ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.52 by root, Mon Jun 2 09:10:38 2008 UTC vs.
Revision 1.150 by root, Thu Jul 16 04:16:25 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.1; 19our $VERSION = 4.82;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 warn "got error $_[2]\n";
33 }, 32 $cv->send;
34 ); 33 );
35 34
36 # send some request line 35 # send some request line
37 $handle->push_write ("getinfo\015\012"); 36 $hdl->push_write ("getinfo\015\012");
38 37
39 # read the response line 38 # read the response line
40 $handle->push_read (line => sub { 39 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 40 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 41 warn "got line <$line>\n";
43 $cv->send; 42 $cv->send;
44 }); 43 });
45 44
46 $cv->recv; 45 $cv->recv;
47 46
49 48
50This module is a helper module to make it easier to do event-based I/O on 49This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 50filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 51on sockets see L<AnyEvent::Util>.
53 52
53The L<AnyEvent::Intro> tutorial contains some well-documented
54AnyEvent::Handle examples.
55
54In the following, when the documentation refers to of "bytes" then this 56In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 57means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 58treatment of characters applies to this module as well.
57 59
58All callbacks will be invoked with the handle object as their first 60All callbacks will be invoked with the handle object as their first
60 62
61=head1 METHODS 63=head1 METHODS
62 64
63=over 4 65=over 4
64 66
65=item B<new (%args)> 67=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 68
67The constructor supports these arguments (all as key => value pairs). 69The constructor supports these arguments (all as C<< key => value >> pairs).
68 70
69=over 4 71=over 4
70 72
71=item fh => $filehandle [MANDATORY] 73=item fh => $filehandle [MANDATORY]
72 74
73The filehandle this L<AnyEvent::Handle> object will operate on. 75The filehandle this L<AnyEvent::Handle> object will operate on.
74 76
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
78=item on_eof => $cb->($handle) 81=item on_eof => $cb->($handle)
79 82
80Set the callback to be called when an end-of-file condition is detcted, 83Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 84i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 85connection cleanly, and there are no outstanding read requests in the
86queue (if there are read requests, then an EOF counts as an unexpected
87connection close and will be flagged as an error).
83 88
84While not mandatory, it is highly recommended to set an eof callback, 89For sockets, this just means that the other side has stopped sending data,
85otherwise you might end up with a closed socket while you are still 90you can still try to write data, and, in fact, one can return from the EOF
86waiting for data. 91callback and continue writing data, as only the read part has been shut
92down.
87 93
94If an EOF condition has been detected but no C<on_eof> callback has been
95set, then a fatal error will be raised with C<$!> set to <0>.
96
88=item on_error => $cb->($handle, $fatal) 97=item on_error => $cb->($handle, $fatal, $message)
89 98
90This is the error callback, which is called when, well, some error 99This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 100occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 101connect or a read error.
93 102
94Some errors are fatal (which is indicated by C<$fatal> being true). On 103Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 104fatal errors the handle object will be destroyed (by a call to C<< ->
105destroy >>) after invoking the error callback (which means you are free to
106examine the handle object). Examples of fatal errors are an EOF condition
107with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
108
109AnyEvent::Handle tries to find an appropriate error code for you to check
110against, but in some cases (TLS errors), this does not work well. It is
111recommended to always output the C<$message> argument in human-readable
112error messages (it's usually the same as C<"$!">).
113
96usable. Non-fatal errors can be retried by simply returning, but it is 114Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 115to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 116when this callback is invoked. Examples of non-fatal errors are timeouts
117C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 118
100On callback entrance, the value of C<$!> contains the operating system 119On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 120error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
121C<EPROTO>).
102 122
103While not mandatory, it is I<highly> recommended to set this callback, as 123While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 124you will not be notified of errors otherwise. The default simply calls
105C<croak>. 125C<croak>.
106 126
107=item on_read => $cb->($handle) 127=item on_read => $cb->($handle)
108 128
109This sets the default read callback, which is called when data arrives 129This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 130and no read request is in the queue (unlike read queue callbacks, this
131callback will only be called when at least one octet of data is in the
132read buffer).
111 133
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 134To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 135method or access the C<< $handle->{rbuf} >> member directly. Note that you
136must not enlarge or modify the read buffer, you can only remove data at
137the beginning from it.
114 138
115When an EOF condition is detected then AnyEvent::Handle will first try to 139When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 140feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 141calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 142error will be raised (with C<$!> set to C<EPIPE>).
119 143
144Note that, unlike requests in the read queue, an C<on_read> callback
145doesn't mean you I<require> some data: if there is an EOF and there
146are outstanding read requests then an error will be flagged. With an
147C<on_read> callback, the C<on_eof> callback will be invoked.
148
120=item on_drain => $cb->($handle) 149=item on_drain => $cb->($handle)
121 150
122This sets the callback that is called when the write buffer becomes empty 151This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 152(or when the callback is set and the buffer is empty already).
124 153
125To append to the write buffer, use the C<< ->push_write >> method. 154To append to the write buffer, use the C<< ->push_write >> method.
155
156This callback is useful when you don't want to put all of your write data
157into the queue at once, for example, when you want to write the contents
158of some file to the socket you might not want to read the whole file into
159memory and push it into the queue, but instead only read more data from
160the file when the write queue becomes empty.
126 161
127=item timeout => $fractional_seconds 162=item timeout => $fractional_seconds
128 163
129If non-zero, then this enables an "inactivity" timeout: whenever this many 164If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 165seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 166handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 167missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 168
134Note that timeout processing is also active when you currently do not have 169Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 170any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 171idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 172in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
173restart the timeout.
138 174
139Zero (the default) disables this timeout. 175Zero (the default) disables this timeout.
140 176
141=item on_timeout => $cb->($handle) 177=item on_timeout => $cb->($handle)
142 178
146 182
147=item rbuf_max => <bytes> 183=item rbuf_max => <bytes>
148 184
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 185If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 186when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 187avoid some forms of denial-of-service attacks.
152 188
153For example, a server accepting connections from untrusted sources should 189For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 190be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 191(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 192amount of data without a callback ever being called as long as the line
157isn't finished). 193isn't finished).
158 194
195=item autocork => <boolean>
196
197When disabled (the default), then C<push_write> will try to immediately
198write the data to the handle, if possible. This avoids having to register
199a write watcher and wait for the next event loop iteration, but can
200be inefficient if you write multiple small chunks (on the wire, this
201disadvantage is usually avoided by your kernel's nagle algorithm, see
202C<no_delay>, but this option can save costly syscalls).
203
204When enabled, then writes will always be queued till the next event loop
205iteration. This is efficient when you do many small writes per iteration,
206but less efficient when you do a single write only per iteration (or when
207the write buffer often is full). It also increases write latency.
208
209=item no_delay => <boolean>
210
211When doing small writes on sockets, your operating system kernel might
212wait a bit for more data before actually sending it out. This is called
213the Nagle algorithm, and usually it is beneficial.
214
215In some situations you want as low a delay as possible, which can be
216accomplishd by setting this option to a true value.
217
218The default is your opertaing system's default behaviour (most likely
219enabled), this option explicitly enables or disables it, if possible.
220
159=item read_size => <bytes> 221=item read_size => <bytes>
160 222
161The default read block size (the amount of bytes this module will try to read 223The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 224try to read during each loop iteration, which affects memory
225requirements). Default: C<8192>.
163 226
164=item low_water_mark => <bytes> 227=item low_water_mark => <bytes>
165 228
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 229Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 230buffer: If the write reaches this size or gets even samller it is
168considered empty. 231considered empty.
169 232
233Sometimes it can be beneficial (for performance reasons) to add data to
234the write buffer before it is fully drained, but this is a rare case, as
235the operating system kernel usually buffers data as well, so the default
236is good in almost all cases.
237
238=item linger => <seconds>
239
240If non-zero (default: C<3600>), then the destructor of the
241AnyEvent::Handle object will check whether there is still outstanding
242write data and will install a watcher that will write this data to the
243socket. No errors will be reported (this mostly matches how the operating
244system treats outstanding data at socket close time).
245
246This will not work for partial TLS data that could not be encoded
247yet. This data will be lost. Calling the C<stoptls> method in time might
248help.
249
250=item peername => $string
251
252A string used to identify the remote site - usually the DNS hostname
253(I<not> IDN!) used to create the connection, rarely the IP address.
254
255Apart from being useful in error messages, this string is also used in TLS
256peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
257verification will be skipped when C<peername> is not specified or
258C<undef>.
259
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 260=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 261
172When this parameter is given, it enables TLS (SSL) mode, that means it 262When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 263AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 264established and will transparently encrypt/decrypt data afterwards.
265
266All TLS protocol errors will be signalled as C<EPROTO>, with an
267appropriate error message.
175 268
176TLS mode requires Net::SSLeay to be installed (it will be loaded 269TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 270automatically when you try to create a TLS handle): this module doesn't
271have a dependency on that module, so if your module requires it, you have
272to add the dependency yourself.
178 273
179For the TLS server side, use C<accept>, and for the TLS client side of a 274Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 275C<accept>, and for the TLS client side of a connection, use C<connect>
276mode.
181 277
182You can also provide your own TLS connection object, but you have 278You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 279to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 280or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 281AnyEvent::Handle. Also, this module will take ownership of this connection
282object.
186 283
284At some future point, AnyEvent::Handle might switch to another TLS
285implementation, then the option to use your own session object will go
286away.
287
288B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
289passing in the wrong integer will lead to certain crash. This most often
290happens when one uses a stylish C<< tls => 1 >> and is surprised about the
291segmentation fault.
292
187See the C<starttls> method if you need to start TLs negotiation later. 293See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 294
189=item tls_ctx => $ssl_ctx 295=item tls_ctx => $anyevent_tls
190 296
191Use the given Net::SSLeay::CTX object to create the new TLS connection 297Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 298(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 299missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 300
301Instead of an object, you can also specify a hash reference with C<< key
302=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
303new TLS context object.
304
305=item on_starttls => $cb->($handle, $success[, $error_message])
306
307This callback will be invoked when the TLS/SSL handshake has finished. If
308C<$success> is true, then the TLS handshake succeeded, otherwise it failed
309(C<on_stoptls> will not be called in this case).
310
311The session in C<< $handle->{tls} >> can still be examined in this
312callback, even when the handshake was not successful.
313
314TLS handshake failures will not cause C<on_error> to be invoked when this
315callback is in effect, instead, the error message will be passed to C<on_starttls>.
316
317Without this callback, handshake failures lead to C<on_error> being
318called, as normal.
319
320Note that you cannot call C<starttls> right again in this callback. If you
321need to do that, start an zero-second timer instead whose callback can
322then call C<< ->starttls >> again.
323
324=item on_stoptls => $cb->($handle)
325
326When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
327set, then it will be invoked after freeing the TLS session. If it is not,
328then a TLS shutdown condition will be treated like a normal EOF condition
329on the handle.
330
331The session in C<< $handle->{tls} >> can still be examined in this
332callback.
333
334This callback will only be called on TLS shutdowns, not when the
335underlying handle signals EOF.
336
195=item json => JSON or JSON::XS object 337=item json => JSON or JSON::XS object
196 338
197This is the json coder object used by the C<json> read and write types. 339This is the json coder object used by the C<json> read and write types.
198 340
199If you don't supply it, then AnyEvent::Handle will create and use a 341If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 342suitable one (on demand), which will write and expect UTF-8 encoded JSON
343texts.
201 344
202Note that you are responsible to depend on the JSON module if you want to 345Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 346use this functionality, as AnyEvent does not have a dependency itself.
204 347
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 348=back
212 349
213=cut 350=cut
214 351
215sub new { 352sub new {
216 my $class = shift; 353 my $class = shift;
217
218 my $self = bless { @_ }, $class; 354 my $self = bless { @_ }, $class;
219 355
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 356 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 357
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 358 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 359
234 $self->{_activity} = AnyEvent->now; 360 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 361 $self->_timeout;
236 362
363 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
364
365 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
366 if $self->{tls};
367
368 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
369
237 $self->start_read; 370 $self->start_read
371 if $self->{on_read};
238 372
239 $self 373 $self->{fh} && $self
240} 374}
241 375
242sub _shutdown { 376#sub _shutdown {
243 my ($self) = @_; 377# my ($self) = @_;
244 378#
245 delete $self->{_tw}; 379# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 380# $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww}; 381#
248 delete $self->{fh}; 382# &_freetls;
249 383#}
250 $self->stoptls;
251}
252 384
253sub _error { 385sub _error {
254 my ($self, $errno, $fatal) = @_; 386 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 387
259 $! = $errno; 388 $! = $errno;
389 $message ||= "$!";
260 390
261 if ($self->{on_error}) { 391 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 392 $self->{on_error}($self, $fatal, $message);
263 } else { 393 $self->destroy;
394 } elsif ($self->{fh}) {
395 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 396 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 397 }
266} 398}
267 399
268=item $fh = $handle->fh 400=item $fh = $handle->fh
269 401
270This method returns the file handle of the L<AnyEvent::Handle> object. 402This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 403
272=cut 404=cut
273 405
274sub fh { $_[0]{fh} } 406sub fh { $_[0]{fh} }
275 407
293 $_[0]{on_eof} = $_[1]; 425 $_[0]{on_eof} = $_[1];
294} 426}
295 427
296=item $handle->on_timeout ($cb) 428=item $handle->on_timeout ($cb)
297 429
298Replace the current C<on_timeout> callback, or disables the callback 430Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 431not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 432argument and method.
301 433
302=cut 434=cut
303 435
304sub on_timeout { 436sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 437 $_[0]{on_timeout} = $_[1];
438}
439
440=item $handle->autocork ($boolean)
441
442Enables or disables the current autocork behaviour (see C<autocork>
443constructor argument). Changes will only take effect on the next write.
444
445=cut
446
447sub autocork {
448 $_[0]{autocork} = $_[1];
449}
450
451=item $handle->no_delay ($boolean)
452
453Enables or disables the C<no_delay> setting (see constructor argument of
454the same name for details).
455
456=cut
457
458sub no_delay {
459 $_[0]{no_delay} = $_[1];
460
461 eval {
462 local $SIG{__DIE__};
463 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
464 };
465}
466
467=item $handle->on_starttls ($cb)
468
469Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
470
471=cut
472
473sub on_starttls {
474 $_[0]{on_starttls} = $_[1];
475}
476
477=item $handle->on_stoptls ($cb)
478
479Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
480
481=cut
482
483sub on_starttls {
484 $_[0]{on_stoptls} = $_[1];
306} 485}
307 486
308############################################################################# 487#############################################################################
309 488
310=item $handle->timeout ($seconds) 489=item $handle->timeout ($seconds)
336 $self->{_activity} = $NOW; 515 $self->{_activity} = $NOW;
337 516
338 if ($self->{on_timeout}) { 517 if ($self->{on_timeout}) {
339 $self->{on_timeout}($self); 518 $self->{on_timeout}($self);
340 } else { 519 } else {
341 $self->_error (&Errno::ETIMEDOUT); 520 $self->_error (Errno::ETIMEDOUT);
342 } 521 }
343 522
344 # callbakx could have changed timeout value, optimise 523 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 524 return unless $self->{timeout};
346 525
347 # calculate new after 526 # calculate new after
348 $after = $self->{timeout}; 527 $after = $self->{timeout};
349 } 528 }
350 529
351 Scalar::Util::weaken $self; 530 Scalar::Util::weaken $self;
531 return unless $self; # ->error could have destroyed $self
352 532
353 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 533 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354 delete $self->{_tw}; 534 delete $self->{_tw};
355 $self->_timeout; 535 $self->_timeout;
356 }); 536 });
387 my ($self, $cb) = @_; 567 my ($self, $cb) = @_;
388 568
389 $self->{on_drain} = $cb; 569 $self->{on_drain} = $cb;
390 570
391 $cb->($self) 571 $cb->($self)
392 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 572 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
393} 573}
394 574
395=item $handle->push_write ($data) 575=item $handle->push_write ($data)
396 576
397Queues the given scalar to be written. You can push as much data as you 577Queues the given scalar to be written. You can push as much data as you
408 Scalar::Util::weaken $self; 588 Scalar::Util::weaken $self;
409 589
410 my $cb = sub { 590 my $cb = sub {
411 my $len = syswrite $self->{fh}, $self->{wbuf}; 591 my $len = syswrite $self->{fh}, $self->{wbuf};
412 592
413 if ($len >= 0) { 593 if (defined $len) {
414 substr $self->{wbuf}, 0, $len, ""; 594 substr $self->{wbuf}, 0, $len, "";
415 595
416 $self->{_activity} = AnyEvent->now; 596 $self->{_activity} = AnyEvent->now;
417 597
418 $self->{on_drain}($self) 598 $self->{on_drain}($self)
419 if $self->{low_water_mark} >= length $self->{wbuf} 599 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
420 && $self->{on_drain}; 600 && $self->{on_drain};
421 601
422 delete $self->{_ww} unless length $self->{wbuf}; 602 delete $self->{_ww} unless length $self->{wbuf};
423 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 603 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 $self->_error ($!, 1); 604 $self->_error ($!, 1);
425 } 605 }
426 }; 606 };
427 607
428 # try to write data immediately 608 # try to write data immediately
429 $cb->(); 609 $cb->() unless $self->{autocork};
430 610
431 # if still data left in wbuf, we need to poll 611 # if still data left in wbuf, we need to poll
432 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 612 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
433 if length $self->{wbuf}; 613 if length $self->{wbuf};
434 }; 614 };
448 628
449 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 629 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450 ->($self, @_); 630 ->($self, @_);
451 } 631 }
452 632
453 if ($self->{filter_w}) { 633 if ($self->{tls}) {
454 $self->{filter_w}($self, \$_[0]); 634 $self->{_tls_wbuf} .= $_[0];
635
636 &_dotls ($self);
455 } else { 637 } else {
456 $self->{wbuf} .= $_[0]; 638 $self->{wbuf} .= $_[0];
457 $self->_drain_wbuf; 639 $self->_drain_wbuf;
458 } 640 }
459} 641}
476=cut 658=cut
477 659
478register_write_type netstring => sub { 660register_write_type netstring => sub {
479 my ($self, $string) = @_; 661 my ($self, $string) = @_;
480 662
481 sprintf "%d:%s,", (length $string), $string 663 (length $string) . ":$string,"
664};
665
666=item packstring => $format, $data
667
668An octet string prefixed with an encoded length. The encoding C<$format>
669uses the same format as a Perl C<pack> format, but must specify a single
670integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
671optional C<!>, C<< < >> or C<< > >> modifier).
672
673=cut
674
675register_write_type packstring => sub {
676 my ($self, $format, $string) = @_;
677
678 pack "$format/a*", $string
482}; 679};
483 680
484=item json => $array_or_hashref 681=item json => $array_or_hashref
485 682
486Encodes the given hash or array reference into a JSON object. Unless you 683Encodes the given hash or array reference into a JSON object. Unless you
520 717
521 $self->{json} ? $self->{json}->encode ($ref) 718 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 719 : JSON::encode_json ($ref)
523}; 720};
524 721
722=item storable => $reference
723
724Freezes the given reference using L<Storable> and writes it to the
725handle. Uses the C<nfreeze> format.
726
727=cut
728
729register_write_type storable => sub {
730 my ($self, $ref) = @_;
731
732 require Storable;
733
734 pack "w/a*", Storable::nfreeze ($ref)
735};
736
737=back
738
739=item $handle->push_shutdown
740
741Sometimes you know you want to close the socket after writing your data
742before it was actually written. One way to do that is to replace your
743C<on_drain> handler by a callback that shuts down the socket (and set
744C<low_water_mark> to C<0>). This method is a shorthand for just that, and
745replaces the C<on_drain> callback with:
746
747 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
748
749This simply shuts down the write side and signals an EOF condition to the
750the peer.
751
752You can rely on the normal read queue and C<on_eof> handling
753afterwards. This is the cleanest way to close a connection.
754
755=cut
756
757sub push_shutdown {
758 my ($self) = @_;
759
760 delete $self->{low_water_mark};
761 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
762}
763
525=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 764=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
526 765
527This function (not method) lets you add your own types to C<push_write>. 766This function (not method) lets you add your own types to C<push_write>.
528Whenever the given C<type> is used, C<push_write> will invoke the code 767Whenever the given C<type> is used, C<push_write> will invoke the code
529reference with the handle object and the remaining arguments. 768reference with the handle object and the remaining arguments.
532be appended to the write buffer. 771be appended to the write buffer.
533 772
534Note that this is a function, and all types registered this way will be 773Note that this is a function, and all types registered this way will be
535global, so try to use unique names. 774global, so try to use unique names.
536 775
537=back
538
539=cut 776=cut
540 777
541############################################################################# 778#############################################################################
542 779
543=back 780=back
551ways, the "simple" way, using only C<on_read> and the "complex" way, using 788ways, the "simple" way, using only C<on_read> and the "complex" way, using
552a queue. 789a queue.
553 790
554In the simple case, you just install an C<on_read> callback and whenever 791In the simple case, you just install an C<on_read> callback and whenever
555new data arrives, it will be called. You can then remove some data (if 792new data arrives, it will be called. You can then remove some data (if
556enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 793enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
557or not. 794leave the data there if you want to accumulate more (e.g. when only a
795partial message has been received so far).
558 796
559In the more complex case, you want to queue multiple callbacks. In this 797In the more complex case, you want to queue multiple callbacks. In this
560case, AnyEvent::Handle will call the first queued callback each time new 798case, AnyEvent::Handle will call the first queued callback each time new
561data arrives and removes it when it has done its job (see C<push_read>, 799data arrives (also the first time it is queued) and removes it when it has
562below). 800done its job (see C<push_read>, below).
563 801
564This way you can, for example, push three line-reads, followed by reading 802This way you can, for example, push three line-reads, followed by reading
565a chunk of data, and AnyEvent::Handle will execute them in order. 803a chunk of data, and AnyEvent::Handle will execute them in order.
566 804
567Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 805Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
580 # handle xml 818 # handle xml
581 }); 819 });
582 }); 820 });
583 }); 821 });
584 822
585Example 2: Implement a client for a protocol that replies either with 823Example 2: Implement a client for a protocol that replies either with "OK"
586"OK" and another line or "ERROR" for one request, and 64 bytes for the 824and another line or "ERROR" for the first request that is sent, and 64
587second request. Due tot he availability of a full queue, we can just 825bytes for the second request. Due to the availability of a queue, we can
588pipeline sending both requests and manipulate the queue as necessary in 826just pipeline sending both requests and manipulate the queue as necessary
589the callbacks: 827in the callbacks.
590 828
591 # request one 829When the first callback is called and sees an "OK" response, it will
830C<unshift> another line-read. This line-read will be queued I<before> the
83164-byte chunk callback.
832
833 # request one, returns either "OK + extra line" or "ERROR"
592 $handle->push_write ("request 1\015\012"); 834 $handle->push_write ("request 1\015\012");
593 835
594 # we expect "ERROR" or "OK" as response, so push a line read 836 # we expect "ERROR" or "OK" as response, so push a line read
595 $handle->push_read (line => sub { 837 $handle->push_read (line => sub {
596 # if we got an "OK", we have to _prepend_ another line, 838 # if we got an "OK", we have to _prepend_ another line,
603 ... 845 ...
604 }); 846 });
605 } 847 }
606 }); 848 });
607 849
608 # request two 850 # request two, simply returns 64 octets
609 $handle->push_write ("request 2\015\012"); 851 $handle->push_write ("request 2\015\012");
610 852
611 # simply read 64 bytes, always 853 # simply read 64 bytes, always
612 $handle->push_read (chunk => 64, sub { 854 $handle->push_read (chunk => 64, sub {
613 my $response = $_[1]; 855 my $response = $_[1];
619=cut 861=cut
620 862
621sub _drain_rbuf { 863sub _drain_rbuf {
622 my ($self) = @_; 864 my ($self) = @_;
623 865
866 local $self->{_in_drain} = 1;
867
624 if ( 868 if (
625 defined $self->{rbuf_max} 869 defined $self->{rbuf_max}
626 && $self->{rbuf_max} < length $self->{rbuf} 870 && $self->{rbuf_max} < length $self->{rbuf}
627 ) { 871 ) {
628 return $self->_error (&Errno::ENOSPC, 1); 872 $self->_error (Errno::ENOSPC, 1), return;
629 } 873 }
630 874
631 return if $self->{in_drain}; 875 while () {
632 local $self->{in_drain} = 1; 876 # we need to use a separate tls read buffer, as we must not receive data while
877 # we are draining the buffer, and this can only happen with TLS.
878 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
633 879
634 while (my $len = length $self->{rbuf}) { 880 my $len = length $self->{rbuf};
635 no strict 'refs'; 881
636 if (my $cb = shift @{ $self->{_queue} }) { 882 if (my $cb = shift @{ $self->{_queue} }) {
637 unless ($cb->($self)) { 883 unless ($cb->($self)) {
638 if ($self->{_eof}) { 884 if ($self->{_eof}) {
639 # no progress can be made (not enough data and no data forthcoming) 885 # no progress can be made (not enough data and no data forthcoming)
640 return $self->_error (&Errno::EPIPE, 1); 886 $self->_error (Errno::EPIPE, 1), return;
641 } 887 }
642 888
643 unshift @{ $self->{_queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
644 return; 890 last;
645 } 891 }
646 } elsif ($self->{on_read}) { 892 } elsif ($self->{on_read}) {
893 last unless $len;
894
647 $self->{on_read}($self); 895 $self->{on_read}($self);
648 896
649 if ( 897 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed 898 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 899 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data 900 && $self->{on_read} # but we still have on_read
654 ) { 901 ) {
902 # no further data will arrive
655 # then no progress can be made 903 # so no progress can be made
656 return $self->_error (&Errno::EPIPE, 1); 904 $self->_error (Errno::EPIPE, 1), return
905 if $self->{_eof};
906
907 last; # more data might arrive
657 } 908 }
658 } else { 909 } else {
659 # read side becomes idle 910 # read side becomes idle
660 delete $self->{_rw}; 911 delete $self->{_rw} unless $self->{tls};
661 return; 912 last;
662 } 913 }
663 } 914 }
664 915
916 if ($self->{_eof}) {
917 if ($self->{on_eof}) {
665 $self->{on_eof}($self) 918 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof}; 919 } else {
920 $self->_error (0, 1, "Unexpected end-of-file");
921 }
922 }
923
924 # may need to restart read watcher
925 unless ($self->{_rw}) {
926 $self->start_read
927 if $self->{on_read} || @{ $self->{_queue} };
928 }
667} 929}
668 930
669=item $handle->on_read ($cb) 931=item $handle->on_read ($cb)
670 932
671This replaces the currently set C<on_read> callback, or clears it (when 933This replaces the currently set C<on_read> callback, or clears it (when
676 938
677sub on_read { 939sub on_read {
678 my ($self, $cb) = @_; 940 my ($self, $cb) = @_;
679 941
680 $self->{on_read} = $cb; 942 $self->{on_read} = $cb;
943 $self->_drain_rbuf if $cb && !$self->{_in_drain};
681} 944}
682 945
683=item $handle->rbuf 946=item $handle->rbuf
684 947
685Returns the read buffer (as a modifiable lvalue). 948Returns the read buffer (as a modifiable lvalue).
686 949
687You can access the read buffer directly as the C<< ->{rbuf} >> member, if 950You can access the read buffer directly as the C<< ->{rbuf} >>
688you want. 951member, if you want. However, the only operation allowed on the
952read buffer (apart from looking at it) is removing data from its
953beginning. Otherwise modifying or appending to it is not allowed and will
954lead to hard-to-track-down bugs.
689 955
690NOTE: The read buffer should only be used or modified if the C<on_read>, 956NOTE: The read buffer should only be used or modified if the C<on_read>,
691C<push_read> or C<unshift_read> methods are used. The other read methods 957C<push_read> or C<unshift_read> methods are used. The other read methods
692automatically manage the read buffer. 958automatically manage the read buffer.
693 959
734 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1000 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
735 ->($self, $cb, @_); 1001 ->($self, $cb, @_);
736 } 1002 }
737 1003
738 push @{ $self->{_queue} }, $cb; 1004 push @{ $self->{_queue} }, $cb;
739 $self->_drain_rbuf; 1005 $self->_drain_rbuf unless $self->{_in_drain};
740} 1006}
741 1007
742sub unshift_read { 1008sub unshift_read {
743 my $self = shift; 1009 my $self = shift;
744 my $cb = pop; 1010 my $cb = pop;
750 ->($self, $cb, @_); 1016 ->($self, $cb, @_);
751 } 1017 }
752 1018
753 1019
754 unshift @{ $self->{_queue} }, $cb; 1020 unshift @{ $self->{_queue} }, $cb;
755 $self->_drain_rbuf; 1021 $self->_drain_rbuf unless $self->{_in_drain};
756} 1022}
757 1023
758=item $handle->push_read (type => @args, $cb) 1024=item $handle->push_read (type => @args, $cb)
759 1025
760=item $handle->unshift_read (type => @args, $cb) 1026=item $handle->unshift_read (type => @args, $cb)
790 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1056 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
791 1 1057 1
792 } 1058 }
793}; 1059};
794 1060
795# compatibility with older API
796sub push_read_chunk {
797 $_[0]->push_read (chunk => $_[1], $_[2]);
798}
799
800sub unshift_read_chunk {
801 $_[0]->unshift_read (chunk => $_[1], $_[2]);
802}
803
804=item line => [$eol, ]$cb->($handle, $line, $eol) 1061=item line => [$eol, ]$cb->($handle, $line, $eol)
805 1062
806The callback will be called only once a full line (including the end of 1063The callback will be called only once a full line (including the end of
807line marker, C<$eol>) has been read. This line (excluding the end of line 1064line marker, C<$eol>) has been read. This line (excluding the end of line
808marker) will be passed to the callback as second argument (C<$line>), and 1065marker) will be passed to the callback as second argument (C<$line>), and
823=cut 1080=cut
824 1081
825register_read_type line => sub { 1082register_read_type line => sub {
826 my ($self, $cb, $eol) = @_; 1083 my ($self, $cb, $eol) = @_;
827 1084
828 $eol = qr|(\015?\012)| if @_ < 3; 1085 if (@_ < 3) {
829 $eol = quotemeta $eol unless ref $eol; 1086 # this is more than twice as fast as the generic code below
830 $eol = qr|^(.*?)($eol)|s;
831
832 sub { 1087 sub {
833 $_[0]{rbuf} =~ s/$eol// or return; 1088 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
834 1089
835 $cb->($_[0], $1, $2); 1090 $cb->($_[0], $1, $2);
836 1
837 }
838};
839
840# compatibility with older API
841sub push_read_line {
842 my $self = shift;
843 $self->push_read (line => @_);
844}
845
846sub unshift_read_line {
847 my $self = shift;
848 $self->unshift_read (line => @_);
849}
850
851=item netstring => $cb->($handle, $string)
852
853A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
854
855Throws an error with C<$!> set to EBADMSG on format violations.
856
857=cut
858
859register_read_type netstring => sub {
860 my ($self, $cb) = @_;
861
862 sub {
863 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
864 if ($_[0]{rbuf} =~ /[^0-9]/) {
865 $self->_error (&Errno::EBADMSG);
866 } 1091 1
867 return;
868 } 1092 }
1093 } else {
1094 $eol = quotemeta $eol unless ref $eol;
1095 $eol = qr|^(.*?)($eol)|s;
869 1096
870 my $len = $1; 1097 sub {
1098 $_[0]{rbuf} =~ s/$eol// or return;
871 1099
872 $self->unshift_read (chunk => $len, sub { 1100 $cb->($_[0], $1, $2);
873 my $string = $_[1];
874 $_[0]->unshift_read (chunk => 1, sub {
875 if ($_[1] eq ",") {
876 $cb->($_[0], $string);
877 } else {
878 $self->_error (&Errno::EBADMSG);
879 }
880 }); 1101 1
881 }); 1102 }
882
883 1
884 } 1103 }
885}; 1104};
886 1105
887=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1106=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
888 1107
940 return 1; 1159 return 1;
941 } 1160 }
942 1161
943 # reject 1162 # reject
944 if ($reject && $$rbuf =~ $reject) { 1163 if ($reject && $$rbuf =~ $reject) {
945 $self->_error (&Errno::EBADMSG); 1164 $self->_error (Errno::EBADMSG);
946 } 1165 }
947 1166
948 # skip 1167 # skip
949 if ($skip && $$rbuf =~ $skip) { 1168 if ($skip && $$rbuf =~ $skip) {
950 $data .= substr $$rbuf, 0, $+[0], ""; 1169 $data .= substr $$rbuf, 0, $+[0], "";
952 1171
953 () 1172 ()
954 } 1173 }
955}; 1174};
956 1175
1176=item netstring => $cb->($handle, $string)
1177
1178A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1179
1180Throws an error with C<$!> set to EBADMSG on format violations.
1181
1182=cut
1183
1184register_read_type netstring => sub {
1185 my ($self, $cb) = @_;
1186
1187 sub {
1188 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1189 if ($_[0]{rbuf} =~ /[^0-9]/) {
1190 $self->_error (Errno::EBADMSG);
1191 }
1192 return;
1193 }
1194
1195 my $len = $1;
1196
1197 $self->unshift_read (chunk => $len, sub {
1198 my $string = $_[1];
1199 $_[0]->unshift_read (chunk => 1, sub {
1200 if ($_[1] eq ",") {
1201 $cb->($_[0], $string);
1202 } else {
1203 $self->_error (Errno::EBADMSG);
1204 }
1205 });
1206 });
1207
1208 1
1209 }
1210};
1211
1212=item packstring => $format, $cb->($handle, $string)
1213
1214An octet string prefixed with an encoded length. The encoding C<$format>
1215uses the same format as a Perl C<pack> format, but must specify a single
1216integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1217optional C<!>, C<< < >> or C<< > >> modifier).
1218
1219For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1220EPP uses a prefix of C<N> (4 octtes).
1221
1222Example: read a block of data prefixed by its length in BER-encoded
1223format (very efficient).
1224
1225 $handle->push_read (packstring => "w", sub {
1226 my ($handle, $data) = @_;
1227 });
1228
1229=cut
1230
1231register_read_type packstring => sub {
1232 my ($self, $cb, $format) = @_;
1233
1234 sub {
1235 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1236 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1237 or return;
1238
1239 $format = length pack $format, $len;
1240
1241 # bypass unshift if we already have the remaining chunk
1242 if ($format + $len <= length $_[0]{rbuf}) {
1243 my $data = substr $_[0]{rbuf}, $format, $len;
1244 substr $_[0]{rbuf}, 0, $format + $len, "";
1245 $cb->($_[0], $data);
1246 } else {
1247 # remove prefix
1248 substr $_[0]{rbuf}, 0, $format, "";
1249
1250 # read remaining chunk
1251 $_[0]->unshift_read (chunk => $len, $cb);
1252 }
1253
1254 1
1255 }
1256};
1257
957=item json => $cb->($handle, $hash_or_arrayref) 1258=item json => $cb->($handle, $hash_or_arrayref)
958 1259
959Reads a JSON object or array, decodes it and passes it to the callback. 1260Reads a JSON object or array, decodes it and passes it to the
1261callback. When a parse error occurs, an C<EBADMSG> error will be raised.
960 1262
961If a C<json> object was passed to the constructor, then that will be used 1263If a C<json> object was passed to the constructor, then that will be used
962for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1264for the final decode, otherwise it will create a JSON coder expecting UTF-8.
963 1265
964This read type uses the incremental parser available with JSON version 1266This read type uses the incremental parser available with JSON version
971the C<json> write type description, above, for an actual example. 1273the C<json> write type description, above, for an actual example.
972 1274
973=cut 1275=cut
974 1276
975register_read_type json => sub { 1277register_read_type json => sub {
976 my ($self, $cb, $accept, $reject, $skip) = @_; 1278 my ($self, $cb) = @_;
977 1279
978 require JSON; 1280 my $json = $self->{json} ||=
1281 eval { require JSON::XS; JSON::XS->new->utf8 }
1282 || do { require JSON; JSON->new->utf8 };
979 1283
980 my $data; 1284 my $data;
981 my $rbuf = \$self->{rbuf}; 1285 my $rbuf = \$self->{rbuf};
982 1286
983 my $json = $self->{json} ||= JSON->new->utf8;
984
985 sub { 1287 sub {
986 my $ref = $json->incr_parse ($self->{rbuf}); 1288 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
987 1289
988 if ($ref) { 1290 if ($ref) {
989 $self->{rbuf} = $json->incr_text; 1291 $self->{rbuf} = $json->incr_text;
990 $json->incr_text = ""; 1292 $json->incr_text = "";
991 $cb->($self, $ref); 1293 $cb->($self, $ref);
992 1294
993 1 1295 1
1296 } elsif ($@) {
1297 # error case
1298 $json->incr_skip;
1299
1300 $self->{rbuf} = $json->incr_text;
1301 $json->incr_text = "";
1302
1303 $self->_error (Errno::EBADMSG);
1304
1305 ()
994 } else { 1306 } else {
995 $self->{rbuf} = ""; 1307 $self->{rbuf} = "";
1308
996 () 1309 ()
997 } 1310 }
1311 }
1312};
1313
1314=item storable => $cb->($handle, $ref)
1315
1316Deserialises a L<Storable> frozen representation as written by the
1317C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1318data).
1319
1320Raises C<EBADMSG> error if the data could not be decoded.
1321
1322=cut
1323
1324register_read_type storable => sub {
1325 my ($self, $cb) = @_;
1326
1327 require Storable;
1328
1329 sub {
1330 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1331 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1332 or return;
1333
1334 my $format = length pack "w", $len;
1335
1336 # bypass unshift if we already have the remaining chunk
1337 if ($format + $len <= length $_[0]{rbuf}) {
1338 my $data = substr $_[0]{rbuf}, $format, $len;
1339 substr $_[0]{rbuf}, 0, $format + $len, "";
1340 $cb->($_[0], Storable::thaw ($data));
1341 } else {
1342 # remove prefix
1343 substr $_[0]{rbuf}, 0, $format, "";
1344
1345 # read remaining chunk
1346 $_[0]->unshift_read (chunk => $len, sub {
1347 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1348 $cb->($_[0], $ref);
1349 } else {
1350 $self->_error (Errno::EBADMSG);
1351 }
1352 });
1353 }
1354
1355 1
998 } 1356 }
999}; 1357};
1000 1358
1001=back 1359=back
1002 1360
1023=item $handle->stop_read 1381=item $handle->stop_read
1024 1382
1025=item $handle->start_read 1383=item $handle->start_read
1026 1384
1027In rare cases you actually do not want to read anything from the 1385In rare cases you actually do not want to read anything from the
1028socket. In this case you can call C<stop_read>. Neither C<on_read> no 1386socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1029any queued callbacks will be executed then. To start reading again, call 1387any queued callbacks will be executed then. To start reading again, call
1030C<start_read>. 1388C<start_read>.
1031 1389
1390Note that AnyEvent::Handle will automatically C<start_read> for you when
1391you change the C<on_read> callback or push/unshift a read callback, and it
1392will automatically C<stop_read> for you when neither C<on_read> is set nor
1393there are any read requests in the queue.
1394
1395These methods will have no effect when in TLS mode (as TLS doesn't support
1396half-duplex connections).
1397
1032=cut 1398=cut
1033 1399
1034sub stop_read { 1400sub stop_read {
1035 my ($self) = @_; 1401 my ($self) = @_;
1036 1402
1037 delete $self->{_rw}; 1403 delete $self->{_rw} unless $self->{tls};
1038} 1404}
1039 1405
1040sub start_read { 1406sub start_read {
1041 my ($self) = @_; 1407 my ($self) = @_;
1042 1408
1043 unless ($self->{_rw} || $self->{_eof}) { 1409 unless ($self->{_rw} || $self->{_eof}) {
1044 Scalar::Util::weaken $self; 1410 Scalar::Util::weaken $self;
1045 1411
1046 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1412 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1047 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1413 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1048 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1414 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1049 1415
1050 if ($len > 0) { 1416 if ($len > 0) {
1051 $self->{_activity} = AnyEvent->now; 1417 $self->{_activity} = AnyEvent->now;
1052 1418
1053 $self->{filter_r} 1419 if ($self->{tls}) {
1054 ? $self->{filter_r}($self, $rbuf) 1420 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1055 : $self->_drain_rbuf; 1421
1422 &_dotls ($self);
1423 } else {
1424 $self->_drain_rbuf unless $self->{_in_drain};
1425 }
1056 1426
1057 } elsif (defined $len) { 1427 } elsif (defined $len) {
1058 delete $self->{_rw}; 1428 delete $self->{_rw};
1059 $self->{_eof} = 1; 1429 $self->{_eof} = 1;
1060 $self->_drain_rbuf; 1430 $self->_drain_rbuf unless $self->{_in_drain};
1061 1431
1062 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1063 return $self->_error ($!, 1); 1433 return $self->_error ($!, 1);
1064 } 1434 }
1065 }); 1435 });
1066 } 1436 }
1067} 1437}
1068 1438
1439our $ERROR_SYSCALL;
1440our $ERROR_WANT_READ;
1441
1442sub _tls_error {
1443 my ($self, $err) = @_;
1444
1445 return $self->_error ($!, 1)
1446 if $err == Net::SSLeay::ERROR_SYSCALL ();
1447
1448 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1449
1450 # reduce error string to look less scary
1451 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1452
1453 if ($self->{_on_starttls}) {
1454 (delete $self->{_on_starttls})->($self, undef, $err);
1455 &_freetls;
1456 } else {
1457 &_freetls;
1458 $self->_error (Errno::EPROTO, 1, $err);
1459 }
1460}
1461
1462# poll the write BIO and send the data if applicable
1463# also decode read data if possible
1464# this is basiclaly our TLS state machine
1465# more efficient implementations are possible with openssl,
1466# but not with the buggy and incomplete Net::SSLeay.
1069sub _dotls { 1467sub _dotls {
1070 my ($self) = @_; 1468 my ($self) = @_;
1071 1469
1470 my $tmp;
1471
1072 if (length $self->{_tls_wbuf}) { 1472 if (length $self->{_tls_wbuf}) {
1073 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1473 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1074 substr $self->{_tls_wbuf}, 0, $len, ""; 1474 substr $self->{_tls_wbuf}, 0, $tmp, "";
1075 } 1475 }
1076 }
1077 1476
1477 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1478 return $self->_tls_error ($tmp)
1479 if $tmp != $ERROR_WANT_READ
1480 && ($tmp != $ERROR_SYSCALL || $!);
1481 }
1482
1483 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1484 unless (length $tmp) {
1485 $self->{_on_starttls}
1486 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1487 &_freetls;
1488
1489 if ($self->{on_stoptls}) {
1490 $self->{on_stoptls}($self);
1491 return;
1492 } else {
1493 # let's treat SSL-eof as we treat normal EOF
1494 delete $self->{_rw};
1495 $self->{_eof} = 1;
1496 }
1497 }
1498
1499 $self->{_tls_rbuf} .= $tmp;
1500 $self->_drain_rbuf unless $self->{_in_drain};
1501 $self->{tls} or return; # tls session might have gone away in callback
1502 }
1503
1504 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1505 return $self->_tls_error ($tmp)
1506 if $tmp != $ERROR_WANT_READ
1507 && ($tmp != $ERROR_SYSCALL || $!);
1508
1078 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1509 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1079 $self->{wbuf} .= $buf; 1510 $self->{wbuf} .= $tmp;
1080 $self->_drain_wbuf; 1511 $self->_drain_wbuf;
1081 } 1512 }
1082 1513
1083 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1514 $self->{_on_starttls}
1084 $self->{rbuf} .= $buf; 1515 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1085 $self->_drain_rbuf; 1516 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1086 }
1087
1088 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1089
1090 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1091 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1092 return $self->_error ($!, 1);
1093 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1094 return $self->_error (&Errno::EIO, 1);
1095 }
1096
1097 # all others are fine for our purposes
1098 }
1099} 1517}
1100 1518
1101=item $handle->starttls ($tls[, $tls_ctx]) 1519=item $handle->starttls ($tls[, $tls_ctx])
1102 1520
1103Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1521Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1105C<starttls>. 1523C<starttls>.
1106 1524
1107The first argument is the same as the C<tls> constructor argument (either 1525The first argument is the same as the C<tls> constructor argument (either
1108C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1526C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1109 1527
1110The second argument is the optional C<Net::SSLeay::CTX> object that is 1528The second argument is the optional C<AnyEvent::TLS> object that is used
1111used when AnyEvent::Handle has to create its own TLS connection object. 1529when AnyEvent::Handle has to create its own TLS connection object, or
1530a hash reference with C<< key => value >> pairs that will be used to
1531construct a new context.
1112 1532
1113The TLS connection object will end up in C<< $handle->{tls} >> after this 1533The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1114call and can be used or changed to your liking. Note that the handshake 1534context in C<< $handle->{tls_ctx} >> after this call and can be used or
1115might have already started when this function returns. 1535changed to your liking. Note that the handshake might have already started
1536when this function returns.
1116 1537
1538If it an error to start a TLS handshake more than once per
1539AnyEvent::Handle object (this is due to bugs in OpenSSL).
1540
1117=cut 1541=cut
1542
1543our %TLS_CACHE; #TODO not yet documented, should we?
1118 1544
1119sub starttls { 1545sub starttls {
1120 my ($self, $ssl, $ctx) = @_; 1546 my ($self, $ssl, $ctx) = @_;
1121 1547
1122 $self->stoptls; 1548 require Net::SSLeay;
1123 1549
1124 if ($ssl eq "accept") { 1550 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1125 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 if $self->{tls};
1126 Net::SSLeay::set_accept_state ($ssl); 1552
1127 } elsif ($ssl eq "connect") { 1553 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1128 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1554 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1129 Net::SSLeay::set_connect_state ($ssl); 1555
1556 $ctx ||= $self->{tls_ctx};
1557
1558 if ("HASH" eq ref $ctx) {
1559 require AnyEvent::TLS;
1560
1561 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1562
1563 if ($ctx->{cache}) {
1564 my $key = $ctx+0;
1565 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1566 } else {
1567 $ctx = new AnyEvent::TLS %$ctx;
1568 }
1569 }
1130 } 1570
1131 1571 $self->{tls_ctx} = $ctx || TLS_CTX ();
1132 $self->{tls} = $ssl; 1572 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1133 1573
1134 # basically, this is deep magic (because SSL_read should have the same issues) 1574 # basically, this is deep magic (because SSL_read should have the same issues)
1135 # but the openssl maintainers basically said: "trust us, it just works". 1575 # but the openssl maintainers basically said: "trust us, it just works".
1136 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1576 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1137 # and mismaintained ssleay-module doesn't even offer them). 1577 # and mismaintained ssleay-module doesn't even offer them).
1138 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1578 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1579 #
1580 # in short: this is a mess.
1581 #
1582 # note that we do not try to keep the length constant between writes as we are required to do.
1583 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1584 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1585 # have identity issues in that area.
1139 Net::SSLeay::CTX_set_mode ($self->{tls}, 1586# Net::SSLeay::CTX_set_mode ($ssl,
1140 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1587# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1141 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1588# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1589 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1142 1590
1143 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1144 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1592 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1145 1593
1146 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1594 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1147 1595
1148 $self->{filter_w} = sub { 1596 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1149 $_[0]{_tls_wbuf} .= ${$_[1]}; 1597 if $self->{on_starttls};
1150 &_dotls; 1598
1151 }; 1599 &_dotls; # need to trigger the initial handshake
1152 $self->{filter_r} = sub { 1600 $self->start_read; # make sure we actually do read
1153 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1154 &_dotls;
1155 };
1156} 1601}
1157 1602
1158=item $handle->stoptls 1603=item $handle->stoptls
1159 1604
1160Destroys the SSL connection, if any. Partial read or write data will be 1605Shuts down the SSL connection - this makes a proper EOF handshake by
1161lost. 1606sending a close notify to the other side, but since OpenSSL doesn't
1607support non-blocking shut downs, it is not possible to re-use the stream
1608afterwards.
1162 1609
1163=cut 1610=cut
1164 1611
1165sub stoptls { 1612sub stoptls {
1166 my ($self) = @_; 1613 my ($self) = @_;
1167 1614
1168 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1615 if ($self->{tls}) {
1616 Net::SSLeay::shutdown ($self->{tls});
1169 1617
1170 delete $self->{_rbio}; 1618 &_dotls;
1171 delete $self->{_wbio}; 1619
1172 delete $self->{_tls_wbuf}; 1620# # we don't give a shit. no, we do, but we can't. no...#d#
1173 delete $self->{filter_r}; 1621# # we, we... have to use openssl :/#d#
1174 delete $self->{filter_w}; 1622# &_freetls;#d#
1623 }
1624}
1625
1626sub _freetls {
1627 my ($self) = @_;
1628
1629 return unless $self->{tls};
1630
1631 $self->{tls_ctx}->_put_session (delete $self->{tls});
1632
1633 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1175} 1634}
1176 1635
1177sub DESTROY { 1636sub DESTROY {
1178 my $self = shift; 1637 my ($self) = @_;
1179 1638
1180 $self->stoptls; 1639 &_freetls;
1640
1641 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1642
1643 if ($linger && length $self->{wbuf}) {
1644 my $fh = delete $self->{fh};
1645 my $wbuf = delete $self->{wbuf};
1646
1647 my @linger;
1648
1649 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1650 my $len = syswrite $fh, $wbuf, length $wbuf;
1651
1652 if ($len > 0) {
1653 substr $wbuf, 0, $len, "";
1654 } else {
1655 @linger = (); # end
1656 }
1657 });
1658 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1659 @linger = ();
1660 });
1661 }
1662}
1663
1664=item $handle->destroy
1665
1666Shuts down the handle object as much as possible - this call ensures that
1667no further callbacks will be invoked and as many resources as possible
1668will be freed. You must not call any methods on the object afterwards.
1669
1670Normally, you can just "forget" any references to an AnyEvent::Handle
1671object and it will simply shut down. This works in fatal error and EOF
1672callbacks, as well as code outside. It does I<NOT> work in a read or write
1673callback, so when you want to destroy the AnyEvent::Handle object from
1674within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1675that case.
1676
1677Destroying the handle object in this way has the advantage that callbacks
1678will be removed as well, so if those are the only reference holders (as
1679is common), then one doesn't need to do anything special to break any
1680reference cycles.
1681
1682The handle might still linger in the background and write out remaining
1683data, as specified by the C<linger> option, however.
1684
1685=cut
1686
1687sub destroy {
1688 my ($self) = @_;
1689
1690 $self->DESTROY;
1691 %$self = ();
1181} 1692}
1182 1693
1183=item AnyEvent::Handle::TLS_CTX 1694=item AnyEvent::Handle::TLS_CTX
1184 1695
1185This function creates and returns the Net::SSLeay::CTX object used by 1696This function creates and returns the AnyEvent::TLS object used by default
1186default for TLS mode. 1697for TLS mode.
1187 1698
1188The context is created like this: 1699The context is created by calling L<AnyEvent::TLS> without any arguments.
1189
1190 Net::SSLeay::load_error_strings;
1191 Net::SSLeay::SSLeay_add_ssl_algorithms;
1192 Net::SSLeay::randomize;
1193
1194 my $CTX = Net::SSLeay::CTX_new;
1195
1196 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1197 1700
1198=cut 1701=cut
1199 1702
1200our $TLS_CTX; 1703our $TLS_CTX;
1201 1704
1202sub TLS_CTX() { 1705sub TLS_CTX() {
1203 $TLS_CTX || do { 1706 $TLS_CTX ||= do {
1204 require Net::SSLeay; 1707 require AnyEvent::TLS;
1205 1708
1206 Net::SSLeay::load_error_strings (); 1709 new AnyEvent::TLS
1207 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1208 Net::SSLeay::randomize ();
1209
1210 $TLS_CTX = Net::SSLeay::CTX_new ();
1211
1212 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1213
1214 $TLS_CTX
1215 } 1710 }
1216} 1711}
1217 1712
1218=back 1713=back
1714
1715
1716=head1 NONFREQUENTLY ASKED QUESTIONS
1717
1718=over 4
1719
1720=item I C<undef> the AnyEvent::Handle reference inside my callback and
1721still get further invocations!
1722
1723That's because AnyEvent::Handle keeps a reference to itself when handling
1724read or write callbacks.
1725
1726It is only safe to "forget" the reference inside EOF or error callbacks,
1727from within all other callbacks, you need to explicitly call the C<<
1728->destroy >> method.
1729
1730=item I get different callback invocations in TLS mode/Why can't I pause
1731reading?
1732
1733Unlike, say, TCP, TLS connections do not consist of two independent
1734communication channels, one for each direction. Or put differently. The
1735read and write directions are not independent of each other: you cannot
1736write data unless you are also prepared to read, and vice versa.
1737
1738This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1739callback invocations when you are not expecting any read data - the reason
1740is that AnyEvent::Handle always reads in TLS mode.
1741
1742During the connection, you have to make sure that you always have a
1743non-empty read-queue, or an C<on_read> watcher. At the end of the
1744connection (or when you no longer want to use it) you can call the
1745C<destroy> method.
1746
1747=item How do I read data until the other side closes the connection?
1748
1749If you just want to read your data into a perl scalar, the easiest way
1750to achieve this is by setting an C<on_read> callback that does nothing,
1751clearing the C<on_eof> callback and in the C<on_error> callback, the data
1752will be in C<$_[0]{rbuf}>:
1753
1754 $handle->on_read (sub { });
1755 $handle->on_eof (undef);
1756 $handle->on_error (sub {
1757 my $data = delete $_[0]{rbuf};
1758 });
1759
1760The reason to use C<on_error> is that TCP connections, due to latencies
1761and packets loss, might get closed quite violently with an error, when in
1762fact, all data has been received.
1763
1764It is usually better to use acknowledgements when transferring data,
1765to make sure the other side hasn't just died and you got the data
1766intact. This is also one reason why so many internet protocols have an
1767explicit QUIT command.
1768
1769=item I don't want to destroy the handle too early - how do I wait until
1770all data has been written?
1771
1772After writing your last bits of data, set the C<on_drain> callback
1773and destroy the handle in there - with the default setting of
1774C<low_water_mark> this will be called precisely when all data has been
1775written to the socket:
1776
1777 $handle->push_write (...);
1778 $handle->on_drain (sub {
1779 warn "all data submitted to the kernel\n";
1780 undef $handle;
1781 });
1782
1783If you just want to queue some data and then signal EOF to the other side,
1784consider using C<< ->push_shutdown >> instead.
1785
1786=item I want to contact a TLS/SSL server, I don't care about security.
1787
1788If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1789simply connect to it and then create the AnyEvent::Handle with the C<tls>
1790parameter:
1791
1792 tcp_connect $host, $port, sub {
1793 my ($fh) = @_;
1794
1795 my $handle = new AnyEvent::Handle
1796 fh => $fh,
1797 tls => "connect",
1798 on_error => sub { ... };
1799
1800 $handle->push_write (...);
1801 };
1802
1803=item I want to contact a TLS/SSL server, I do care about security.
1804
1805Then you should additionally enable certificate verification, including
1806peername verification, if the protocol you use supports it (see
1807L<AnyEvent::TLS>, C<verify_peername>).
1808
1809E.g. for HTTPS:
1810
1811 tcp_connect $host, $port, sub {
1812 my ($fh) = @_;
1813
1814 my $handle = new AnyEvent::Handle
1815 fh => $fh,
1816 peername => $host,
1817 tls => "connect",
1818 tls_ctx => { verify => 1, verify_peername => "https" },
1819 ...
1820
1821Note that you must specify the hostname you connected to (or whatever
1822"peername" the protocol needs) as the C<peername> argument, otherwise no
1823peername verification will be done.
1824
1825The above will use the system-dependent default set of trusted CA
1826certificates. If you want to check against a specific CA, add the
1827C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1828
1829 tls_ctx => {
1830 verify => 1,
1831 verify_peername => "https",
1832 ca_file => "my-ca-cert.pem",
1833 },
1834
1835=item I want to create a TLS/SSL server, how do I do that?
1836
1837Well, you first need to get a server certificate and key. You have
1838three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1839self-signed certificate (cheap. check the search engine of your choice,
1840there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1841nice program for that purpose).
1842
1843Then create a file with your private key (in PEM format, see
1844L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1845file should then look like this:
1846
1847 -----BEGIN RSA PRIVATE KEY-----
1848 ...header data
1849 ... lots of base64'y-stuff
1850 -----END RSA PRIVATE KEY-----
1851
1852 -----BEGIN CERTIFICATE-----
1853 ... lots of base64'y-stuff
1854 -----END CERTIFICATE-----
1855
1856The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1857specify this file as C<cert_file>:
1858
1859 tcp_server undef, $port, sub {
1860 my ($fh) = @_;
1861
1862 my $handle = new AnyEvent::Handle
1863 fh => $fh,
1864 tls => "accept",
1865 tls_ctx => { cert_file => "my-server-keycert.pem" },
1866 ...
1867
1868When you have intermediate CA certificates that your clients might not
1869know about, just append them to the C<cert_file>.
1870
1871=back
1872
1219 1873
1220=head1 SUBCLASSING AnyEvent::Handle 1874=head1 SUBCLASSING AnyEvent::Handle
1221 1875
1222In many cases, you might want to subclass AnyEvent::Handle. 1876In many cases, you might want to subclass AnyEvent::Handle.
1223 1877
1227=over 4 1881=over 4
1228 1882
1229=item * all constructor arguments become object members. 1883=item * all constructor arguments become object members.
1230 1884
1231At least initially, when you pass a C<tls>-argument to the constructor it 1885At least initially, when you pass a C<tls>-argument to the constructor it
1232will end up in C<< $handle->{tls} >>. Those members might be changes or 1886will end up in C<< $handle->{tls} >>. Those members might be changed or
1233mutated later on (for example C<tls> will hold the TLS connection object). 1887mutated later on (for example C<tls> will hold the TLS connection object).
1234 1888
1235=item * other object member names are prefixed with an C<_>. 1889=item * other object member names are prefixed with an C<_>.
1236 1890
1237All object members not explicitly documented (internal use) are prefixed 1891All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines