ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.47 by root, Thu May 29 00:25:28 2008 UTC vs.
Revision 1.178 by root, Tue Aug 11 01:15:17 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = '0.04';
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
79 83
80Set the callback to be called on EOF. 84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
81 87
82While not mandatory, it is highly recommended to set an eof callback, 88You have to specify either this parameter, or C<fh>, above.
83otherwise you might end up with a closed socket while you are still
84waiting for data.
85 89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
86=item on_error => $cb->($handle) 99=item on_prepare => $cb->($handle)
87 100
101This (rarely used) callback is called before a new connection is
102attempted, but after the file handle has been created. It could be used to
103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
106
107The return value of this callback should be the connect timeout value in
108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109timeout is to be used).
110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
137=item on_error => $cb->($handle, $fatal, $message)
138
88This is the fatal error callback, that is called when, well, a fatal error 139This is the error callback, which is called when, well, some error
89occurs, such as not being able to resolve the hostname, failure to connect 140occured, such as not being able to resolve the hostname, failure to
90or a read error. 141connect or a read error.
91 142
92The object will not be in a usable state when this callback has been 143Some errors are fatal (which is indicated by C<$fatal> being true). On
93called. 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
156Non-fatal errors can be retried by simply returning, but it is recommended
157to simply ignore this parameter and instead abondon the handle object
158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
94 160
95On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
96error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
97 163C<EPROTO>).
98The callback should throw an exception. If it returns, then
99AnyEvent::Handle will C<croak> for you.
100 164
101While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
102you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
103die. 167C<croak>.
104 168
105=item on_read => $cb->($handle) 169=item on_read => $cb->($handle)
106 170
107This sets the default read callback, which is called when data arrives 171This sets the default read callback, which is called when data arrives
108and no read request is in the queue. 172and no read request is in the queue (unlike read queue callbacks, this
173callback will only be called when at least one octet of data is in the
174read buffer).
109 175
110To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
112 180
113When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
114feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
115calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
116error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
117 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
118=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
119 208
120This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
121(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
122 211
123To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
124 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
125=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
126 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
127If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
128seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
129handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
130missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
131 237
132Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
133any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
134idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
135in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
136 243
137Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
138 245
139=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
140 247
144 251
145=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
146 253
147If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
148when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
149avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
150 257
151For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
152be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
153(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
154amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
155isn't finished). 262isn't finished).
156 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
157=item read_size => <bytes> 290=item read_size => <bytes>
158 291
159The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
160during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
161 295
162=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
163 297
164Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
165buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
166considered empty. 300considered empty.
167 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
307=item linger => <seconds>
308
309If non-zero (default: C<3600>), then the destructor of the
310AnyEvent::Handle object will check whether there is still outstanding
311write data and will install a watcher that will write this data to the
312socket. No errors will be reported (this mostly matches how the operating
313system treats outstanding data at socket close time).
314
315This will not work for partial TLS data that could not be encoded
316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
328
168=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
169 330
170When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
171will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
172data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
173 337
174TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
175automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
176 342
177For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
178connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
179 346
180You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
181to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
182or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
183AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
184 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
185See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
186 363
187=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
188 365
189Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
190(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
191missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
192 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
193=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
194 407
195This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
196 409
197If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
198suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
199 413
200Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
201use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
202 416
203=item filter_r => $cb
204
205=item filter_w => $cb
206
207These exist, but are undocumented at this time.
208
209=back 417=back
210 418
211=cut 419=cut
212 420
213sub new { 421sub new {
214 my $class = shift; 422 my $class = shift;
215
216 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
217 424
218 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
219 488
220 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
221 490
222 if ($self->{tls}) { 491 $self->{_activity} =
223 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
224 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
225 } 502 if $self->{tls};
226 503
227# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
228# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
229# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
230 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
231 505
232 $self->{_activity} = AnyEvent->now;
233 $self->_timeout;
234
235 $self->start_read; 506 $self->start_read
507 if $self->{on_read} || @{ $self->{_queue} };
236 508
237 $self 509 $self->_drain_wbuf;
238} 510}
239 511
240sub _shutdown {
241 my ($self) = @_;
242
243 delete $self->{_tw};
244 delete $self->{_rw};
245 delete $self->{_ww};
246 delete $self->{fh};
247}
248
249sub error { 512sub _error {
250 my ($self) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
251 514
252 { 515 $! = $errno;
253 local $!; 516 $message ||= "$!";
254 $self->_shutdown;
255 }
256 517
257 $self->{on_error}($self)
258 if $self->{on_error}; 518 if ($self->{on_error}) {
259 519 $self->{on_error}($self, $fatal, $message);
520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
524 }
261} 525}
262 526
263=item $fh = $handle->fh 527=item $fh = $handle->fh
264 528
265This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 530
267=cut 531=cut
268 532
269sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
270 534
288 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
289} 553}
290 554
291=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
292 556
293Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
295argument.
296 558
297=cut 559=item $handle->on_wtimeout ($cb)
298 560
299sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
300 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
301} 625}
302 626
303############################################################################# 627#############################################################################
304 628
305=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
306 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
307Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
308 636
309=cut 637=item $handle->timeout_reset
310 638
311sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
312 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
313 662
314 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
315 $self->_timeout; 664 delete $self->{$tw}; &$cb;
316} 665 };
317 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
318# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
319# also check for time-outs 673 # also check for time-outs
320sub _timeout { 674 $cb = sub {
321 my ($self) = @_; 675 my ($self) = @_;
322 676
323 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
324 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
325 679
326 # when would the timeout trigger? 680 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
328 682
329 # now or in the past already? 683 # now or in the past already?
330 if ($after <= 0) { 684 if ($after <= 0) {
331 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
332 686
333 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
334 $self->{on_timeout}->($self); 688 $self->{$on_timeout}($self);
335 } else { 689 } else {
336 $! = Errno::ETIMEDOUT; 690 $self->_error (Errno::ETIMEDOUT);
337 $self->error; 691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
338 } 698 }
339 699
340 # callbakx could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
341 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
342 702
343 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
344 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
345 } 709 }
346
347 Scalar::Util::weaken $self;
348
349 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
350 delete $self->{_tw};
351 $self->_timeout;
352 });
353 } else {
354 delete $self->{_tw};
355 } 710 }
356} 711}
357 712
358############################################################################# 713#############################################################################
359 714
383 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
384 739
385 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
386 741
387 $cb->($self) 742 $cb->($self)
388 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
389} 744}
390 745
391=item $handle->push_write ($data) 746=item $handle->push_write ($data)
392 747
393Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
404 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
405 760
406 my $cb = sub { 761 my $cb = sub {
407 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
408 763
409 if ($len >= 0) { 764 if (defined $len) {
410 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
411 766
412 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
413 768
414 $self->{on_drain}($self) 769 $self->{on_drain}($self)
415 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
416 && $self->{on_drain}; 771 && $self->{on_drain};
417 772
418 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
419 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
420 $self->error; 775 $self->_error ($!, 1);
421 } 776 }
422 }; 777 };
423 778
424 # try to write data immediately 779 # try to write data immediately
425 $cb->(); 780 $cb->() unless $self->{autocork};
426 781
427 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
428 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
429 if length $self->{wbuf}; 784 if length $self->{wbuf};
430 }; 785 };
431} 786}
432 787
433our %WH; 788our %WH;
444 799
445 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
446 ->($self, @_); 801 ->($self, @_);
447 } 802 }
448 803
449 if ($self->{filter_w}) { 804 if ($self->{tls}) {
450 $self->{filter_w}->($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
451 } else { 807 } else {
452 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
453 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
454 } 810 }
455} 811}
456 812
457=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
458
459=item $handle->unshift_write (type => @args)
460 814
461Instead of formatting your data yourself, you can also let this module do 815Instead of formatting your data yourself, you can also let this module do
462the job by specifying a type and type-specific arguments. 816the job by specifying a type and type-specific arguments.
463 817
464Predefined types are (if you have ideas for additional types, feel free to 818Predefined types are (if you have ideas for additional types, feel free to
469=item netstring => $string 823=item netstring => $string
470 824
471Formats the given value as netstring 825Formats the given value as netstring
472(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 826(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
473 827
474=back
475
476=cut 828=cut
477 829
478register_write_type netstring => sub { 830register_write_type netstring => sub {
479 my ($self, $string) = @_; 831 my ($self, $string) = @_;
480 832
481 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
834};
835
836=item packstring => $format, $data
837
838An octet string prefixed with an encoded length. The encoding C<$format>
839uses the same format as a Perl C<pack> format, but must specify a single
840integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
841optional C<!>, C<< < >> or C<< > >> modifier).
842
843=cut
844
845register_write_type packstring => sub {
846 my ($self, $format, $string) = @_;
847
848 pack "$format/a*", $string
482}; 849};
483 850
484=item json => $array_or_hashref 851=item json => $array_or_hashref
485 852
486Encodes the given hash or array reference into a JSON object. Unless you 853Encodes the given hash or array reference into a JSON object. Unless you
520 887
521 $self->{json} ? $self->{json}->encode ($ref) 888 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 889 : JSON::encode_json ($ref)
523}; 890};
524 891
892=item storable => $reference
893
894Freezes the given reference using L<Storable> and writes it to the
895handle. Uses the C<nfreeze> format.
896
897=cut
898
899register_write_type storable => sub {
900 my ($self, $ref) = @_;
901
902 require Storable;
903
904 pack "w/a*", Storable::nfreeze ($ref)
905};
906
907=back
908
909=item $handle->push_shutdown
910
911Sometimes you know you want to close the socket after writing your data
912before it was actually written. One way to do that is to replace your
913C<on_drain> handler by a callback that shuts down the socket (and set
914C<low_water_mark> to C<0>). This method is a shorthand for just that, and
915replaces the C<on_drain> callback with:
916
917 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
918
919This simply shuts down the write side and signals an EOF condition to the
920the peer.
921
922You can rely on the normal read queue and C<on_eof> handling
923afterwards. This is the cleanest way to close a connection.
924
925=cut
926
927sub push_shutdown {
928 my ($self) = @_;
929
930 delete $self->{low_water_mark};
931 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
932}
933
525=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 934=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 935
527This function (not method) lets you add your own types to C<push_write>. 936This function (not method) lets you add your own types to C<push_write>.
528Whenever the given C<type> is used, C<push_write> will invoke the code 937Whenever the given C<type> is used, C<push_write> will invoke the code
529reference with the handle object and the remaining arguments. 938reference with the handle object and the remaining arguments.
549ways, the "simple" way, using only C<on_read> and the "complex" way, using 958ways, the "simple" way, using only C<on_read> and the "complex" way, using
550a queue. 959a queue.
551 960
552In the simple case, you just install an C<on_read> callback and whenever 961In the simple case, you just install an C<on_read> callback and whenever
553new data arrives, it will be called. You can then remove some data (if 962new data arrives, it will be called. You can then remove some data (if
554enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 963enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
555or not. 964leave the data there if you want to accumulate more (e.g. when only a
965partial message has been received so far).
556 966
557In the more complex case, you want to queue multiple callbacks. In this 967In the more complex case, you want to queue multiple callbacks. In this
558case, AnyEvent::Handle will call the first queued callback each time new 968case, AnyEvent::Handle will call the first queued callback each time new
559data arrives and removes it when it has done its job (see C<push_read>, 969data arrives (also the first time it is queued) and removes it when it has
560below). 970done its job (see C<push_read>, below).
561 971
562This way you can, for example, push three line-reads, followed by reading 972This way you can, for example, push three line-reads, followed by reading
563a chunk of data, and AnyEvent::Handle will execute them in order. 973a chunk of data, and AnyEvent::Handle will execute them in order.
564 974
565Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 975Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
566the specified number of bytes which give an XML datagram. 976the specified number of bytes which give an XML datagram.
567 977
568 # in the default state, expect some header bytes 978 # in the default state, expect some header bytes
569 $handle->on_read (sub { 979 $handle->on_read (sub {
570 # some data is here, now queue the length-header-read (4 octets) 980 # some data is here, now queue the length-header-read (4 octets)
571 shift->unshift_read_chunk (4, sub { 981 shift->unshift_read (chunk => 4, sub {
572 # header arrived, decode 982 # header arrived, decode
573 my $len = unpack "N", $_[1]; 983 my $len = unpack "N", $_[1];
574 984
575 # now read the payload 985 # now read the payload
576 shift->unshift_read_chunk ($len, sub { 986 shift->unshift_read (chunk => $len, sub {
577 my $xml = $_[1]; 987 my $xml = $_[1];
578 # handle xml 988 # handle xml
579 }); 989 });
580 }); 990 });
581 }); 991 });
582 992
583Example 2: Implement a client for a protocol that replies either with 993Example 2: Implement a client for a protocol that replies either with "OK"
584"OK" and another line or "ERROR" for one request, and 64 bytes for the 994and another line or "ERROR" for the first request that is sent, and 64
585second request. Due tot he availability of a full queue, we can just 995bytes for the second request. Due to the availability of a queue, we can
586pipeline sending both requests and manipulate the queue as necessary in 996just pipeline sending both requests and manipulate the queue as necessary
587the callbacks: 997in the callbacks.
588 998
589 # request one 999When the first callback is called and sees an "OK" response, it will
1000C<unshift> another line-read. This line-read will be queued I<before> the
100164-byte chunk callback.
1002
1003 # request one, returns either "OK + extra line" or "ERROR"
590 $handle->push_write ("request 1\015\012"); 1004 $handle->push_write ("request 1\015\012");
591 1005
592 # we expect "ERROR" or "OK" as response, so push a line read 1006 # we expect "ERROR" or "OK" as response, so push a line read
593 $handle->push_read_line (sub { 1007 $handle->push_read (line => sub {
594 # if we got an "OK", we have to _prepend_ another line, 1008 # if we got an "OK", we have to _prepend_ another line,
595 # so it will be read before the second request reads its 64 bytes 1009 # so it will be read before the second request reads its 64 bytes
596 # which are already in the queue when this callback is called 1010 # which are already in the queue when this callback is called
597 # we don't do this in case we got an error 1011 # we don't do this in case we got an error
598 if ($_[1] eq "OK") { 1012 if ($_[1] eq "OK") {
599 $_[0]->unshift_read_line (sub { 1013 $_[0]->unshift_read (line => sub {
600 my $response = $_[1]; 1014 my $response = $_[1];
601 ... 1015 ...
602 }); 1016 });
603 } 1017 }
604 }); 1018 });
605 1019
606 # request two 1020 # request two, simply returns 64 octets
607 $handle->push_write ("request 2\015\012"); 1021 $handle->push_write ("request 2\015\012");
608 1022
609 # simply read 64 bytes, always 1023 # simply read 64 bytes, always
610 $handle->push_read_chunk (64, sub { 1024 $handle->push_read (chunk => 64, sub {
611 my $response = $_[1]; 1025 my $response = $_[1];
612 ... 1026 ...
613 }); 1027 });
614 1028
615=over 4 1029=over 4
616 1030
617=cut 1031=cut
618 1032
619sub _drain_rbuf { 1033sub _drain_rbuf {
620 my ($self) = @_; 1034 my ($self) = @_;
1035
1036 # avoid recursion
1037 return if $self->{_skip_drain_rbuf};
1038 local $self->{_skip_drain_rbuf} = 1;
1039
1040 while () {
1041 # we need to use a separate tls read buffer, as we must not receive data while
1042 # we are draining the buffer, and this can only happen with TLS.
1043 $self->{rbuf} .= delete $self->{_tls_rbuf}
1044 if exists $self->{_tls_rbuf};
1045
1046 my $len = length $self->{rbuf};
1047
1048 if (my $cb = shift @{ $self->{_queue} }) {
1049 unless ($cb->($self)) {
1050 # no progress can be made
1051 # (not enough data and no data forthcoming)
1052 $self->_error (Errno::EPIPE, 1), return
1053 if $self->{_eof};
1054
1055 unshift @{ $self->{_queue} }, $cb;
1056 last;
1057 }
1058 } elsif ($self->{on_read}) {
1059 last unless $len;
1060
1061 $self->{on_read}($self);
1062
1063 if (
1064 $len == length $self->{rbuf} # if no data has been consumed
1065 && !@{ $self->{_queue} } # and the queue is still empty
1066 && $self->{on_read} # but we still have on_read
1067 ) {
1068 # no further data will arrive
1069 # so no progress can be made
1070 $self->_error (Errno::EPIPE, 1), return
1071 if $self->{_eof};
1072
1073 last; # more data might arrive
1074 }
1075 } else {
1076 # read side becomes idle
1077 delete $self->{_rw} unless $self->{tls};
1078 last;
1079 }
1080 }
1081
1082 if ($self->{_eof}) {
1083 $self->{on_eof}
1084 ? $self->{on_eof}($self)
1085 : $self->_error (0, 1, "Unexpected end-of-file");
1086
1087 return;
1088 }
621 1089
622 if ( 1090 if (
623 defined $self->{rbuf_max} 1091 defined $self->{rbuf_max}
624 && $self->{rbuf_max} < length $self->{rbuf} 1092 && $self->{rbuf_max} < length $self->{rbuf}
625 ) { 1093 ) {
626 $! = &Errno::ENOSPC; 1094 $self->_error (Errno::ENOSPC, 1), return;
627 $self->error;
628 } 1095 }
629 1096
630 return if $self->{in_drain}; 1097 # may need to restart read watcher
631 local $self->{in_drain} = 1; 1098 unless ($self->{_rw}) {
632 1099 $self->start_read
633 while (my $len = length $self->{rbuf}) { 1100 if $self->{on_read} || @{ $self->{_queue} };
634 no strict 'refs';
635 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) {
637 if ($self->{_eof}) {
638 # no progress can be made (not enough data and no data forthcoming)
639 $! = &Errno::EPIPE;
640 $self->error;
641 }
642
643 unshift @{ $self->{_queue} }, $cb;
644 return;
645 }
646 } elsif ($self->{on_read}) {
647 $self->{on_read}($self);
648
649 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data
654 ) {
655 # then no progress can be made
656 $! = &Errno::EPIPE;
657 $self->error;
658 }
659 } else {
660 # read side becomes idle
661 delete $self->{_rw};
662 return;
663 }
664 }
665
666 if ($self->{_eof}) {
667 $self->_shutdown;
668 $self->{on_eof}($self)
669 if $self->{on_eof};
670 } 1101 }
671} 1102}
672 1103
673=item $handle->on_read ($cb) 1104=item $handle->on_read ($cb)
674 1105
680 1111
681sub on_read { 1112sub on_read {
682 my ($self, $cb) = @_; 1113 my ($self, $cb) = @_;
683 1114
684 $self->{on_read} = $cb; 1115 $self->{on_read} = $cb;
1116 $self->_drain_rbuf if $cb;
685} 1117}
686 1118
687=item $handle->rbuf 1119=item $handle->rbuf
688 1120
689Returns the read buffer (as a modifiable lvalue). 1121Returns the read buffer (as a modifiable lvalue).
690 1122
691You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1123You can access the read buffer directly as the C<< ->{rbuf} >>
692you want. 1124member, if you want. However, the only operation allowed on the
1125read buffer (apart from looking at it) is removing data from its
1126beginning. Otherwise modifying or appending to it is not allowed and will
1127lead to hard-to-track-down bugs.
693 1128
694NOTE: The read buffer should only be used or modified if the C<on_read>, 1129NOTE: The read buffer should only be used or modified if the C<on_read>,
695C<push_read> or C<unshift_read> methods are used. The other read methods 1130C<push_read> or C<unshift_read> methods are used. The other read methods
696automatically manage the read buffer. 1131automatically manage the read buffer.
697 1132
794 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1229 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
795 1 1230 1
796 } 1231 }
797}; 1232};
798 1233
799# compatibility with older API
800sub push_read_chunk {
801 $_[0]->push_read (chunk => $_[1], $_[2]);
802}
803
804sub unshift_read_chunk {
805 $_[0]->unshift_read (chunk => $_[1], $_[2]);
806}
807
808=item line => [$eol, ]$cb->($handle, $line, $eol) 1234=item line => [$eol, ]$cb->($handle, $line, $eol)
809 1235
810The callback will be called only once a full line (including the end of 1236The callback will be called only once a full line (including the end of
811line marker, C<$eol>) has been read. This line (excluding the end of line 1237line marker, C<$eol>) has been read. This line (excluding the end of line
812marker) will be passed to the callback as second argument (C<$line>), and 1238marker) will be passed to the callback as second argument (C<$line>), and
827=cut 1253=cut
828 1254
829register_read_type line => sub { 1255register_read_type line => sub {
830 my ($self, $cb, $eol) = @_; 1256 my ($self, $cb, $eol) = @_;
831 1257
832 $eol = qr|(\015?\012)| if @_ < 3; 1258 if (@_ < 3) {
833 $eol = quotemeta $eol unless ref $eol; 1259 # this is more than twice as fast as the generic code below
834 $eol = qr|^(.*?)($eol)|s;
835
836 sub { 1260 sub {
837 $_[0]{rbuf} =~ s/$eol// or return; 1261 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
838 1262
839 $cb->($_[0], $1, $2); 1263 $cb->($_[0], $1, $2);
840 1
841 }
842};
843
844# compatibility with older API
845sub push_read_line {
846 my $self = shift;
847 $self->push_read (line => @_);
848}
849
850sub unshift_read_line {
851 my $self = shift;
852 $self->unshift_read (line => @_);
853}
854
855=item netstring => $cb->($handle, $string)
856
857A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
858
859Throws an error with C<$!> set to EBADMSG on format violations.
860
861=cut
862
863register_read_type netstring => sub {
864 my ($self, $cb) = @_;
865
866 sub {
867 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
868 if ($_[0]{rbuf} =~ /[^0-9]/) {
869 $! = &Errno::EBADMSG;
870 $self->error;
871 } 1264 1
872 return;
873 } 1265 }
1266 } else {
1267 $eol = quotemeta $eol unless ref $eol;
1268 $eol = qr|^(.*?)($eol)|s;
874 1269
875 my $len = $1; 1270 sub {
1271 $_[0]{rbuf} =~ s/$eol// or return;
876 1272
877 $self->unshift_read (chunk => $len, sub { 1273 $cb->($_[0], $1, $2);
878 my $string = $_[1];
879 $_[0]->unshift_read (chunk => 1, sub {
880 if ($_[1] eq ",") {
881 $cb->($_[0], $string);
882 } else {
883 $! = &Errno::EBADMSG;
884 $self->error;
885 }
886 }); 1274 1
887 }); 1275 }
888
889 1
890 } 1276 }
891}; 1277};
892 1278
893=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1279=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
894 1280
946 return 1; 1332 return 1;
947 } 1333 }
948 1334
949 # reject 1335 # reject
950 if ($reject && $$rbuf =~ $reject) { 1336 if ($reject && $$rbuf =~ $reject) {
951 $! = &Errno::EBADMSG; 1337 $self->_error (Errno::EBADMSG);
952 $self->error;
953 } 1338 }
954 1339
955 # skip 1340 # skip
956 if ($skip && $$rbuf =~ $skip) { 1341 if ($skip && $$rbuf =~ $skip) {
957 $data .= substr $$rbuf, 0, $+[0], ""; 1342 $data .= substr $$rbuf, 0, $+[0], "";
959 1344
960 () 1345 ()
961 } 1346 }
962}; 1347};
963 1348
1349=item netstring => $cb->($handle, $string)
1350
1351A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1352
1353Throws an error with C<$!> set to EBADMSG on format violations.
1354
1355=cut
1356
1357register_read_type netstring => sub {
1358 my ($self, $cb) = @_;
1359
1360 sub {
1361 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1362 if ($_[0]{rbuf} =~ /[^0-9]/) {
1363 $self->_error (Errno::EBADMSG);
1364 }
1365 return;
1366 }
1367
1368 my $len = $1;
1369
1370 $self->unshift_read (chunk => $len, sub {
1371 my $string = $_[1];
1372 $_[0]->unshift_read (chunk => 1, sub {
1373 if ($_[1] eq ",") {
1374 $cb->($_[0], $string);
1375 } else {
1376 $self->_error (Errno::EBADMSG);
1377 }
1378 });
1379 });
1380
1381 1
1382 }
1383};
1384
1385=item packstring => $format, $cb->($handle, $string)
1386
1387An octet string prefixed with an encoded length. The encoding C<$format>
1388uses the same format as a Perl C<pack> format, but must specify a single
1389integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1390optional C<!>, C<< < >> or C<< > >> modifier).
1391
1392For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1393EPP uses a prefix of C<N> (4 octtes).
1394
1395Example: read a block of data prefixed by its length in BER-encoded
1396format (very efficient).
1397
1398 $handle->push_read (packstring => "w", sub {
1399 my ($handle, $data) = @_;
1400 });
1401
1402=cut
1403
1404register_read_type packstring => sub {
1405 my ($self, $cb, $format) = @_;
1406
1407 sub {
1408 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1409 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1410 or return;
1411
1412 $format = length pack $format, $len;
1413
1414 # bypass unshift if we already have the remaining chunk
1415 if ($format + $len <= length $_[0]{rbuf}) {
1416 my $data = substr $_[0]{rbuf}, $format, $len;
1417 substr $_[0]{rbuf}, 0, $format + $len, "";
1418 $cb->($_[0], $data);
1419 } else {
1420 # remove prefix
1421 substr $_[0]{rbuf}, 0, $format, "";
1422
1423 # read remaining chunk
1424 $_[0]->unshift_read (chunk => $len, $cb);
1425 }
1426
1427 1
1428 }
1429};
1430
964=item json => $cb->($handle, $hash_or_arrayref) 1431=item json => $cb->($handle, $hash_or_arrayref)
965 1432
966Reads a JSON object or array, decodes it and passes it to the callback. 1433Reads a JSON object or array, decodes it and passes it to the
1434callback. When a parse error occurs, an C<EBADMSG> error will be raised.
967 1435
968If a C<json> object was passed to the constructor, then that will be used 1436If a C<json> object was passed to the constructor, then that will be used
969for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1437for the final decode, otherwise it will create a JSON coder expecting UTF-8.
970 1438
971This read type uses the incremental parser available with JSON version 1439This read type uses the incremental parser available with JSON version
978the C<json> write type description, above, for an actual example. 1446the C<json> write type description, above, for an actual example.
979 1447
980=cut 1448=cut
981 1449
982register_read_type json => sub { 1450register_read_type json => sub {
983 my ($self, $cb, $accept, $reject, $skip) = @_; 1451 my ($self, $cb) = @_;
984 1452
985 require JSON; 1453 my $json = $self->{json} ||=
1454 eval { require JSON::XS; JSON::XS->new->utf8 }
1455 || do { require JSON; JSON->new->utf8 };
986 1456
987 my $data; 1457 my $data;
988 my $rbuf = \$self->{rbuf}; 1458 my $rbuf = \$self->{rbuf};
989 1459
990 my $json = $self->{json} ||= JSON->new->utf8;
991
992 sub { 1460 sub {
993 my $ref = $json->incr_parse ($self->{rbuf}); 1461 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
994 1462
995 if ($ref) { 1463 if ($ref) {
996 $self->{rbuf} = $json->incr_text; 1464 $self->{rbuf} = $json->incr_text;
997 $json->incr_text = ""; 1465 $json->incr_text = "";
998 $cb->($self, $ref); 1466 $cb->($self, $ref);
999 1467
1000 1 1468 1
1469 } elsif ($@) {
1470 # error case
1471 $json->incr_skip;
1472
1473 $self->{rbuf} = $json->incr_text;
1474 $json->incr_text = "";
1475
1476 $self->_error (Errno::EBADMSG);
1477
1478 ()
1001 } else { 1479 } else {
1002 $self->{rbuf} = ""; 1480 $self->{rbuf} = "";
1481
1003 () 1482 ()
1004 } 1483 }
1484 }
1485};
1486
1487=item storable => $cb->($handle, $ref)
1488
1489Deserialises a L<Storable> frozen representation as written by the
1490C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1491data).
1492
1493Raises C<EBADMSG> error if the data could not be decoded.
1494
1495=cut
1496
1497register_read_type storable => sub {
1498 my ($self, $cb) = @_;
1499
1500 require Storable;
1501
1502 sub {
1503 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1504 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1505 or return;
1506
1507 my $format = length pack "w", $len;
1508
1509 # bypass unshift if we already have the remaining chunk
1510 if ($format + $len <= length $_[0]{rbuf}) {
1511 my $data = substr $_[0]{rbuf}, $format, $len;
1512 substr $_[0]{rbuf}, 0, $format + $len, "";
1513 $cb->($_[0], Storable::thaw ($data));
1514 } else {
1515 # remove prefix
1516 substr $_[0]{rbuf}, 0, $format, "";
1517
1518 # read remaining chunk
1519 $_[0]->unshift_read (chunk => $len, sub {
1520 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1521 $cb->($_[0], $ref);
1522 } else {
1523 $self->_error (Errno::EBADMSG);
1524 }
1525 });
1526 }
1527
1528 1
1005 } 1529 }
1006}; 1530};
1007 1531
1008=back 1532=back
1009 1533
1030=item $handle->stop_read 1554=item $handle->stop_read
1031 1555
1032=item $handle->start_read 1556=item $handle->start_read
1033 1557
1034In rare cases you actually do not want to read anything from the 1558In rare cases you actually do not want to read anything from the
1035socket. In this case you can call C<stop_read>. Neither C<on_read> no 1559socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1036any queued callbacks will be executed then. To start reading again, call 1560any queued callbacks will be executed then. To start reading again, call
1037C<start_read>. 1561C<start_read>.
1038 1562
1563Note that AnyEvent::Handle will automatically C<start_read> for you when
1564you change the C<on_read> callback or push/unshift a read callback, and it
1565will automatically C<stop_read> for you when neither C<on_read> is set nor
1566there are any read requests in the queue.
1567
1568These methods will have no effect when in TLS mode (as TLS doesn't support
1569half-duplex connections).
1570
1039=cut 1571=cut
1040 1572
1041sub stop_read { 1573sub stop_read {
1042 my ($self) = @_; 1574 my ($self) = @_;
1043 1575
1044 delete $self->{_rw}; 1576 delete $self->{_rw} unless $self->{tls};
1045} 1577}
1046 1578
1047sub start_read { 1579sub start_read {
1048 my ($self) = @_; 1580 my ($self) = @_;
1049 1581
1050 unless ($self->{_rw} || $self->{_eof}) { 1582 unless ($self->{_rw} || $self->{_eof}) {
1051 Scalar::Util::weaken $self; 1583 Scalar::Util::weaken $self;
1052 1584
1053 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1585 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1054 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1586 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1055 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1587 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1056 1588
1057 if ($len > 0) { 1589 if ($len > 0) {
1058 $self->{_activity} = AnyEvent->now; 1590 $self->{_activity} = $self->{_ractivity} = AE::now;
1059 1591
1060 $self->{filter_r} 1592 if ($self->{tls}) {
1061 ? $self->{filter_r}->($self, $rbuf) 1593 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1594
1595 &_dotls ($self);
1596 } else {
1062 : $self->_drain_rbuf; 1597 $self->_drain_rbuf;
1598 }
1063 1599
1064 } elsif (defined $len) { 1600 } elsif (defined $len) {
1065 delete $self->{_rw}; 1601 delete $self->{_rw};
1066 $self->{_eof} = 1; 1602 $self->{_eof} = 1;
1067 $self->_drain_rbuf; 1603 $self->_drain_rbuf;
1068 1604
1069 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1605 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1070 return $self->error; 1606 return $self->_error ($!, 1);
1071 } 1607 }
1072 }); 1608 };
1073 } 1609 }
1074} 1610}
1075 1611
1612our $ERROR_SYSCALL;
1613our $ERROR_WANT_READ;
1614
1615sub _tls_error {
1616 my ($self, $err) = @_;
1617
1618 return $self->_error ($!, 1)
1619 if $err == Net::SSLeay::ERROR_SYSCALL ();
1620
1621 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1622
1623 # reduce error string to look less scary
1624 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1625
1626 if ($self->{_on_starttls}) {
1627 (delete $self->{_on_starttls})->($self, undef, $err);
1628 &_freetls;
1629 } else {
1630 &_freetls;
1631 $self->_error (Errno::EPROTO, 1, $err);
1632 }
1633}
1634
1635# poll the write BIO and send the data if applicable
1636# also decode read data if possible
1637# this is basiclaly our TLS state machine
1638# more efficient implementations are possible with openssl,
1639# but not with the buggy and incomplete Net::SSLeay.
1076sub _dotls { 1640sub _dotls {
1077 my ($self) = @_; 1641 my ($self) = @_;
1078 1642
1643 my $tmp;
1644
1079 if (length $self->{_tls_wbuf}) { 1645 if (length $self->{_tls_wbuf}) {
1080 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1646 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1081 substr $self->{_tls_wbuf}, 0, $len, ""; 1647 substr $self->{_tls_wbuf}, 0, $tmp, "";
1082 } 1648 }
1083 }
1084 1649
1650 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1651 return $self->_tls_error ($tmp)
1652 if $tmp != $ERROR_WANT_READ
1653 && ($tmp != $ERROR_SYSCALL || $!);
1654 }
1655
1656 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1657 unless (length $tmp) {
1658 $self->{_on_starttls}
1659 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1660 &_freetls;
1661
1662 if ($self->{on_stoptls}) {
1663 $self->{on_stoptls}($self);
1664 return;
1665 } else {
1666 # let's treat SSL-eof as we treat normal EOF
1667 delete $self->{_rw};
1668 $self->{_eof} = 1;
1669 }
1670 }
1671
1672 $self->{_tls_rbuf} .= $tmp;
1673 $self->_drain_rbuf;
1674 $self->{tls} or return; # tls session might have gone away in callback
1675 }
1676
1677 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1678 return $self->_tls_error ($tmp)
1679 if $tmp != $ERROR_WANT_READ
1680 && ($tmp != $ERROR_SYSCALL || $!);
1681
1085 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1682 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1086 $self->{wbuf} .= $buf; 1683 $self->{wbuf} .= $tmp;
1087 $self->_drain_wbuf; 1684 $self->_drain_wbuf;
1088 } 1685 }
1089 1686
1090 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1687 $self->{_on_starttls}
1091 $self->{rbuf} .= $buf; 1688 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1092 $self->_drain_rbuf; 1689 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1093 }
1094
1095 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1096
1097 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1098 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1099 $self->error;
1100 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1101 $! = &Errno::EIO;
1102 $self->error;
1103 }
1104
1105 # all others are fine for our purposes
1106 }
1107} 1690}
1108 1691
1109=item $handle->starttls ($tls[, $tls_ctx]) 1692=item $handle->starttls ($tls[, $tls_ctx])
1110 1693
1111Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1694Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1112object is created, you can also do that at a later time by calling 1695object is created, you can also do that at a later time by calling
1113C<starttls>. 1696C<starttls>.
1114 1697
1698Starting TLS is currently an asynchronous operation - when you push some
1699write data and then call C<< ->starttls >> then TLS negotiation will start
1700immediately, after which the queued write data is then sent.
1701
1115The first argument is the same as the C<tls> constructor argument (either 1702The first argument is the same as the C<tls> constructor argument (either
1116C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1703C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1117 1704
1118The second argument is the optional C<Net::SSLeay::CTX> object that is 1705The second argument is the optional C<AnyEvent::TLS> object that is used
1119used when AnyEvent::Handle has to create its own TLS connection object. 1706when AnyEvent::Handle has to create its own TLS connection object, or
1707a hash reference with C<< key => value >> pairs that will be used to
1708construct a new context.
1120 1709
1121The TLS connection object will end up in C<< $handle->{tls} >> after this 1710The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1122call and can be used or changed to your liking. Note that the handshake 1711context in C<< $handle->{tls_ctx} >> after this call and can be used or
1123might have already started when this function returns. 1712changed to your liking. Note that the handshake might have already started
1713when this function returns.
1124 1714
1125=cut 1715Due to bugs in OpenSSL, it might or might not be possible to do multiple
1716handshakes on the same stream. Best do not attempt to use the stream after
1717stopping TLS.
1126 1718
1127# TODO: maybe document... 1719=cut
1720
1721our %TLS_CACHE; #TODO not yet documented, should we?
1722
1128sub starttls { 1723sub starttls {
1129 my ($self, $ssl, $ctx) = @_; 1724 my ($self, $tls, $ctx) = @_;
1130 1725
1131 $self->stoptls; 1726 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1727 if $self->{tls};
1132 1728
1133 if ($ssl eq "accept") { 1729 $self->{tls} = $tls;
1134 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1730 $self->{tls_ctx} = $ctx if @_ > 2;
1135 Net::SSLeay::set_accept_state ($ssl); 1731
1136 } elsif ($ssl eq "connect") { 1732 return unless $self->{fh};
1137 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1733
1138 Net::SSLeay::set_connect_state ($ssl); 1734 require Net::SSLeay;
1735
1736 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1737 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1738
1739 $tls = $self->{tls};
1740 $ctx = $self->{tls_ctx};
1741
1742 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1743
1744 if ("HASH" eq ref $ctx) {
1745 require AnyEvent::TLS;
1746
1747 if ($ctx->{cache}) {
1748 my $key = $ctx+0;
1749 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1750 } else {
1751 $ctx = new AnyEvent::TLS %$ctx;
1752 }
1753 }
1139 } 1754
1140 1755 $self->{tls_ctx} = $ctx || TLS_CTX ();
1141 $self->{tls} = $ssl; 1756 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1142 1757
1143 # basically, this is deep magic (because SSL_read should have the same issues) 1758 # basically, this is deep magic (because SSL_read should have the same issues)
1144 # but the openssl maintainers basically said: "trust us, it just works". 1759 # but the openssl maintainers basically said: "trust us, it just works".
1145 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1760 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1146 # and mismaintained ssleay-module doesn't even offer them). 1761 # and mismaintained ssleay-module doesn't even offer them).
1147 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1762 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1763 #
1764 # in short: this is a mess.
1765 #
1766 # note that we do not try to keep the length constant between writes as we are required to do.
1767 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1768 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1769 # have identity issues in that area.
1148 Net::SSLeay::CTX_set_mode ($self->{tls}, 1770# Net::SSLeay::CTX_set_mode ($ssl,
1149 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1771# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1150 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1772# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1773 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1151 1774
1152 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1775 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1153 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1776 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 1777
1778 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1779
1155 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1780 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1156 1781
1157 $self->{filter_w} = sub { 1782 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1158 $_[0]{_tls_wbuf} .= ${$_[1]}; 1783 if $self->{on_starttls};
1159 &_dotls; 1784
1160 }; 1785 &_dotls; # need to trigger the initial handshake
1161 $self->{filter_r} = sub { 1786 $self->start_read; # make sure we actually do read
1162 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1163 &_dotls;
1164 };
1165} 1787}
1166 1788
1167=item $handle->stoptls 1789=item $handle->stoptls
1168 1790
1169Destroys the SSL connection, if any. Partial read or write data will be 1791Shuts down the SSL connection - this makes a proper EOF handshake by
1170lost. 1792sending a close notify to the other side, but since OpenSSL doesn't
1793support non-blocking shut downs, it is not guarenteed that you can re-use
1794the stream afterwards.
1171 1795
1172=cut 1796=cut
1173 1797
1174sub stoptls { 1798sub stoptls {
1175 my ($self) = @_; 1799 my ($self) = @_;
1176 1800
1177 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1801 if ($self->{tls}) {
1802 Net::SSLeay::shutdown ($self->{tls});
1178 1803
1179 delete $self->{_rbio}; 1804 &_dotls;
1180 delete $self->{_wbio}; 1805
1181 delete $self->{_tls_wbuf}; 1806# # we don't give a shit. no, we do, but we can't. no...#d#
1182 delete $self->{filter_r}; 1807# # we, we... have to use openssl :/#d#
1183 delete $self->{filter_w}; 1808# &_freetls;#d#
1809 }
1810}
1811
1812sub _freetls {
1813 my ($self) = @_;
1814
1815 return unless $self->{tls};
1816
1817 $self->{tls_ctx}->_put_session (delete $self->{tls})
1818 if $self->{tls} > 0;
1819
1820 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1184} 1821}
1185 1822
1186sub DESTROY { 1823sub DESTROY {
1187 my $self = shift; 1824 my ($self) = @_;
1188 1825
1189 $self->stoptls; 1826 &_freetls;
1827
1828 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1829
1830 if ($linger && length $self->{wbuf} && $self->{fh}) {
1831 my $fh = delete $self->{fh};
1832 my $wbuf = delete $self->{wbuf};
1833
1834 my @linger;
1835
1836 push @linger, AE::io $fh, 1, sub {
1837 my $len = syswrite $fh, $wbuf, length $wbuf;
1838
1839 if ($len > 0) {
1840 substr $wbuf, 0, $len, "";
1841 } else {
1842 @linger = (); # end
1843 }
1844 };
1845 push @linger, AE::timer $linger, 0, sub {
1846 @linger = ();
1847 };
1848 }
1849}
1850
1851=item $handle->destroy
1852
1853Shuts down the handle object as much as possible - this call ensures that
1854no further callbacks will be invoked and as many resources as possible
1855will be freed. Any method you will call on the handle object after
1856destroying it in this way will be silently ignored (and it will return the
1857empty list).
1858
1859Normally, you can just "forget" any references to an AnyEvent::Handle
1860object and it will simply shut down. This works in fatal error and EOF
1861callbacks, as well as code outside. It does I<NOT> work in a read or write
1862callback, so when you want to destroy the AnyEvent::Handle object from
1863within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1864that case.
1865
1866Destroying the handle object in this way has the advantage that callbacks
1867will be removed as well, so if those are the only reference holders (as
1868is common), then one doesn't need to do anything special to break any
1869reference cycles.
1870
1871The handle might still linger in the background and write out remaining
1872data, as specified by the C<linger> option, however.
1873
1874=cut
1875
1876sub destroy {
1877 my ($self) = @_;
1878
1879 $self->DESTROY;
1880 %$self = ();
1881 bless $self, "AnyEvent::Handle::destroyed";
1882}
1883
1884sub AnyEvent::Handle::destroyed::AUTOLOAD {
1885 #nop
1190} 1886}
1191 1887
1192=item AnyEvent::Handle::TLS_CTX 1888=item AnyEvent::Handle::TLS_CTX
1193 1889
1194This function creates and returns the Net::SSLeay::CTX object used by 1890This function creates and returns the AnyEvent::TLS object used by default
1195default for TLS mode. 1891for TLS mode.
1196 1892
1197The context is created like this: 1893The context is created by calling L<AnyEvent::TLS> without any arguments.
1198
1199 Net::SSLeay::load_error_strings;
1200 Net::SSLeay::SSLeay_add_ssl_algorithms;
1201 Net::SSLeay::randomize;
1202
1203 my $CTX = Net::SSLeay::CTX_new;
1204
1205 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1206 1894
1207=cut 1895=cut
1208 1896
1209our $TLS_CTX; 1897our $TLS_CTX;
1210 1898
1211sub TLS_CTX() { 1899sub TLS_CTX() {
1212 $TLS_CTX || do { 1900 $TLS_CTX ||= do {
1213 require Net::SSLeay; 1901 require AnyEvent::TLS;
1214 1902
1215 Net::SSLeay::load_error_strings (); 1903 new AnyEvent::TLS
1216 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1217 Net::SSLeay::randomize ();
1218
1219 $TLS_CTX = Net::SSLeay::CTX_new ();
1220
1221 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1222
1223 $TLS_CTX
1224 } 1904 }
1225} 1905}
1226 1906
1227=back 1907=back
1908
1909
1910=head1 NONFREQUENTLY ASKED QUESTIONS
1911
1912=over 4
1913
1914=item I C<undef> the AnyEvent::Handle reference inside my callback and
1915still get further invocations!
1916
1917That's because AnyEvent::Handle keeps a reference to itself when handling
1918read or write callbacks.
1919
1920It is only safe to "forget" the reference inside EOF or error callbacks,
1921from within all other callbacks, you need to explicitly call the C<<
1922->destroy >> method.
1923
1924=item I get different callback invocations in TLS mode/Why can't I pause
1925reading?
1926
1927Unlike, say, TCP, TLS connections do not consist of two independent
1928communication channels, one for each direction. Or put differently. The
1929read and write directions are not independent of each other: you cannot
1930write data unless you are also prepared to read, and vice versa.
1931
1932This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1933callback invocations when you are not expecting any read data - the reason
1934is that AnyEvent::Handle always reads in TLS mode.
1935
1936During the connection, you have to make sure that you always have a
1937non-empty read-queue, or an C<on_read> watcher. At the end of the
1938connection (or when you no longer want to use it) you can call the
1939C<destroy> method.
1940
1941=item How do I read data until the other side closes the connection?
1942
1943If you just want to read your data into a perl scalar, the easiest way
1944to achieve this is by setting an C<on_read> callback that does nothing,
1945clearing the C<on_eof> callback and in the C<on_error> callback, the data
1946will be in C<$_[0]{rbuf}>:
1947
1948 $handle->on_read (sub { });
1949 $handle->on_eof (undef);
1950 $handle->on_error (sub {
1951 my $data = delete $_[0]{rbuf};
1952 });
1953
1954The reason to use C<on_error> is that TCP connections, due to latencies
1955and packets loss, might get closed quite violently with an error, when in
1956fact, all data has been received.
1957
1958It is usually better to use acknowledgements when transferring data,
1959to make sure the other side hasn't just died and you got the data
1960intact. This is also one reason why so many internet protocols have an
1961explicit QUIT command.
1962
1963=item I don't want to destroy the handle too early - how do I wait until
1964all data has been written?
1965
1966After writing your last bits of data, set the C<on_drain> callback
1967and destroy the handle in there - with the default setting of
1968C<low_water_mark> this will be called precisely when all data has been
1969written to the socket:
1970
1971 $handle->push_write (...);
1972 $handle->on_drain (sub {
1973 warn "all data submitted to the kernel\n";
1974 undef $handle;
1975 });
1976
1977If you just want to queue some data and then signal EOF to the other side,
1978consider using C<< ->push_shutdown >> instead.
1979
1980=item I want to contact a TLS/SSL server, I don't care about security.
1981
1982If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1983simply connect to it and then create the AnyEvent::Handle with the C<tls>
1984parameter:
1985
1986 tcp_connect $host, $port, sub {
1987 my ($fh) = @_;
1988
1989 my $handle = new AnyEvent::Handle
1990 fh => $fh,
1991 tls => "connect",
1992 on_error => sub { ... };
1993
1994 $handle->push_write (...);
1995 };
1996
1997=item I want to contact a TLS/SSL server, I do care about security.
1998
1999Then you should additionally enable certificate verification, including
2000peername verification, if the protocol you use supports it (see
2001L<AnyEvent::TLS>, C<verify_peername>).
2002
2003E.g. for HTTPS:
2004
2005 tcp_connect $host, $port, sub {
2006 my ($fh) = @_;
2007
2008 my $handle = new AnyEvent::Handle
2009 fh => $fh,
2010 peername => $host,
2011 tls => "connect",
2012 tls_ctx => { verify => 1, verify_peername => "https" },
2013 ...
2014
2015Note that you must specify the hostname you connected to (or whatever
2016"peername" the protocol needs) as the C<peername> argument, otherwise no
2017peername verification will be done.
2018
2019The above will use the system-dependent default set of trusted CA
2020certificates. If you want to check against a specific CA, add the
2021C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2022
2023 tls_ctx => {
2024 verify => 1,
2025 verify_peername => "https",
2026 ca_file => "my-ca-cert.pem",
2027 },
2028
2029=item I want to create a TLS/SSL server, how do I do that?
2030
2031Well, you first need to get a server certificate and key. You have
2032three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2033self-signed certificate (cheap. check the search engine of your choice,
2034there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2035nice program for that purpose).
2036
2037Then create a file with your private key (in PEM format, see
2038L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2039file should then look like this:
2040
2041 -----BEGIN RSA PRIVATE KEY-----
2042 ...header data
2043 ... lots of base64'y-stuff
2044 -----END RSA PRIVATE KEY-----
2045
2046 -----BEGIN CERTIFICATE-----
2047 ... lots of base64'y-stuff
2048 -----END CERTIFICATE-----
2049
2050The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2051specify this file as C<cert_file>:
2052
2053 tcp_server undef, $port, sub {
2054 my ($fh) = @_;
2055
2056 my $handle = new AnyEvent::Handle
2057 fh => $fh,
2058 tls => "accept",
2059 tls_ctx => { cert_file => "my-server-keycert.pem" },
2060 ...
2061
2062When you have intermediate CA certificates that your clients might not
2063know about, just append them to the C<cert_file>.
2064
2065=back
2066
1228 2067
1229=head1 SUBCLASSING AnyEvent::Handle 2068=head1 SUBCLASSING AnyEvent::Handle
1230 2069
1231In many cases, you might want to subclass AnyEvent::Handle. 2070In many cases, you might want to subclass AnyEvent::Handle.
1232 2071
1236=over 4 2075=over 4
1237 2076
1238=item * all constructor arguments become object members. 2077=item * all constructor arguments become object members.
1239 2078
1240At least initially, when you pass a C<tls>-argument to the constructor it 2079At least initially, when you pass a C<tls>-argument to the constructor it
1241will end up in C<< $handle->{tls} >>. Those members might be changes or 2080will end up in C<< $handle->{tls} >>. Those members might be changed or
1242mutated later on (for example C<tls> will hold the TLS connection object). 2081mutated later on (for example C<tls> will hold the TLS connection object).
1243 2082
1244=item * other object member names are prefixed with an C<_>. 2083=item * other object member names are prefixed with an C<_>.
1245 2084
1246All object members not explicitly documented (internal use) are prefixed 2085All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines