ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.43 by root, Wed May 28 23:57:38 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12use Time::HiRes qw(time);
13
14=head1 NAME 1=head1 NAME
15 2
16AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
17
18=cut
19
20our $VERSION = '0.04';
21 4
22=head1 SYNOPSIS 5=head1 SYNOPSIS
23 6
24 use AnyEvent; 7 use AnyEvent;
25 use AnyEvent::Handle; 8 use AnyEvent::Handle;
26 9
27 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
28 11
29 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
30 AnyEvent::Handle->new (
31 fh => \*STDIN, 13 fh => \*STDIN,
32 on_eof => sub { 14 on_error => sub {
33 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
34 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
35 ); 19 );
36 20
37 # send some request line 21 # send some request line
38 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
39 23
40 # read the response line 24 # read the response line
41 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
42 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
43 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
44 $cv->send; 28 $cv->send;
45 }); 29 });
46 30
47 $cv->recv; 31 $cv->recv;
48 32
49=head1 DESCRIPTION 33=head1 DESCRIPTION
50 34
51This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
52filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
53on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
54 40
55In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
56means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
57treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
58 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
59All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
60argument. 49argument.
61 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
62=head1 METHODS 65=head1 METHODS
63 66
64=over 4 67=over 4
65 68
66=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
67 70
68The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
69 72
70=over 4 73=over 4
71 74
72=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
73 76
74The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
75
76NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
77AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
78 81
79=item on_eof => $cb->($handle) 82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
80 83
81Set the callback to be called on EOF. 84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
82 87
83While not mandatory, it is highly recommended to set an eof callback, 88You have to specify either this parameter, or C<fh>, above.
84otherwise you might end up with a closed socket while you are still
85waiting for data.
86 89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
87=item on_error => $cb->($handle) 99=item on_prepare => $cb->($handle)
88 100
101This (rarely used) callback is called before a new connection is
102attempted, but after the file handle has been created. It could be used to
103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
106
107The return value of this callback should be the connect timeout value in
108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109timeout is to be used).
110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
137=item on_error => $cb->($handle, $fatal, $message)
138
89This is the fatal error callback, that is called when, well, a fatal error 139This is the error callback, which is called when, well, some error
90occurs, such as not being able to resolve the hostname, failure to connect 140occured, such as not being able to resolve the hostname, failure to
91or a read error. 141connect or a read error.
92 142
93The object will not be in a usable state when this callback has been 143Some errors are fatal (which is indicated by C<$fatal> being true). On
94called. 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
156Non-fatal errors can be retried by simply returning, but it is recommended
157to simply ignore this parameter and instead abondon the handle object
158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
95 160
96On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
97error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
98 163C<EPROTO>).
99The callback should throw an exception. If it returns, then
100AnyEvent::Handle will C<croak> for you.
101 164
102While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
103you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
104die. 167C<croak>.
105 168
106=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
107 170
108This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
109and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
110 175
111To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
112method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
113 180
114When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
115feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
116calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
117error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
118 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
119=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
120 208
121This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
122(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
123 211
124To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
125 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
126=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
127 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
128If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
129seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
130handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
131missing, an C<ETIMEDOUT> errror will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
132 237
133Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
134any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
135idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
136in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
137 243
138Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
139 245
140=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
141 247
145 251
146=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
147 253
148If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
149when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
150avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
151 257
152For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
153be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
154(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
155amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
156isn't finished). 262isn't finished).
157 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
158=item read_size => <bytes> 290=item read_size => <bytes>
159 291
160The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
161on each [loop iteration). Default: C<4096>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
162 295
163=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
164 297
165Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
166buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
167considered empty. 300considered empty.
168 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
307=item linger => <seconds>
308
309If non-zero (default: C<3600>), then the destructor of the
310AnyEvent::Handle object will check whether there is still outstanding
311write data and will install a watcher that will write this data to the
312socket. No errors will be reported (this mostly matches how the operating
313system treats outstanding data at socket close time).
314
315This will not work for partial TLS data that could not be encoded
316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
169=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
170 330
171When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
172will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
173data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
174 337
175TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
176automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
177 342
178For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
179connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
180 346
181You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
182to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
183or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
184AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
185 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
186See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
187 363
188=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
189 365
190Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
191(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
192missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
193 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
194=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
195 407
196This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
197 409
198If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
199suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
200 413
201Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
202use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
203 416
204=item filter_r => $cb
205
206=item filter_w => $cb
207
208These exist, but are undocumented at this time.
209
210=back 417=back
211 418
212=cut 419=cut
213 420
214sub new { 421sub new {
215 my $class = shift; 422 my $class = shift;
216
217 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
218 424
219 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
220 488
221 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
222 490
223 if ($self->{tls}) { 491 $self->{_activity} =
224 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
225 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
226 } 502 if $self->{tls};
227 503
228# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
229# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
230# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
231 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
232 505
233 $self->{_activity} = time;
234 $self->_timeout;
235
236 $self->start_read; 506 $self->start_read
507 if $self->{on_read} || @{ $self->{_queue} };
237 508
238 $self 509 $self->_drain_wbuf;
239} 510}
240 511
241sub _shutdown {
242 my ($self) = @_;
243
244 delete $self->{_rw};
245 delete $self->{_ww};
246 delete $self->{fh};
247}
248
249sub error { 512sub _error {
250 my ($self) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
251 514
252 { 515 $! = $errno;
253 local $!; 516 $message ||= "$!";
254 $self->_shutdown;
255 }
256 517
257 $self->{on_error}($self)
258 if $self->{on_error}; 518 if ($self->{on_error}) {
259 519 $self->{on_error}($self, $fatal, $message);
520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
524 }
261} 525}
262 526
263=item $fh = $handle->fh 527=item $fh = $handle->fh
264 528
265This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 530
267=cut 531=cut
268 532
269sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
270 534
288 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
289} 553}
290 554
291=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
292 556
293Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
295argument.
296 558
297=cut 559=item $handle->on_wtimeout ($cb)
298 560
299sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
300 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
301} 625}
302 626
303############################################################################# 627#############################################################################
304 628
305=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
306 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
307Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
308 636
309=cut 637=item $handle->timeout_reset
310 638
311sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
312 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
313 662
314 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
315 $self->_timeout; 664 delete $self->{$tw}; &$cb;
316} 665 };
317 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
318# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
319# also check for time-outs 673 # also check for time-outs
320sub _timeout { 674 $cb = sub {
321 my ($self) = @_; 675 my ($self) = @_;
322 676
323 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
324 my $NOW = time; 678 my $NOW = AE::now;
325 679
326 # when would the timeout trigger? 680 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
328 682
329 warn "next to in $after\n";#d#
330
331 # now or in the past already? 683 # now or in the past already?
332 if ($after <= 0) { 684 if ($after <= 0) {
333 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
334 686
335 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
336 $self->{on_timeout}->($self); 688 $self->{$on_timeout}($self);
337 } else { 689 } else {
338 $! = Errno::ETIMEDOUT; 690 $self->_error (Errno::ETIMEDOUT);
339 $self->error; 691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
340 } 698 }
341 699
342 # callbakx could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
343 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
344 702
345 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
346 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
347 } 709 }
348
349 Scalar::Util::weaken $self;
350
351 warn "after $after\n";#d#
352 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
353 delete $self->{_tw};
354 $self->_timeout;
355 });
356 } else {
357 delete $self->{_tw};
358 } 710 }
359} 711}
360 712
361############################################################################# 713#############################################################################
362 714
386 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
387 739
388 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
389 741
390 $cb->($self) 742 $cb->($self)
391 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
392} 744}
393 745
394=item $handle->push_write ($data) 746=item $handle->push_write ($data)
395 747
396Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
407 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
408 760
409 my $cb = sub { 761 my $cb = sub {
410 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
411 763
412 if ($len >= 0) { 764 if (defined $len) {
413 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
414 766
415 $self->{_activity} = time; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
416 768
417 $self->{on_drain}($self) 769 $self->{on_drain}($self)
418 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
419 && $self->{on_drain}; 771 && $self->{on_drain};
420 772
421 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
422 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
423 $self->error; 775 $self->_error ($!, 1);
424 } 776 }
425 }; 777 };
426 778
427 # try to write data immediately 779 # try to write data immediately
428 $cb->(); 780 $cb->() unless $self->{autocork};
429 781
430 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
431 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
432 if length $self->{wbuf}; 784 if length $self->{wbuf};
433 }; 785 };
434} 786}
435 787
436our %WH; 788our %WH;
447 799
448 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
449 ->($self, @_); 801 ->($self, @_);
450 } 802 }
451 803
452 if ($self->{filter_w}) { 804 if ($self->{tls}) {
453 $self->{filter_w}->($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
454 } else { 807 } else {
455 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
456 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
457 } 810 }
458} 811}
459 812
460=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
461
462=item $handle->unshift_write (type => @args)
463 814
464Instead of formatting your data yourself, you can also let this module do 815Instead of formatting your data yourself, you can also let this module do
465the job by specifying a type and type-specific arguments. 816the job by specifying a type and type-specific arguments.
466 817
467Predefined types are (if you have ideas for additional types, feel free to 818Predefined types are (if you have ideas for additional types, feel free to
472=item netstring => $string 823=item netstring => $string
473 824
474Formats the given value as netstring 825Formats the given value as netstring
475(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 826(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476 827
477=back
478
479=cut 828=cut
480 829
481register_write_type netstring => sub { 830register_write_type netstring => sub {
482 my ($self, $string) = @_; 831 my ($self, $string) = @_;
483 832
484 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
834};
835
836=item packstring => $format, $data
837
838An octet string prefixed with an encoded length. The encoding C<$format>
839uses the same format as a Perl C<pack> format, but must specify a single
840integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
841optional C<!>, C<< < >> or C<< > >> modifier).
842
843=cut
844
845register_write_type packstring => sub {
846 my ($self, $format, $string) = @_;
847
848 pack "$format/a*", $string
485}; 849};
486 850
487=item json => $array_or_hashref 851=item json => $array_or_hashref
488 852
489Encodes the given hash or array reference into a JSON object. Unless you 853Encodes the given hash or array reference into a JSON object. Unless you
514Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
515this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
516 880
517=cut 881=cut
518 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
519register_write_type json => sub { 888register_write_type json => sub {
520 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
521 890
522 require JSON; 891 my $json = $self->{json} ||= json_coder;
523 892
524 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
525 : JSON::encode_json ($ref)
526}; 894};
895
896=item storable => $reference
897
898Freezes the given reference using L<Storable> and writes it to the
899handle. Uses the C<nfreeze> format.
900
901=cut
902
903register_write_type storable => sub {
904 my ($self, $ref) = @_;
905
906 require Storable;
907
908 pack "w/a*", Storable::nfreeze ($ref)
909};
910
911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
527 937
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 939
530This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 962ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 963a queue.
554 964
555In the simple case, you just install an C<on_read> callback and whenever 965In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 966new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 967enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 968leave the data there if you want to accumulate more (e.g. when only a
969partial message has been received so far).
559 970
560In the more complex case, you want to queue multiple callbacks. In this 971In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 972case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 973data arrives (also the first time it is queued) and removes it when it has
563below). 974done its job (see C<push_read>, below).
564 975
565This way you can, for example, push three line-reads, followed by reading 976This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 977a chunk of data, and AnyEvent::Handle will execute them in order.
567 978
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 979Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569the specified number of bytes which give an XML datagram. 980the specified number of bytes which give an XML datagram.
570 981
571 # in the default state, expect some header bytes 982 # in the default state, expect some header bytes
572 $handle->on_read (sub { 983 $handle->on_read (sub {
573 # some data is here, now queue the length-header-read (4 octets) 984 # some data is here, now queue the length-header-read (4 octets)
574 shift->unshift_read_chunk (4, sub { 985 shift->unshift_read (chunk => 4, sub {
575 # header arrived, decode 986 # header arrived, decode
576 my $len = unpack "N", $_[1]; 987 my $len = unpack "N", $_[1];
577 988
578 # now read the payload 989 # now read the payload
579 shift->unshift_read_chunk ($len, sub { 990 shift->unshift_read (chunk => $len, sub {
580 my $xml = $_[1]; 991 my $xml = $_[1];
581 # handle xml 992 # handle xml
582 }); 993 });
583 }); 994 });
584 }); 995 });
585 996
586Example 2: Implement a client for a protocol that replies either with 997Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 998and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 999bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 1000just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 1001in the callbacks.
591 1002
592 # request one 1003When the first callback is called and sees an "OK" response, it will
1004C<unshift> another line-read. This line-read will be queued I<before> the
100564-byte chunk callback.
1006
1007 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 1008 $handle->push_write ("request 1\015\012");
594 1009
595 # we expect "ERROR" or "OK" as response, so push a line read 1010 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read_line (sub { 1011 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 1012 # if we got an "OK", we have to _prepend_ another line,
598 # so it will be read before the second request reads its 64 bytes 1013 # so it will be read before the second request reads its 64 bytes
599 # which are already in the queue when this callback is called 1014 # which are already in the queue when this callback is called
600 # we don't do this in case we got an error 1015 # we don't do this in case we got an error
601 if ($_[1] eq "OK") { 1016 if ($_[1] eq "OK") {
602 $_[0]->unshift_read_line (sub { 1017 $_[0]->unshift_read (line => sub {
603 my $response = $_[1]; 1018 my $response = $_[1];
604 ... 1019 ...
605 }); 1020 });
606 } 1021 }
607 }); 1022 });
608 1023
609 # request two 1024 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 1025 $handle->push_write ("request 2\015\012");
611 1026
612 # simply read 64 bytes, always 1027 # simply read 64 bytes, always
613 $handle->push_read_chunk (64, sub { 1028 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 1029 my $response = $_[1];
615 ... 1030 ...
616 }); 1031 });
617 1032
618=over 4 1033=over 4
619 1034
620=cut 1035=cut
621 1036
622sub _drain_rbuf { 1037sub _drain_rbuf {
623 my ($self) = @_; 1038 my ($self) = @_;
1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
1042 local $self->{_skip_drain_rbuf} = 1;
1043
1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
1050 my $len = length $self->{rbuf};
1051
1052 if (my $cb = shift @{ $self->{_queue} }) {
1053 unless ($cb->($self)) {
1054 # no progress can be made
1055 # (not enough data and no data forthcoming)
1056 $self->_error (Errno::EPIPE, 1), return
1057 if $self->{_eof};
1058
1059 unshift @{ $self->{_queue} }, $cb;
1060 last;
1061 }
1062 } elsif ($self->{on_read}) {
1063 last unless $len;
1064
1065 $self->{on_read}($self);
1066
1067 if (
1068 $len == length $self->{rbuf} # if no data has been consumed
1069 && !@{ $self->{_queue} } # and the queue is still empty
1070 && $self->{on_read} # but we still have on_read
1071 ) {
1072 # no further data will arrive
1073 # so no progress can be made
1074 $self->_error (Errno::EPIPE, 1), return
1075 if $self->{_eof};
1076
1077 last; # more data might arrive
1078 }
1079 } else {
1080 # read side becomes idle
1081 delete $self->{_rw} unless $self->{tls};
1082 last;
1083 }
1084 }
1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
1088 ? $self->{on_eof}($self)
1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
624 1093
625 if ( 1094 if (
626 defined $self->{rbuf_max} 1095 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 1096 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 1097 ) {
629 $! = &Errno::ENOSPC; 1098 $self->_error (Errno::ENOSPC, 1), return;
630 $self->error;
631 } 1099 }
632 1100
633 return if $self->{in_drain}; 1101 # may need to restart read watcher
634 local $self->{in_drain} = 1; 1102 unless ($self->{_rw}) {
635 1103 $self->start_read
636 while (my $len = length $self->{rbuf}) { 1104 if $self->{on_read} || @{ $self->{_queue} };
637 no strict 'refs';
638 if (my $cb = shift @{ $self->{_queue} }) {
639 unless ($cb->($self)) {
640 if ($self->{_eof}) {
641 # no progress can be made (not enough data and no data forthcoming)
642 $! = &Errno::EPIPE;
643 $self->error;
644 }
645
646 unshift @{ $self->{_queue} }, $cb;
647 return;
648 }
649 } elsif ($self->{on_read}) {
650 $self->{on_read}($self);
651
652 if (
653 $self->{_eof} # if no further data will arrive
654 && $len == length $self->{rbuf} # and no data has been consumed
655 && !@{ $self->{_queue} } # and the queue is still empty
656 && $self->{on_read} # and we still want to read data
657 ) {
658 # then no progress can be made
659 $! = &Errno::EPIPE;
660 $self->error;
661 }
662 } else {
663 # read side becomes idle
664 delete $self->{_rw};
665 return;
666 }
667 }
668
669 if ($self->{_eof}) {
670 $self->_shutdown;
671 $self->{on_eof}($self)
672 if $self->{on_eof};
673 } 1105 }
674} 1106}
675 1107
676=item $handle->on_read ($cb) 1108=item $handle->on_read ($cb)
677 1109
683 1115
684sub on_read { 1116sub on_read {
685 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
686 1118
687 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
1120 $self->_drain_rbuf if $cb;
688} 1121}
689 1122
690=item $handle->rbuf 1123=item $handle->rbuf
691 1124
692Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
693 1126
694You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
695you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
696 1132
697NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
698C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
699automatically manage the read buffer. 1135automatically manage the read buffer.
700 1136
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1233 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 1234 1
799 } 1235 }
800}; 1236};
801 1237
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 1238=item line => [$eol, ]$cb->($handle, $line, $eol)
812 1239
813The callback will be called only once a full line (including the end of 1240The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 1241line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 1242marker) will be passed to the callback as second argument (C<$line>), and
830=cut 1257=cut
831 1258
832register_read_type line => sub { 1259register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 1260 my ($self, $cb, $eol) = @_;
834 1261
835 $eol = qr|(\015?\012)| if @_ < 3; 1262 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 1263 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 1264 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 1265 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 1266
842 $cb->($_[0], $1, $2); 1267 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $! = &Errno::EBADMSG;
873 $self->error;
874 } 1268 1
875 return;
876 } 1269 }
1270 } else {
1271 $eol = quotemeta $eol unless ref $eol;
1272 $eol = qr|^(.*?)($eol)|s;
877 1273
878 my $len = $1; 1274 sub {
1275 $_[0]{rbuf} =~ s/$eol// or return;
879 1276
880 $self->unshift_read (chunk => $len, sub { 1277 $cb->($_[0], $1, $2);
881 my $string = $_[1];
882 $_[0]->unshift_read (chunk => 1, sub {
883 if ($_[1] eq ",") {
884 $cb->($_[0], $string);
885 } else {
886 $! = &Errno::EBADMSG;
887 $self->error;
888 }
889 }); 1278 1
890 }); 1279 }
891
892 1
893 } 1280 }
894}; 1281};
895 1282
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1283=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1284
949 return 1; 1336 return 1;
950 } 1337 }
951 1338
952 # reject 1339 # reject
953 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
954 $! = &Errno::EBADMSG; 1341 $self->_error (Errno::EBADMSG);
955 $self->error;
956 } 1342 }
957 1343
958 # skip 1344 # skip
959 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
962 1348
963 () 1349 ()
964 } 1350 }
965}; 1351};
966 1352
1353=item netstring => $cb->($handle, $string)
1354
1355A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1356
1357Throws an error with C<$!> set to EBADMSG on format violations.
1358
1359=cut
1360
1361register_read_type netstring => sub {
1362 my ($self, $cb) = @_;
1363
1364 sub {
1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1367 $self->_error (Errno::EBADMSG);
1368 }
1369 return;
1370 }
1371
1372 my $len = $1;
1373
1374 $self->unshift_read (chunk => $len, sub {
1375 my $string = $_[1];
1376 $_[0]->unshift_read (chunk => 1, sub {
1377 if ($_[1] eq ",") {
1378 $cb->($_[0], $string);
1379 } else {
1380 $self->_error (Errno::EBADMSG);
1381 }
1382 });
1383 });
1384
1385 1
1386 }
1387};
1388
1389=item packstring => $format, $cb->($handle, $string)
1390
1391An octet string prefixed with an encoded length. The encoding C<$format>
1392uses the same format as a Perl C<pack> format, but must specify a single
1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1394optional C<!>, C<< < >> or C<< > >> modifier).
1395
1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1398
1399Example: read a block of data prefixed by its length in BER-encoded
1400format (very efficient).
1401
1402 $handle->push_read (packstring => "w", sub {
1403 my ($handle, $data) = @_;
1404 });
1405
1406=cut
1407
1408register_read_type packstring => sub {
1409 my ($self, $cb, $format) = @_;
1410
1411 sub {
1412 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1413 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1414 or return;
1415
1416 $format = length pack $format, $len;
1417
1418 # bypass unshift if we already have the remaining chunk
1419 if ($format + $len <= length $_[0]{rbuf}) {
1420 my $data = substr $_[0]{rbuf}, $format, $len;
1421 substr $_[0]{rbuf}, 0, $format + $len, "";
1422 $cb->($_[0], $data);
1423 } else {
1424 # remove prefix
1425 substr $_[0]{rbuf}, 0, $format, "";
1426
1427 # read remaining chunk
1428 $_[0]->unshift_read (chunk => $len, $cb);
1429 }
1430
1431 1
1432 }
1433};
1434
967=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
968 1436
969Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1439
971If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1442
974This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1450the C<json> write type description, above, for an actual example.
982 1451
983=cut 1452=cut
984 1453
985register_read_type json => sub { 1454register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1455 my ($self, $cb) = @_;
987 1456
988 require JSON; 1457 my $json = $self->{json} ||= json_coder;
989 1458
990 my $data; 1459 my $data;
991 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
992 1461
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1462 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1464
998 if ($ref) { 1465 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1467 $json->incr_text = "";
1001 $cb->($self, $ref); 1468 $cb->($self, $ref);
1002 1469
1003 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1004 } else { 1481 } else {
1005 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1006 () 1484 ()
1007 } 1485 }
1486 }
1487};
1488
1489=item storable => $cb->($handle, $ref)
1490
1491Deserialises a L<Storable> frozen representation as written by the
1492C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1493data).
1494
1495Raises C<EBADMSG> error if the data could not be decoded.
1496
1497=cut
1498
1499register_read_type storable => sub {
1500 my ($self, $cb) = @_;
1501
1502 require Storable;
1503
1504 sub {
1505 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1506 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1507 or return;
1508
1509 my $format = length pack "w", $len;
1510
1511 # bypass unshift if we already have the remaining chunk
1512 if ($format + $len <= length $_[0]{rbuf}) {
1513 my $data = substr $_[0]{rbuf}, $format, $len;
1514 substr $_[0]{rbuf}, 0, $format + $len, "";
1515 $cb->($_[0], Storable::thaw ($data));
1516 } else {
1517 # remove prefix
1518 substr $_[0]{rbuf}, 0, $format, "";
1519
1520 # read remaining chunk
1521 $_[0]->unshift_read (chunk => $len, sub {
1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1523 $cb->($_[0], $ref);
1524 } else {
1525 $self->_error (Errno::EBADMSG);
1526 }
1527 });
1528 }
1529
1530 1
1008 } 1531 }
1009}; 1532};
1010 1533
1011=back 1534=back
1012 1535
1033=item $handle->stop_read 1556=item $handle->stop_read
1034 1557
1035=item $handle->start_read 1558=item $handle->start_read
1036 1559
1037In rare cases you actually do not want to read anything from the 1560In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1561socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1562any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1563C<start_read>.
1041 1564
1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1566you change the C<on_read> callback or push/unshift a read callback, and it
1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1568there are any read requests in the queue.
1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1042=cut 1573=cut
1043 1574
1044sub stop_read { 1575sub stop_read {
1045 my ($self) = @_; 1576 my ($self) = @_;
1046 1577
1047 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1048} 1579}
1049 1580
1050sub start_read { 1581sub start_read {
1051 my ($self) = @_; 1582 my ($self) = @_;
1052 1583
1053 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1054 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1055 1586
1056 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1057 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1058 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1059 1590
1060 if ($len > 0) { 1591 if ($len > 0) {
1061 $self->{_activity} = time; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1062 1593
1063 $self->{filter_r} 1594 if ($self->{tls}) {
1064 ? $self->{filter_r}->($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1596
1597 &_dotls ($self);
1598 } else {
1065 : $self->_drain_rbuf; 1599 $self->_drain_rbuf;
1600 }
1066 1601
1067 } elsif (defined $len) { 1602 } elsif (defined $len) {
1068 delete $self->{_rw}; 1603 delete $self->{_rw};
1069 delete $self->{_ww};
1070 delete $self->{_tw};
1071 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1605 $self->_drain_rbuf;
1073 1606
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->error; 1608 return $self->_error ($!, 1);
1076 } 1609 }
1077 }); 1610 };
1078 } 1611 }
1079} 1612}
1080 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1081sub _dotls { 1642sub _dotls {
1082 my ($self) = @_; 1643 my ($self) = @_;
1083 1644
1645 my $tmp;
1646
1084 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1085 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1086 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1087 } 1650 }
1088 }
1089 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1090 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1091 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1092 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1093 } 1687 }
1094 1688
1095 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1096 $self->{rbuf} .= $buf; 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1097 $self->_drain_rbuf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1098 }
1099
1100 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1101
1102 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1103 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1104 $self->error;
1105 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1106 $! = &Errno::EIO;
1107 $self->error;
1108 }
1109
1110 # all others are fine for our purposes
1111 }
1112} 1692}
1113 1693
1114=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1115 1695
1116Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1117object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1118C<starttls>. 1698C<starttls>.
1119 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1120The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1121C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1122 1706
1123The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1124used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1125 1711
1126The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1127call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1128might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1129 1716
1130=cut 1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1131 1720
1132# TODO: maybe document... 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1724
1133sub starttls { 1725sub starttls {
1134 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1135 1727
1136 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1137 1730
1138 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1139 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1140 Net::SSLeay::set_accept_state ($ssl); 1733
1141 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1142 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1143 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1144 } 1756
1145 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1146 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1147 1759
1148 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1149 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1150 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1151 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1152 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1153 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1154 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1155 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1156 1776
1157 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1158 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1159 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1160 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1161 1783
1162 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1163 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1164 &_dotls; 1786
1165 }; 1787 &_dotls; # need to trigger the initial handshake
1166 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1167 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1168 &_dotls;
1169 };
1170} 1789}
1171 1790
1172=item $handle->stoptls 1791=item $handle->stoptls
1173 1792
1174Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1175lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1176 1797
1177=cut 1798=cut
1178 1799
1179sub stoptls { 1800sub stoptls {
1180 my ($self) = @_; 1801 my ($self) = @_;
1181 1802
1182 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1183 1805
1184 delete $self->{_rbio}; 1806 &_dotls;
1185 delete $self->{_wbio}; 1807
1186 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1187 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1188 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1189} 1823}
1190 1824
1191sub DESTROY { 1825sub DESTROY {
1192 my $self = shift; 1826 my ($self) = @_;
1193 1827
1194 $self->stoptls; 1828 &_freetls;
1829
1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1831
1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1833 my $fh = delete $self->{fh};
1834 my $wbuf = delete $self->{wbuf};
1835
1836 my @linger;
1837
1838 push @linger, AE::io $fh, 1, sub {
1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1840
1841 if ($len > 0) {
1842 substr $wbuf, 0, $len, "";
1843 } else {
1844 @linger = (); # end
1845 }
1846 };
1847 push @linger, AE::timer $linger, 0, sub {
1848 @linger = ();
1849 };
1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1195} 1888}
1196 1889
1197=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1198 1891
1199This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1200default for TLS mode. 1893for TLS mode.
1201 1894
1202The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1203
1204 Net::SSLeay::load_error_strings;
1205 Net::SSLeay::SSLeay_add_ssl_algorithms;
1206 Net::SSLeay::randomize;
1207
1208 my $CTX = Net::SSLeay::CTX_new;
1209
1210 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1211 1896
1212=cut 1897=cut
1213 1898
1214our $TLS_CTX; 1899our $TLS_CTX;
1215 1900
1216sub TLS_CTX() { 1901sub TLS_CTX() {
1217 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1218 require Net::SSLeay; 1903 require AnyEvent::TLS;
1219 1904
1220 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1221 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1222 Net::SSLeay::randomize ();
1223
1224 $TLS_CTX = Net::SSLeay::CTX_new ();
1225
1226 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1227
1228 $TLS_CTX
1229 } 1906 }
1230} 1907}
1231 1908
1232=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1233 2069
1234=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1235 2071
1236In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1237 2073
1241=over 4 2077=over 4
1242 2078
1243=item * all constructor arguments become object members. 2079=item * all constructor arguments become object members.
1244 2080
1245At least initially, when you pass a C<tls>-argument to the constructor it 2081At least initially, when you pass a C<tls>-argument to the constructor it
1246will end up in C<< $handle->{tls} >>. Those members might be changes or 2082will end up in C<< $handle->{tls} >>. Those members might be changed or
1247mutated later on (for example C<tls> will hold the TLS connection object). 2083mutated later on (for example C<tls> will hold the TLS connection object).
1248 2084
1249=item * other object member names are prefixed with an C<_>. 2085=item * other object member names are prefixed with an C<_>.
1250 2086
1251All object members not explicitly documented (internal use) are prefixed 2087All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines