}) { 755 if ($self->{$timeout} && $self->{fh}) {
329 my $NOW = AnyEvent->now; 756 my $NOW = AE::now;
330 757
331 # when would the timeout trigger? 758 # when would the timeout trigger?
332 my $after = $self->{_activity} + $self->{timeout} - $NOW; 759 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
333 760
334 # now or in the past already? 761 # now or in the past already?
335 if ($after <= 0) { 762 if ($after <= 0) {
336 $self->{_activity} = $NOW; 763 $self->{$activity} = $NOW;
337 764
338 if ($self->{on_timeout}) { 765 if ($self->{$on_timeout}) {
339 $self->{on_timeout}($self); 766 $self->{$on_timeout}($self);
340 } else { 767 } else {
341 $self->_error (&Errno::ETIMEDOUT); 768 $self->_error (Errno::ETIMEDOUT);
769 }
770
771 # callback could have changed timeout value, optimise
772 return unless $self->{$timeout};
773
774 # calculate new after
775 $after = $self->{$timeout};
342 } 776 }
343 777
344 # callbakx could have changed timeout value, optimise 778 Scalar::Util::weaken $self;
345 return unless $self->{timeout}; 779 return unless $self; # ->error could have destroyed $self
346 780
347 # calculate new after 781 $self->{$tw} ||= AE::timer $after, 0, sub {
348 $after = $self->{timeout}; 782 delete $self->{$tw};
783 $cb->($self);
784 };
785 } else {
786 delete $self->{$tw};
349 } 787 }
350
351 Scalar::Util::weaken $self;
352
353 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354 delete $self->{_tw};
355 $self->_timeout;
356 });
357 } else {
358 delete $self->{_tw};
359 } 788 }
360} 789}
361 790
362############################################################################# 791#############################################################################
363 792
387 my ($self, $cb) = @_; 816 my ($self, $cb) = @_;
388 817
389 $self->{on_drain} = $cb; 818 $self->{on_drain} = $cb;
390 819
391 $cb->($self) 820 $cb->($self)
392 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 821 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
393} 822}
394 823
395=item $handle->push_write ($data) 824=item $handle->push_write ($data)
396 825
397Queues the given scalar to be written. You can push as much data as you 826Queues the given scalar to be written. You can push as much data as you
408 Scalar::Util::weaken $self; 837 Scalar::Util::weaken $self;
409 838
410 my $cb = sub { 839 my $cb = sub {
411 my $len = syswrite $self->{fh}, $self->{wbuf}; 840 my $len = syswrite $self->{fh}, $self->{wbuf};
412 841
413 if ($len >= 0) { 842 if (defined $len) {
414 substr $self->{wbuf}, 0, $len, ""; 843 substr $self->{wbuf}, 0, $len, "";
415 844
416 $self->{_activity} = AnyEvent->now; 845 $self->{_activity} = $self->{_wactivity} = AE::now;
417 846
418 $self->{on_drain}($self) 847 $self->{on_drain}($self)
419 if $self->{low_water_mark} >= length $self->{wbuf} 848 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
420 && $self->{on_drain}; 849 && $self->{on_drain};
421 850
422 delete $self->{_ww} unless length $self->{wbuf}; 851 delete $self->{_ww} unless length $self->{wbuf};
423 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 852 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 $self->_error ($!, 1); 853 $self->_error ($!, 1);
425 } 854 }
426 }; 855 };
427 856
428 # try to write data immediately 857 # try to write data immediately
429 $cb->(); 858 $cb->() unless $self->{autocork};
430 859
431 # if still data left in wbuf, we need to poll 860 # if still data left in wbuf, we need to poll
432 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 861 $self->{_ww} = AE::io $self->{fh}, 1, $cb
433 if length $self->{wbuf}; 862 if length $self->{wbuf};
434 }; 863 };
435} 864}
436 865
437our %WH; 866our %WH;
448 877
449 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 878 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450 ->($self, @_); 879 ->($self, @_);
451 } 880 }
452 881
453 if ($self->{filter_w}) { 882 if ($self->{tls}) {
454 $self->{filter_w}($self, \$_[0]); 883 $self->{_tls_wbuf} .= $_[0];
884 &_dotls ($self) if $self->{fh};
455 } else { 885 } else {
456 $self->{wbuf} .= $_[0]; 886 $self->{wbuf} .= $_[0];
457 $self->_drain_wbuf; 887 $self->_drain_wbuf if $self->{fh};
458 } 888 }
459} 889}
460 890
461=item $handle->push_write (type => @args) 891=item $handle->push_write (type => @args)
462 892
476=cut 906=cut
477 907
478register_write_type netstring => sub { 908register_write_type netstring => sub {
479 my ($self, $string) = @_; 909 my ($self, $string) = @_;
480 910
481 sprintf "%d:%s,", (length $string), $string 911 (length $string) . ":$string,"
912};
913
914=item packstring => $format, $data
915
916An octet string prefixed with an encoded length. The encoding C<$format>
917uses the same format as a Perl C<pack> format, but must specify a single
918integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
919optional C<!>, C<< < >> or C<< > >> modifier).
920
921=cut
922
923register_write_type packstring => sub {
924 my ($self, $format, $string) = @_;
925
926 pack "$format/a*", $string
482}; 927};
483 928
484=item json => $array_or_hashref 929=item json => $array_or_hashref
485 930
486Encodes the given hash or array reference into a JSON object. Unless you 931Encodes the given hash or array reference into a JSON object. Unless you
511Other languages could read single lines terminated by a newline and pass 956Other languages could read single lines terminated by a newline and pass
512this line into their JSON decoder of choice. 957this line into their JSON decoder of choice.
513 958
514=cut 959=cut
515 960
961sub json_coder() {
962 eval { require JSON::XS; JSON::XS->new->utf8 }
963 || do { require JSON; JSON->new->utf8 }
964}
965
516register_write_type json => sub { 966register_write_type json => sub {
517 my ($self, $ref) = @_; 967 my ($self, $ref) = @_;
518 968
519 require JSON; 969 my $json = $self->{json} ||= json_coder;
520 970
521 $self->{json} ? $self->{json}->encode ($ref) 971 $json->encode ($ref)
522 : JSON::encode_json ($ref)
523}; 972};
973
974=item storable => $reference
975
976Freezes the given reference using L<Storable> and writes it to the
977handle. Uses the C<nfreeze> format.
978
979=cut
980
981register_write_type storable => sub {
982 my ($self, $ref) = @_;
983
984 require Storable;
985
986 pack "w/a*", Storable::nfreeze ($ref)
987};
988
989=back
990
991=item $handle->push_shutdown
992
993Sometimes you know you want to close the socket after writing your data
994before it was actually written. One way to do that is to replace your
995C<on_drain> handler by a callback that shuts down the socket (and set
996C<low_water_mark> to C<0>). This method is a shorthand for just that, and
997replaces the C<on_drain> callback with:
998
999 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1000
1001This simply shuts down the write side and signals an EOF condition to the
1002the peer.
1003
1004You can rely on the normal read queue and C<on_eof> handling
1005afterwards. This is the cleanest way to close a connection.
1006
1007=cut
1008
1009sub push_shutdown {
1010 my ($self) = @_;
1011
1012 delete $self->{low_water_mark};
1013 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1014}
524 1015
525=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1016=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 1017
527This function (not method) lets you add your own types to C<push_write>. 1018This function (not method) lets you add your own types to C<push_write>.
528Whenever the given C<type> is used, C<push_write> will invoke the code 1019Whenever the given C<type> is used, C<push_write> will invoke the code
532be appended to the write buffer. 1023be appended to the write buffer.
533 1024
534Note that this is a function, and all types registered this way will be 1025Note that this is a function, and all types registered this way will be
535global, so try to use unique names. 1026global, so try to use unique names.
536 1027
537=back
538
539=cut 1028=cut
540 1029
541############################################################################# 1030#############################################################################
542 1031
543=back 1032=back
551ways, the "simple" way, using only C<on_read> and the "complex" way, using 1040ways, the "simple" way, using only C<on_read> and the "complex" way, using
552a queue. 1041a queue.
553 1042
554In the simple case, you just install an C<on_read> callback and whenever 1043In the simple case, you just install an C<on_read> callback and whenever
555new data arrives, it will be called. You can then remove some data (if 1044new data arrives, it will be called. You can then remove some data (if
556enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1045enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
557or not. 1046leave the data there if you want to accumulate more (e.g. when only a
1047partial message has been received so far).
558 1048
559In the more complex case, you want to queue multiple callbacks. In this 1049In the more complex case, you want to queue multiple callbacks. In this
560case, AnyEvent::Handle will call the first queued callback each time new 1050case, AnyEvent::Handle will call the first queued callback each time new
561data arrives and removes it when it has done its job (see C<push_read>, 1051data arrives (also the first time it is queued) and removes it when it has
562below). 1052done its job (see C<push_read>, below).
563 1053
564This way you can, for example, push three line-reads, followed by reading 1054This way you can, for example, push three line-reads, followed by reading
565a chunk of data, and AnyEvent::Handle will execute them in order. 1055a chunk of data, and AnyEvent::Handle will execute them in order.
566 1056
567Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 1057Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
580 # handle xml 1070 # handle xml
581 }); 1071 });
582 }); 1072 });
583 }); 1073 });
584 1074
585Example 2: Implement a client for a protocol that replies either with 1075Example 2: Implement a client for a protocol that replies either with "OK"
586"OK" and another line or "ERROR" for one request, and 64 bytes for the 1076and another line or "ERROR" for the first request that is sent, and 64
587second request. Due tot he availability of a full queue, we can just 1077bytes for the second request. Due to the availability of a queue, we can
588pipeline sending both requests and manipulate the queue as necessary in 1078just pipeline sending both requests and manipulate the queue as necessary
589the callbacks: 1079in the callbacks.
590 1080
591 # request one 1081When the first callback is called and sees an "OK" response, it will
1082C<unshift> another line-read. This line-read will be queued I<before> the
108364-byte chunk callback.
1084
1085 # request one, returns either "OK + extra line" or "ERROR"
592 $handle->push_write ("request 1\015\012"); 1086 $handle->push_write ("request 1\015\012");
593 1087
594 # we expect "ERROR" or "OK" as response, so push a line read 1088 # we expect "ERROR" or "OK" as response, so push a line read
595 $handle->push_read (line => sub { 1089 $handle->push_read (line => sub {
596 # if we got an "OK", we have to _prepend_ another line, 1090 # if we got an "OK", we have to _prepend_ another line,
603 ... 1097 ...
604 }); 1098 });
605 } 1099 }
606 }); 1100 });
607 1101
608 # request two 1102 # request two, simply returns 64 octets
609 $handle->push_write ("request 2\015\012"); 1103 $handle->push_write ("request 2\015\012");
610 1104
611 # simply read 64 bytes, always 1105 # simply read 64 bytes, always
612 $handle->push_read (chunk => 64, sub { 1106 $handle->push_read (chunk => 64, sub {
613 my $response = $_[1]; 1107 my $response = $_[1];
619=cut 1113=cut
620 1114
621sub _drain_rbuf { 1115sub _drain_rbuf {
622 my ($self) = @_; 1116 my ($self) = @_;
623 1117
1118 # avoid recursion
1119 return if $self->{_skip_drain_rbuf};
1120 local $self->{_skip_drain_rbuf} = 1;
1121
1122 while () {
1123 # we need to use a separate tls read buffer, as we must not receive data while
1124 # we are draining the buffer, and this can only happen with TLS.
1125 $self->{rbuf} .= delete $self->{_tls_rbuf}
1126 if exists $self->{_tls_rbuf};
1127
1128 my $len = length $self->{rbuf};
1129
1130 if (my $cb = shift @{ $self->{_queue} }) {
1131 unless ($cb->($self)) {
1132 # no progress can be made
1133 # (not enough data and no data forthcoming)
1134 $self->_error (Errno::EPIPE, 1), return
1135 if $self->{_eof};
1136
1137 unshift @{ $self->{_queue} }, $cb;
1138 last;
1139 }
1140 } elsif ($self->{on_read}) {
1141 last unless $len;
1142
1143 $self->{on_read}($self);
1144
1145 if (
1146 $len == length $self->{rbuf} # if no data has been consumed
1147 && !@{ $self->{_queue} } # and the queue is still empty
1148 && $self->{on_read} # but we still have on_read
1149 ) {
1150 # no further data will arrive
1151 # so no progress can be made
1152 $self->_error (Errno::EPIPE, 1), return
1153 if $self->{_eof};
1154
1155 last; # more data might arrive
1156 }
1157 } else {
1158 # read side becomes idle
1159 delete $self->{_rw} unless $self->{tls};
1160 last;
1161 }
1162 }
1163
1164 if ($self->{_eof}) {
1165 $self->{on_eof}
1166 ? $self->{on_eof}($self)
1167 : $self->_error (0, 1, "Unexpected end-of-file");
1168
1169 return;
1170 }
1171
624 if ( 1172 if (
625 defined $self->{rbuf_max} 1173 defined $self->{rbuf_max}
626 && $self->{rbuf_max} < length $self->{rbuf} 1174 && $self->{rbuf_max} < length $self->{rbuf}
627 ) { 1175 ) {
628 return $self->_error (&Errno::ENOSPC, 1); 1176 $self->_error (Errno::ENOSPC, 1), return;
629 } 1177 }
630 1178
631 return if $self->{in_drain}; 1179 # may need to restart read watcher
632 local $self->{in_drain} = 1; 1180 unless ($self->{_rw}) {
633 1181 $self->start_read
634 while (my $len = length $self->{rbuf}) { 1182 if $self->{on_read} || @{ $self->{_queue} };
635 no strict 'refs';
636 if (my $cb = shift @{ $self->{_queue} }) {
637 unless ($cb->($self)) {
638 if ($self->{_eof}) {
639 # no progress can be made (not enough data and no data forthcoming)
640 return $self->_error (&Errno::EPIPE, 1);
641 }
642
643 unshift @{ $self->{_queue} }, $cb;
644 return;
645 }
646 } elsif ($self->{on_read}) {
647 $self->{on_read}($self);
648
649 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data
654 ) {
655 # then no progress can be made
656 return $self->_error (&Errno::EPIPE, 1);
657 }
658 } else {
659 # read side becomes idle
660 delete $self->{_rw};
661 return;
662 }
663 } 1183 }
664
665 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof};
667} 1184}
668 1185
669=item $handle->on_read ($cb) 1186=item $handle->on_read ($cb)
670 1187
671This replaces the currently set C<on_read> callback, or clears it (when 1188This replaces the currently set C<on_read> callback, or clears it (when
676 1193
677sub on_read { 1194sub on_read {
678 my ($self, $cb) = @_; 1195 my ($self, $cb) = @_;
679 1196
680 $self->{on_read} = $cb; 1197 $self->{on_read} = $cb;
1198 $self->_drain_rbuf if $cb;
681} 1199}
682 1200
683=item $handle->rbuf 1201=item $handle->rbuf
684 1202
685Returns the read buffer (as a modifiable lvalue). 1203Returns the read buffer (as a modifiable lvalue).
686 1204
687You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1205You can access the read buffer directly as the C<< ->{rbuf} >>
688you want. 1206member, if you want. However, the only operation allowed on the
1207read buffer (apart from looking at it) is removing data from its
1208beginning. Otherwise modifying or appending to it is not allowed and will
1209lead to hard-to-track-down bugs.
689 1210
690NOTE: The read buffer should only be used or modified if the C<on_read>, 1211NOTE: The read buffer should only be used or modified if the C<on_read>,
691C<push_read> or C<unshift_read> methods are used. The other read methods 1212C<push_read> or C<unshift_read> methods are used. The other read methods
692automatically manage the read buffer. 1213automatically manage the read buffer.
693 1214
747 my $type = shift; 1268 my $type = shift;
748 1269
749 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1270 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
750 ->($self, $cb, @_); 1271 ->($self, $cb, @_);
751 } 1272 }
752
753 1273
754 unshift @{ $self->{_queue} }, $cb; 1274 unshift @{ $self->{_queue} }, $cb;
755 $self->_drain_rbuf; 1275 $self->_drain_rbuf;
756} 1276}
757 1277
790 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1310 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
791 1 1311 1
792 } 1312 }
793}; 1313};
794 1314
795# compatibility with older API
796sub push_read_chunk {
797 $_[0]->push_read (chunk => $_[1], $_[2]);
798}
799
800sub unshift_read_chunk {
801 $_[0]->unshift_read (chunk => $_[1], $_[2]);
802}
803
804=item line => [$eol, ]$cb->($handle, $line, $eol) 1315=item line => [$eol, ]$cb->($handle, $line, $eol)
805 1316
806The callback will be called only once a full line (including the end of 1317The callback will be called only once a full line (including the end of
807line marker, C<$eol>) has been read. This line (excluding the end of line 1318line marker, C<$eol>) has been read. This line (excluding the end of line
808marker) will be passed to the callback as second argument (C<$line>), and 1319marker) will be passed to the callback as second argument (C<$line>), and
823=cut 1334=cut
824 1335
825register_read_type line => sub { 1336register_read_type line => sub {
826 my ($self, $cb, $eol) = @_; 1337 my ($self, $cb, $eol) = @_;
827 1338
828 $eol = qr|(\015?\012)| if @_ < 3; 1339 if (@_ < 3) {
829 $eol = quotemeta $eol unless ref $eol; 1340 # this is more than twice as fast as the generic code below
830 $eol = qr|^(.*?)($eol)|s;
831
832 sub { 1341 sub {
833 $_[0]{rbuf} =~ s/$eol// or return; 1342 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
834 1343
835 $cb->($_[0], $1, $2); 1344 $cb->($_[0], $1, $2);
836 1
837 }
838};
839
840# compatibility with older API
841sub push_read_line {
842 my $self = shift;
843 $self->push_read (line => @_);
844}
845
846sub unshift_read_line {
847 my $self = shift;
848 $self->unshift_read (line => @_);
849}
850
851=item netstring => $cb->($handle, $string)
852
853A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
854
855Throws an error with C<$!> set to EBADMSG on format violations.
856
857=cut
858
859register_read_type netstring => sub {
860 my ($self, $cb) = @_;
861
862 sub {
863 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
864 if ($_[0]{rbuf} =~ /[^0-9]/) {
865 $self->_error (&Errno::EBADMSG);
866 } 1345 1
867 return;
868 } 1346 }
1347 } else {
1348 $eol = quotemeta $eol unless ref $eol;
1349 $eol = qr|^(.*?)($eol)|s;
869 1350
870 my $len = $1; 1351 sub {
1352 $_[0]{rbuf} =~ s/$eol// or return;
871 1353
872 $self->unshift_read (chunk => $len, sub { 1354 $cb->($_[0], $1, $2);
873 my $string = $_[1];
874 $_[0]->unshift_read (chunk => 1, sub {
875 if ($_[1] eq ",") {
876 $cb->($_[0], $string);
877 } else {
878 $self->_error (&Errno::EBADMSG);
879 }
880 }); 1355 1
881 }); 1356 }
882
883 1
884 } 1357 }
885}; 1358};
886 1359
887=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1360=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
888 1361
940 return 1; 1413 return 1;
941 } 1414 }
942 1415
943 # reject 1416 # reject
944 if ($reject && $$rbuf =~ $reject) { 1417 if ($reject && $$rbuf =~ $reject) {
945 $self->_error (&Errno::EBADMSG); 1418 $self->_error (Errno::EBADMSG);
946 } 1419 }
947 1420
948 # skip 1421 # skip
949 if ($skip && $$rbuf =~ $skip) { 1422 if ($skip && $$rbuf =~ $skip) {
950 $data .= substr $$rbuf, 0, $+[0], ""; 1423 $data .= substr $$rbuf, 0, $+[0], "";
952 1425
953 () 1426 ()
954 } 1427 }
955}; 1428};
956 1429
1430=item netstring => $cb->($handle, $string)
1431
1432A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1433
1434Throws an error with C<$!> set to EBADMSG on format violations.
1435
1436=cut
1437
1438register_read_type netstring => sub {
1439 my ($self, $cb) = @_;
1440
1441 sub {
1442 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1443 if ($_[0]{rbuf} =~ /[^0-9]/) {
1444 $self->_error (Errno::EBADMSG);
1445 }
1446 return;
1447 }
1448
1449 my $len = $1;
1450
1451 $self->unshift_read (chunk => $len, sub {
1452 my $string = $_[1];
1453 $_[0]->unshift_read (chunk => 1, sub {
1454 if ($_[1] eq ",") {
1455 $cb->($_[0], $string);
1456 } else {
1457 $self->_error (Errno::EBADMSG);
1458 }
1459 });
1460 });
1461
1462 1
1463 }
1464};
1465
1466=item packstring => $format, $cb->($handle, $string)
1467
1468An octet string prefixed with an encoded length. The encoding C<$format>
1469uses the same format as a Perl C<pack> format, but must specify a single
1470integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1471optional C<!>, C<< < >> or C<< > >> modifier).
1472
1473For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1474EPP uses a prefix of C<N> (4 octtes).
1475
1476Example: read a block of data prefixed by its length in BER-encoded
1477format (very efficient).
1478
1479 $handle->push_read (packstring => "w", sub {
1480 my ($handle, $data) = @_;
1481 });
1482
1483=cut
1484
1485register_read_type packstring => sub {
1486 my ($self, $cb, $format) = @_;
1487
1488 sub {
1489 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1490 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1491 or return;
1492
1493 $format = length pack $format, $len;
1494
1495 # bypass unshift if we already have the remaining chunk
1496 if ($format + $len <= length $_[0]{rbuf}) {
1497 my $data = substr $_[0]{rbuf}, $format, $len;
1498 substr $_[0]{rbuf}, 0, $format + $len, "";
1499 $cb->($_[0], $data);
1500 } else {
1501 # remove prefix
1502 substr $_[0]{rbuf}, 0, $format, "";
1503
1504 # read remaining chunk
1505 $_[0]->unshift_read (chunk => $len, $cb);
1506 }
1507
1508 1
1509 }
1510};
1511
957=item json => $cb->($handle, $hash_or_arrayref) 1512=item json => $cb->($handle, $hash_or_arrayref)
958 1513
959Reads a JSON object or array, decodes it and passes it to the callback. 1514Reads a JSON object or array, decodes it and passes it to the
1515callback. When a parse error occurs, an C<EBADMSG> error will be raised.
960 1516
961If a C<json> object was passed to the constructor, then that will be used 1517If a C<json> object was passed to the constructor, then that will be used
962for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1518for the final decode, otherwise it will create a JSON coder expecting UTF-8.
963 1519
964This read type uses the incremental parser available with JSON version 1520This read type uses the incremental parser available with JSON version
971the C<json> write type description, above, for an actual example. 1527the C<json> write type description, above, for an actual example.
972 1528
973=cut 1529=cut
974 1530
975register_read_type json => sub { 1531register_read_type json => sub {
976 my ($self, $cb, $accept, $reject, $skip) = @_; 1532 my ($self, $cb) = @_;
977 1533
978 require JSON; 1534 my $json = $self->{json} ||= json_coder;
979 1535
980 my $data; 1536 my $data;
981 my $rbuf = \$self->{rbuf}; 1537 my $rbuf = \$self->{rbuf};
982 1538
983 my $json = $self->{json} ||= JSON->new->utf8;
984
985 sub { 1539 sub {
986 my $ref = $json->incr_parse ($self->{rbuf}); 1540 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
987 1541
988 if ($ref) { 1542 if ($ref) {
989 $self->{rbuf} = $json->incr_text; 1543 $self->{rbuf} = $json->incr_text;
990 $json->incr_text = ""; 1544 $json->incr_text = "";
991 $cb->($self, $ref); 1545 $cb->($self, $ref);
992 1546
993 1 1547 1
1548 } elsif ($@) {
1549 # error case
1550 $json->incr_skip;
1551
1552 $self->{rbuf} = $json->incr_text;
1553 $json->incr_text = "";
1554
1555 $self->_error (Errno::EBADMSG);
1556
1557 ()
994 } else { 1558 } else {
995 $self->{rbuf} = ""; 1559 $self->{rbuf} = "";
1560
996 () 1561 ()
997 } 1562 }
1563 }
1564};
1565
1566=item storable => $cb->($handle, $ref)
1567
1568Deserialises a L<Storable> frozen representation as written by the
1569C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1570data).
1571
1572Raises C<EBADMSG> error if the data could not be decoded.
1573
1574=cut
1575
1576register_read_type storable => sub {
1577 my ($self, $cb) = @_;
1578
1579 require Storable;
1580
1581 sub {
1582 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1583 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1584 or return;
1585
1586 my $format = length pack "w", $len;
1587
1588 # bypass unshift if we already have the remaining chunk
1589 if ($format + $len <= length $_[0]{rbuf}) {
1590 my $data = substr $_[0]{rbuf}, $format, $len;
1591 substr $_[0]{rbuf}, 0, $format + $len, "";
1592 $cb->($_[0], Storable::thaw ($data));
1593 } else {
1594 # remove prefix
1595 substr $_[0]{rbuf}, 0, $format, "";
1596
1597 # read remaining chunk
1598 $_[0]->unshift_read (chunk => $len, sub {
1599 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1600 $cb->($_[0], $ref);
1601 } else {
1602 $self->_error (Errno::EBADMSG);
1603 }
1604 });
1605 }
1606
1607 1
998 } 1608 }
999}; 1609};
1000 1610
1001=back 1611=back
1002 1612
1023=item $handle->stop_read 1633=item $handle->stop_read
1024 1634
1025=item $handle->start_read 1635=item $handle->start_read
1026 1636
1027In rare cases you actually do not want to read anything from the 1637In rare cases you actually do not want to read anything from the
1028socket. In this case you can call C<stop_read>. Neither C<on_read> no 1638socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1029any queued callbacks will be executed then. To start reading again, call 1639any queued callbacks will be executed then. To start reading again, call
1030C<start_read>. 1640C<start_read>.
1031 1641
1642Note that AnyEvent::Handle will automatically C<start_read> for you when
1643you change the C<on_read> callback or push/unshift a read callback, and it
1644will automatically C<stop_read> for you when neither C<on_read> is set nor
1645there are any read requests in the queue.
1646
1647These methods will have no effect when in TLS mode (as TLS doesn't support
1648half-duplex connections).
1649
1032=cut 1650=cut
1033 1651
1034sub stop_read { 1652sub stop_read {
1035 my ($self) = @_; 1653 my ($self) = @_;
1036 1654
1037 delete $self->{_rw}; 1655 delete $self->{_rw} unless $self->{tls};
1038} 1656}
1039 1657
1040sub start_read { 1658sub start_read {
1041 my ($self) = @_; 1659 my ($self) = @_;
1042 1660
1043 unless ($self->{_rw} || $self->{_eof}) { 1661 unless ($self->{_rw} || $self->{_eof}) {
1044 Scalar::Util::weaken $self; 1662 Scalar::Util::weaken $self;
1045 1663
1046 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1664 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1047 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1665 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1048 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1666 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1049 1667
1050 if ($len > 0) { 1668 if ($len > 0) {
1051 $self->{_activity} = AnyEvent->now; 1669 $self->{_activity} = $self->{_ractivity} = AE::now;
1052 1670
1053 $self->{filter_r} 1671 if ($self->{tls}) {
1054 ? $self->{filter_r}($self, $rbuf) 1672 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1673
1674 &_dotls ($self);
1675 } else {
1055 : $self->_drain_rbuf; 1676 $self->_drain_rbuf;
1677 }
1056 1678
1057 } elsif (defined $len) { 1679 } elsif (defined $len) {
1058 delete $self->{_rw}; 1680 delete $self->{_rw};
1059 $self->{_eof} = 1; 1681 $self->{_eof} = 1;
1060 $self->_drain_rbuf; 1682 $self->_drain_rbuf;
1061 1683
1062 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1684 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1063 return $self->_error ($!, 1); 1685 return $self->_error ($!, 1);
1064 } 1686 }
1065 }); 1687 };
1066 } 1688 }
1067} 1689}
1068 1690
1691our $ERROR_SYSCALL;
1692our $ERROR_WANT_READ;
1693
1694sub _tls_error {
1695 my ($self, $err) = @_;
1696
1697 return $self->_error ($!, 1)
1698 if $err == Net::SSLeay::ERROR_SYSCALL ();
1699
1700 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1701
1702 # reduce error string to look less scary
1703 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1704
1705 if ($self->{_on_starttls}) {
1706 (delete $self->{_on_starttls})->($self, undef, $err);
1707 &_freetls;
1708 } else {
1709 &_freetls;
1710 $self->_error (Errno::EPROTO, 1, $err);
1711 }
1712}
1713
1714# poll the write BIO and send the data if applicable
1715# also decode read data if possible
1716# this is basiclaly our TLS state machine
1717# more efficient implementations are possible with openssl,
1718# but not with the buggy and incomplete Net::SSLeay.
1069sub _dotls { 1719sub _dotls {
1070 my ($self) = @_; 1720 my ($self) = @_;
1071 1721
1722 my $tmp;
1723
1072 if (length $self->{_tls_wbuf}) { 1724 if (length $self->{_tls_wbuf}) {
1073 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1725 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1074 substr $self->{_tls_wbuf}, 0, $len, ""; 1726 substr $self->{_tls_wbuf}, 0, $tmp, "";
1075 } 1727 }
1076 }
1077 1728
1729 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1730 return $self->_tls_error ($tmp)
1731 if $tmp != $ERROR_WANT_READ
1732 && ($tmp != $ERROR_SYSCALL || $!);
1733 }
1734
1735 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1736 unless (length $tmp) {
1737 $self->{_on_starttls}
1738 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1739 &_freetls;
1740
1741 if ($self->{on_stoptls}) {
1742 $self->{on_stoptls}($self);
1743 return;
1744 } else {
1745 # let's treat SSL-eof as we treat normal EOF
1746 delete $self->{_rw};
1747 $self->{_eof} = 1;
1748 }
1749 }
1750
1751 $self->{_tls_rbuf} .= $tmp;
1752 $self->_drain_rbuf;
1753 $self->{tls} or return; # tls session might have gone away in callback
1754 }
1755
1756 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1757 return $self->_tls_error ($tmp)
1758 if $tmp != $ERROR_WANT_READ
1759 && ($tmp != $ERROR_SYSCALL || $!);
1760
1078 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1761 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1079 $self->{wbuf} .= $buf; 1762 $self->{wbuf} .= $tmp;
1080 $self->_drain_wbuf; 1763 $self->_drain_wbuf;
1081 } 1764 }
1082 1765
1083 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1766 $self->{_on_starttls}
1084 $self->{rbuf} .= $buf; 1767 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1085 $self->_drain_rbuf; 1768 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1086 }
1087
1088 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1089
1090 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1091 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1092 return $self->_error ($!, 1);
1093 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1094 return $self->_error (&Errno::EIO, 1);
1095 }
1096
1097 # all others are fine for our purposes
1098 }
1099} 1769}
1100 1770
1101=item $handle->starttls ($tls[, $tls_ctx]) 1771=item $handle->starttls ($tls[, $tls_ctx])
1102 1772
1103Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1773Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1104object is created, you can also do that at a later time by calling 1774object is created, you can also do that at a later time by calling
1105C<starttls>. 1775C<starttls>.
1106 1776
1777Starting TLS is currently an asynchronous operation - when you push some
1778write data and then call C<< ->starttls >> then TLS negotiation will start
1779immediately, after which the queued write data is then sent.
1780
1107The first argument is the same as the C<tls> constructor argument (either 1781The first argument is the same as the C<tls> constructor argument (either
1108C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1782C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1109 1783
1110The second argument is the optional C<Net::SSLeay::CTX> object that is 1784The second argument is the optional C<AnyEvent::TLS> object that is used
1111used when AnyEvent::Handle has to create its own TLS connection object. 1785when AnyEvent::Handle has to create its own TLS connection object, or
1786a hash reference with C<< key => value >> pairs that will be used to
1787construct a new context.
1112 1788
1113The TLS connection object will end up in C<< $handle->{tls} >> after this 1789The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1114call and can be used or changed to your liking. Note that the handshake 1790context in C<< $handle->{tls_ctx} >> after this call and can be used or
1115might have already started when this function returns. 1791changed to your liking. Note that the handshake might have already started
1792when this function returns.
1116 1793
1794Due to bugs in OpenSSL, it might or might not be possible to do multiple
1795handshakes on the same stream. Best do not attempt to use the stream after
1796stopping TLS.
1797
1117=cut 1798=cut
1799
1800our %TLS_CACHE; #TODO not yet documented, should we?
1118 1801
1119sub starttls { 1802sub starttls {
1120 my ($self, $ssl, $ctx) = @_; 1803 my ($self, $tls, $ctx) = @_;
1121 1804
1122 $self->stoptls; 1805 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1806 if $self->{tls};
1123 1807
1124 if ($ssl eq "accept") { 1808 $self->{tls} = $tls;
1125 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1809 $self->{tls_ctx} = $ctx if @_ > 2;
1126 Net::SSLeay::set_accept_state ($ssl); 1810
1127 } elsif ($ssl eq "connect") { 1811 return unless $self->{fh};
1128 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1812
1129 Net::SSLeay::set_connect_state ($ssl); 1813 require Net::SSLeay;
1814
1815 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1816 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1817
1818 $tls = delete $self->{tls};
1819 $ctx = $self->{tls_ctx};
1820
1821 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1822
1823 if ("HASH" eq ref $ctx) {
1824 require AnyEvent::TLS;
1825
1826 if ($ctx->{cache}) {
1827 my $key = $ctx+0;
1828 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1829 } else {
1830 $ctx = new AnyEvent::TLS %$ctx;
1831 }
1832 }
1130 } 1833
1131 1834 $self->{tls_ctx} = $ctx || TLS_CTX ();
1132 $self->{tls} = $ssl; 1835 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1133 1836
1134 # basically, this is deep magic (because SSL_read should have the same issues) 1837 # basically, this is deep magic (because SSL_read should have the same issues)
1135 # but the openssl maintainers basically said: "trust us, it just works". 1838 # but the openssl maintainers basically said: "trust us, it just works".
1136 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1839 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1137 # and mismaintained ssleay-module doesn't even offer them). 1840 # and mismaintained ssleay-module doesn't even offer them).
1138 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1841 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1842 #
1843 # in short: this is a mess.
1844 #
1845 # note that we do not try to keep the length constant between writes as we are required to do.
1846 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1847 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1848 # have identity issues in that area.
1139 Net::SSLeay::CTX_set_mode ($self->{tls}, 1849# Net::SSLeay::CTX_set_mode ($ssl,
1140 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1850# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1141 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1851# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1852 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1142 1853
1143 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1854 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1144 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1855 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1145 1856
1857 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1858
1146 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1859 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1147 1860
1148 $self->{filter_w} = sub { 1861 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1149 $_[0]{_tls_wbuf} .= ${$_[1]}; 1862 if $self->{on_starttls};
1150 &_dotls; 1863
1151 }; 1864 &_dotls; # need to trigger the initial handshake
1152 $self->{filter_r} = sub { 1865 $self->start_read; # make sure we actually do read
1153 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1154 &_dotls;
1155 };
1156} 1866}
1157 1867
1158=item $handle->stoptls 1868=item $handle->stoptls
1159 1869
1160Destroys the SSL connection, if any. Partial read or write data will be 1870Shuts down the SSL connection - this makes a proper EOF handshake by
1161lost. 1871sending a close notify to the other side, but since OpenSSL doesn't
1872support non-blocking shut downs, it is not guarenteed that you can re-use
1873the stream afterwards.
1162 1874
1163=cut 1875=cut
1164 1876
1165sub stoptls { 1877sub stoptls {
1166 my ($self) = @_; 1878 my ($self) = @_;
1167 1879
1168 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1880 if ($self->{tls}) {
1881 Net::SSLeay::shutdown ($self->{tls});
1169 1882
1170 delete $self->{_rbio}; 1883 &_dotls;
1171 delete $self->{_wbio}; 1884
1172 delete $self->{_tls_wbuf}; 1885# # we don't give a shit. no, we do, but we can't. no...#d#
1173 delete $self->{filter_r}; 1886# # we, we... have to use openssl :/#d#
1174 delete $self->{filter_w}; 1887# &_freetls;#d#
1888 }
1889}
1890
1891sub _freetls {
1892 my ($self) = @_;
1893
1894 return unless $self->{tls};
1895
1896 $self->{tls_ctx}->_put_session (delete $self->{tls})
1897 if $self->{tls} > 0;
1898
1899 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1175} 1900}
1176 1901
1177sub DESTROY { 1902sub DESTROY {
1178 my $self = shift; 1903 my ($self) = @_;
1179 1904
1180 $self->stoptls; 1905 &_freetls;
1906
1907 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1908
1909 if ($linger && length $self->{wbuf} && $self->{fh}) {
1910 my $fh = delete $self->{fh};
1911 my $wbuf = delete $self->{wbuf};
1912
1913 my @linger;
1914
1915 push @linger, AE::io $fh, 1, sub {
1916 my $len = syswrite $fh, $wbuf, length $wbuf;
1917
1918 if ($len > 0) {
1919 substr $wbuf, 0, $len, "";
1920 } else {
1921 @linger = (); # end
1922 }
1923 };
1924 push @linger, AE::timer $linger, 0, sub {
1925 @linger = ();
1926 };
1927 }
1928}
1929
1930=item $handle->destroy
1931
1932Shuts down the handle object as much as possible - this call ensures that
1933no further callbacks will be invoked and as many resources as possible
1934will be freed. Any method you will call on the handle object after
1935destroying it in this way will be silently ignored (and it will return the
1936empty list).
1937
1938Normally, you can just "forget" any references to an AnyEvent::Handle
1939object and it will simply shut down. This works in fatal error and EOF
1940callbacks, as well as code outside. It does I<NOT> work in a read or write
1941callback, so when you want to destroy the AnyEvent::Handle object from
1942within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1943that case.
1944
1945Destroying the handle object in this way has the advantage that callbacks
1946will be removed as well, so if those are the only reference holders (as
1947is common), then one doesn't need to do anything special to break any
1948reference cycles.
1949
1950The handle might still linger in the background and write out remaining
1951data, as specified by the C<linger> option, however.
1952
1953=cut
1954
1955sub destroy {
1956 my ($self) = @_;
1957
1958 $self->DESTROY;
1959 %$self = ();
1960 bless $self, "AnyEvent::Handle::destroyed";
1961}
1962
1963sub AnyEvent::Handle::destroyed::AUTOLOAD {
1964 #nop
1181} 1965}
1182 1966
1183=item AnyEvent::Handle::TLS_CTX 1967=item AnyEvent::Handle::TLS_CTX
1184 1968
1185This function creates and returns the Net::SSLeay::CTX object used by 1969This function creates and returns the AnyEvent::TLS object used by default
1186default for TLS mode. 1970for TLS mode.
1187 1971
1188The context is created like this: 1972The context is created by calling L<AnyEvent::TLS> without any arguments.
1189
1190 Net::SSLeay::load_error_strings;
1191 Net::SSLeay::SSLeay_add_ssl_algorithms;
1192 Net::SSLeay::randomize;
1193
1194 my $CTX = Net::SSLeay::CTX_new;
1195
1196 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1197 1973
1198=cut 1974=cut
1199 1975
1200our $TLS_CTX; 1976our $TLS_CTX;
1201 1977
1202sub TLS_CTX() { 1978sub TLS_CTX() {
1203 $TLS_CTX || do { 1979 $TLS_CTX ||= do {
1204 require Net::SSLeay; 1980 require AnyEvent::TLS;
1205 1981
1206 Net::SSLeay::load_error_strings (); 1982 new AnyEvent::TLS
1207 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1208 Net::SSLeay::randomize ();
1209
1210 $TLS_CTX = Net::SSLeay::CTX_new ();
1211
1212 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1213
1214 $TLS_CTX
1215 } 1983 }
1216} 1984}
1217 1985
1218=back 1986=back
1987
1988
1989=head1 NONFREQUENTLY ASKED QUESTIONS
1990
1991=over 4
1992
1993=item I C<undef> the AnyEvent::Handle reference inside my callback and
1994still get further invocations!
1995
1996That's because AnyEvent::Handle keeps a reference to itself when handling
1997read or write callbacks.
1998
1999It is only safe to "forget" the reference inside EOF or error callbacks,
2000from within all other callbacks, you need to explicitly call the C<<
2001->destroy >> method.
2002
2003=item I get different callback invocations in TLS mode/Why can't I pause
2004reading?
2005
2006Unlike, say, TCP, TLS connections do not consist of two independent
2007communication channels, one for each direction. Or put differently. The
2008read and write directions are not independent of each other: you cannot
2009write data unless you are also prepared to read, and vice versa.
2010
2011This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2012callback invocations when you are not expecting any read data - the reason
2013is that AnyEvent::Handle always reads in TLS mode.
2014
2015During the connection, you have to make sure that you always have a
2016non-empty read-queue, or an C<on_read> watcher. At the end of the
2017connection (or when you no longer want to use it) you can call the
2018C<destroy> method.
2019
2020=item How do I read data until the other side closes the connection?
2021
2022If you just want to read your data into a perl scalar, the easiest way
2023to achieve this is by setting an C<on_read> callback that does nothing,
2024clearing the C<on_eof> callback and in the C<on_error> callback, the data
2025will be in C<$_[0]{rbuf}>:
2026
2027 $handle->on_read (sub { });
2028 $handle->on_eof (undef);
2029 $handle->on_error (sub {
2030 my $data = delete $_[0]{rbuf};
2031 });
2032
2033The reason to use C<on_error> is that TCP connections, due to latencies
2034and packets loss, might get closed quite violently with an error, when in
2035fact, all data has been received.
2036
2037It is usually better to use acknowledgements when transferring data,
2038to make sure the other side hasn't just died and you got the data
2039intact. This is also one reason why so many internet protocols have an
2040explicit QUIT command.
2041
2042=item I don't want to destroy the handle too early - how do I wait until
2043all data has been written?
2044
2045After writing your last bits of data, set the C<on_drain> callback
2046and destroy the handle in there - with the default setting of
2047C<low_water_mark> this will be called precisely when all data has been
2048written to the socket:
2049
2050 $handle->push_write (...);
2051 $handle->on_drain (sub {
2052 warn "all data submitted to the kernel\n";
2053 undef $handle;
2054 });
2055
2056If you just want to queue some data and then signal EOF to the other side,
2057consider using C<< ->push_shutdown >> instead.
2058
2059=item I want to contact a TLS/SSL server, I don't care about security.
2060
2061If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2062simply connect to it and then create the AnyEvent::Handle with the C<tls>
2063parameter:
2064
2065 tcp_connect $host, $port, sub {
2066 my ($fh) = @_;
2067
2068 my $handle = new AnyEvent::Handle
2069 fh => $fh,
2070 tls => "connect",
2071 on_error => sub { ... };
2072
2073 $handle->push_write (...);
2074 };
2075
2076=item I want to contact a TLS/SSL server, I do care about security.
2077
2078Then you should additionally enable certificate verification, including
2079peername verification, if the protocol you use supports it (see
2080L<AnyEvent::TLS>, C<verify_peername>).
2081
2082E.g. for HTTPS:
2083
2084 tcp_connect $host, $port, sub {
2085 my ($fh) = @_;
2086
2087 my $handle = new AnyEvent::Handle
2088 fh => $fh,
2089 peername => $host,
2090 tls => "connect",
2091 tls_ctx => { verify => 1, verify_peername => "https" },
2092 ...
2093
2094Note that you must specify the hostname you connected to (or whatever
2095"peername" the protocol needs) as the C<peername> argument, otherwise no
2096peername verification will be done.
2097
2098The above will use the system-dependent default set of trusted CA
2099certificates. If you want to check against a specific CA, add the
2100C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2101
2102 tls_ctx => {
2103 verify => 1,
2104 verify_peername => "https",
2105 ca_file => "my-ca-cert.pem",
2106 },
2107
2108=item I want to create a TLS/SSL server, how do I do that?
2109
2110Well, you first need to get a server certificate and key. You have
2111three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2112self-signed certificate (cheap. check the search engine of your choice,
2113there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2114nice program for that purpose).
2115
2116Then create a file with your private key (in PEM format, see
2117L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2118file should then look like this:
2119
2120 -----BEGIN RSA PRIVATE KEY-----
2121 ...header data
2122 ... lots of base64'y-stuff
2123 -----END RSA PRIVATE KEY-----
2124
2125 -----BEGIN CERTIFICATE-----
2126 ... lots of base64'y-stuff
2127 -----END CERTIFICATE-----
2128
2129The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2130specify this file as C<cert_file>:
2131
2132 tcp_server undef, $port, sub {
2133 my ($fh) = @_;
2134
2135 my $handle = new AnyEvent::Handle
2136 fh => $fh,
2137 tls => "accept",
2138 tls_ctx => { cert_file => "my-server-keycert.pem" },
2139 ...
2140
2141When you have intermediate CA certificates that your clients might not
2142know about, just append them to the C<cert_file>.
2143
2144=back
2145
1219 2146
1220=head1 SUBCLASSING AnyEvent::Handle 2147=head1 SUBCLASSING AnyEvent::Handle
1221 2148
1222In many cases, you might want to subclass AnyEvent::Handle. 2149In many cases, you might want to subclass AnyEvent::Handle.
1223 2150
1227=over 4 2154=over 4
1228 2155
1229=item * all constructor arguments become object members. 2156=item * all constructor arguments become object members.
1230 2157
1231At least initially, when you pass a C<tls>-argument to the constructor it 2158At least initially, when you pass a C<tls>-argument to the constructor it
1232will end up in C<< $handle->{tls} >>. Those members might be changes or 2159will end up in C<< $handle->{tls} >>. Those members might be changed or
1233mutated later on (for example C<tls> will hold the TLS connection object). 2160mutated later on (for example C<tls> will hold the TLS connection object).
1234 2161
1235=item * other object member names are prefixed with an C<_>. 2162=item * other object member names are prefixed with an C<_>.
1236 2163
1237All object members not explicitly documented (internal use) are prefixed 2164All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines