ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.57 by root, Wed Jun 4 11:45:21 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.13; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>. 41
42The L<AnyEvent::Intro> tutorial contains some well-documented
43AnyEvent::Handle examples.
53 44
54In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
57 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
58All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
59argument. 53argument.
60 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
61=head1 METHODS 67=head1 METHODS
62 68
63=over 4 69=over 4
64 70
65=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 72
67The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
68 74
69=over 4 75=over 4
70 76
71=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 78
73The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 80NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82that mode.
77 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
78=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
79 102
80Set the callback to be called when an end-of-file condition is detcted, 103This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
82connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
83 108
84While not mandatory, it is highly recommended to set an eof callback, 109The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 111timeout is to be used).
87 112
113=item on_connect => $cb->($handle, $host, $port, $retry->())
114
115This callback is called when a connection has been successfully established.
116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
88=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
89 140
90This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 143connect or a read error.
93 144
94Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 146fatal errors the handle object will be destroyed (by a call to C<< ->
147destroy >>) after invoking the error callback (which means you are free to
148examine the handle object). Examples of fatal errors are an EOF condition
149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
157
96usable. Non-fatal errors can be retried by simply returning, but it is 158Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 159to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 160when this callback is invoked. Examples of non-fatal errors are timeouts
161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 162
100On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
102 166
103While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
105C<croak>. 169C<croak>.
106 170
107=item on_read => $cb->($handle) 171=item on_read => $cb->($handle)
108 172
109This sets the default read callback, which is called when data arrives 173This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 174and no read request is in the queue (unlike read queue callbacks, this
175callback will only be called when at least one octet of data is in the
176read buffer).
111 177
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
114 182
115When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
119 187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
208
120=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
121 210
122This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
124 213
125To append to the write buffer, use the C<< ->push_write >> method. 214To append to the write buffer, use the C<< ->push_write >> method.
126 215
216This callback is useful when you don't want to put all of your write data
217into the queue at once, for example, when you want to write the contents
218of some file to the socket you might not want to read the whole file into
219memory and push it into the queue, but instead only read more data from
220the file when the write queue becomes empty.
221
127=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
128 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
129If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
130seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
131handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
132missing, an C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
133 239
134Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
138 245
139Zero (the default) disables this timeout. 246Zero (the default) disables this timeout.
140 247
141=item on_timeout => $cb->($handle) 248=item on_timeout => $cb->($handle)
142 249
146 253
147=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
148 255
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
152 259
153For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
157isn't finished). 264isn't finished).
158 265
266=item autocork => <boolean>
267
268When disabled (the default), then C<push_write> will try to immediately
269write the data to the handle, if possible. This avoids having to register
270a write watcher and wait for the next event loop iteration, but can
271be inefficient if you write multiple small chunks (on the wire, this
272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
274
275When enabled, then writes will always be queued till the next event loop
276iteration. This is efficient when you do many small writes per iteration,
277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
279
280=item no_delay => <boolean>
281
282When doing small writes on sockets, your operating system kernel might
283wait a bit for more data before actually sending it out. This is called
284the Nagle algorithm, and usually it is beneficial.
285
286In some situations you want as low a delay as possible, which can be
287accomplishd by setting this option to a true value.
288
289The default is your opertaing system's default behaviour (most likely
290enabled), this option explicitly enables or disables it, if possible.
291
159=item read_size => <bytes> 292=item read_size => <bytes>
160 293
161The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
163 297
164=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
165 299
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
168considered empty. 302considered empty.
169 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
309=item linger => <seconds>
310
311If non-zero (default: C<3600>), then the destructor of the
312AnyEvent::Handle object will check whether there is still outstanding
313write data and will install a watcher that will write this data to the
314socket. No errors will be reported (this mostly matches how the operating
315system treats outstanding data at socket close time).
316
317This will not work for partial TLS data that could not be encoded
318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
330
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 332
172When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
175 339
176TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
178 344
179For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
181 348
182You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
186 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
187See the C<starttls> method if you need to start TLs negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 365
189=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
190 367
191Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
195=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
196 409
197This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
198 411
199If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
201 415
202Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
204 418
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 419=back
212 420
213=cut 421=cut
214 422
215sub new { 423sub new {
216 my $class = shift; 424 my $class = shift;
217
218 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
219 426
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
221 490
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 492
224 if ($self->{tls}) { 493 $self->{_activity} =
225 require Net::SSLeay; 494 $self->{_ractivity} =
495 $self->{_wactivity} = AE::now;
496
497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
502
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
227 } 504 if $self->{tls};
228 505
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 507
234 $self->{_activity} = AnyEvent->now;
235 $self->_timeout;
236
237 $self->start_read; 508 $self->start_read
509 if $self->{on_read} || @{ $self->{_queue} };
238 510
239 $self 511 $self->_drain_wbuf;
240} 512}
241 513
242sub _shutdown { 514#sub _shutdown {
243 my ($self) = @_; 515# my ($self) = @_;
244 516#
245 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww}; 519#
248 delete $self->{fh}; 520# &_freetls;
249 521#}
250 $self->stoptls;
251}
252 522
253sub _error { 523sub _error {
254 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
255
256 $self->_shutdown
257 if $fatal;
258 525
259 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
260 528
261 if ($self->{on_error}) { 529 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
263 } else { 531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 535 }
266} 536}
267 537
268=item $fh = $handle->fh 538=item $fh = $handle->fh
269 539
270This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 541
272=cut 542=cut
273 543
274sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
275 545
293 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
294} 564}
295 565
296=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
297 567
298Replace the current C<on_timeout> callback, or disables the callback 568=item $handle->on_rtimeout ($cb)
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
300argument.
301 569
302=cut 570=item $handle->on_wtimeout ($cb)
303 571
304sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
573callback, or disables the callback (but not the timeout) if C<$cb> =
574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
579
580=item $handle->autocork ($boolean)
581
582Enables or disables the current autocork behaviour (see C<autocork>
583constructor argument). Changes will only take effect on the next write.
584
585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
590
591=item $handle->no_delay ($boolean)
592
593Enables or disables the C<no_delay> setting (see constructor argument of
594the same name for details).
595
596=cut
597
598sub no_delay {
599 $_[0]{no_delay} = $_[1];
600
601 eval {
602 local $SIG{__DIE__};
603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
605 };
606}
607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
305 $_[0]{on_timeout} = $_[1]; 625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
306} 636}
307 637
308############################################################################# 638#############################################################################
309 639
310=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
311 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
312Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
313 647
314=cut 648=item $handle->timeout_reset
315 649
316sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
317 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
318 673
319 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
320 $self->_timeout; 675 delete $self->{$tw}; &$cb;
321} 676 };
322 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
323# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
324# also check for time-outs 684 # also check for time-outs
325sub _timeout { 685 $cb = sub {
326 my ($self) = @_; 686 my ($self) = @_;
327 687
328 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
329 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
330 690
331 # when would the timeout trigger? 691 # when would the timeout trigger?
332 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
333 693
334 # now or in the past already? 694 # now or in the past already?
335 if ($after <= 0) { 695 if ($after <= 0) {
336 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
337 697
338 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
339 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
340 } else { 700 } else {
341 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
342 } 709 }
343 710
344 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
345 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
346 713
347 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
348 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
349 } 720 }
350
351 Scalar::Util::weaken $self;
352 return unless $self; # ->error could have destroyed $self
353
354 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
355 delete $self->{_tw};
356 $self->_timeout;
357 });
358 } else {
359 delete $self->{_tw};
360 } 721 }
361} 722}
362 723
363############################################################################# 724#############################################################################
364 725
388 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
389 750
390 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
391 752
392 $cb->($self) 753 $cb->($self)
393 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
394} 755}
395 756
396=item $handle->push_write ($data) 757=item $handle->push_write ($data)
397 758
398Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
409 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
410 771
411 my $cb = sub { 772 my $cb = sub {
412 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
413 774
414 if ($len >= 0) { 775 if (defined $len) {
415 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
416 777
417 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
418 779
419 $self->{on_drain}($self) 780 $self->{on_drain}($self)
420 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
421 && $self->{on_drain}; 782 && $self->{on_drain};
422 783
423 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
424 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 $self->_error ($!, 1); 786 $self->_error ($!, 1);
426 } 787 }
427 }; 788 };
428 789
429 # try to write data immediately 790 # try to write data immediately
430 $cb->(); 791 $cb->() unless $self->{autocork};
431 792
432 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
433 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
434 if length $self->{wbuf}; 795 if length $self->{wbuf};
435 }; 796 };
436} 797}
437 798
438our %WH; 799our %WH;
449 810
450 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451 ->($self, @_); 812 ->($self, @_);
452 } 813 }
453 814
454 if ($self->{filter_w}) { 815 if ($self->{tls}) {
455 $self->{filter_w}($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
456 } else { 818 } else {
457 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
458 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
459 } 821 }
460} 822}
461 823
462=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
463 825
477=cut 839=cut
478 840
479register_write_type netstring => sub { 841register_write_type netstring => sub {
480 my ($self, $string) = @_; 842 my ($self, $string) = @_;
481 843
482 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
845};
846
847=item packstring => $format, $data
848
849An octet string prefixed with an encoded length. The encoding C<$format>
850uses the same format as a Perl C<pack> format, but must specify a single
851integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
852optional C<!>, C<< < >> or C<< > >> modifier).
853
854=cut
855
856register_write_type packstring => sub {
857 my ($self, $format, $string) = @_;
858
859 pack "$format/a*", $string
483}; 860};
484 861
485=item json => $array_or_hashref 862=item json => $array_or_hashref
486 863
487Encodes the given hash or array reference into a JSON object. Unless you 864Encodes the given hash or array reference into a JSON object. Unless you
521 898
522 $self->{json} ? $self->{json}->encode ($ref) 899 $self->{json} ? $self->{json}->encode ($ref)
523 : JSON::encode_json ($ref) 900 : JSON::encode_json ($ref)
524}; 901};
525 902
903=item storable => $reference
904
905Freezes the given reference using L<Storable> and writes it to the
906handle. Uses the C<nfreeze> format.
907
908=cut
909
910register_write_type storable => sub {
911 my ($self, $ref) = @_;
912
913 require Storable;
914
915 pack "w/a*", Storable::nfreeze ($ref)
916};
917
526=back 918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
527 944
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 946
530This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 969ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 970a queue.
554 971
555In the simple case, you just install an C<on_read> callback and whenever 972In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 973new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 974enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 975leave the data there if you want to accumulate more (e.g. when only a
976partial message has been received so far).
559 977
560In the more complex case, you want to queue multiple callbacks. In this 978In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 979case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 980data arrives (also the first time it is queued) and removes it when it has
563below). 981done its job (see C<push_read>, below).
564 982
565This way you can, for example, push three line-reads, followed by reading 983This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 984a chunk of data, and AnyEvent::Handle will execute them in order.
567 985
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 986Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 # handle xml 999 # handle xml
582 }); 1000 });
583 }); 1001 });
584 }); 1002 });
585 1003
586Example 2: Implement a client for a protocol that replies either with 1004Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 1005and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 1006bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 1007just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 1008in the callbacks.
591 1009
592 # request one 1010When the first callback is called and sees an "OK" response, it will
1011C<unshift> another line-read. This line-read will be queued I<before> the
101264-byte chunk callback.
1013
1014 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 1015 $handle->push_write ("request 1\015\012");
594 1016
595 # we expect "ERROR" or "OK" as response, so push a line read 1017 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read (line => sub { 1018 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 1019 # if we got an "OK", we have to _prepend_ another line,
604 ... 1026 ...
605 }); 1027 });
606 } 1028 }
607 }); 1029 });
608 1030
609 # request two 1031 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 1032 $handle->push_write ("request 2\015\012");
611 1033
612 # simply read 64 bytes, always 1034 # simply read 64 bytes, always
613 $handle->push_read (chunk => 64, sub { 1035 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 1036 my $response = $_[1];
620=cut 1042=cut
621 1043
622sub _drain_rbuf { 1044sub _drain_rbuf {
623 my ($self) = @_; 1045 my ($self) = @_;
624 1046
625 if ( 1047 # avoid recursion
626 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf}
628 ) {
629 return $self->_error (&Errno::ENOSPC, 1);
630 }
631
632 return if $self->{in_drain}; 1048 return if $self->{_skip_drain_rbuf};
633 local $self->{in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
634 1050
1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
635 while (my $len = length $self->{rbuf}) { 1057 my $len = length $self->{rbuf};
636 no strict 'refs'; 1058
637 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
638 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
1061 # no progress can be made
1062 # (not enough data and no data forthcoming)
1063 $self->_error (Errno::EPIPE, 1), return
639 if ($self->{_eof}) { 1064 if $self->{_eof};
640 # no progress can be made (not enough data and no data forthcoming)
641 return $self->_error (&Errno::EPIPE, 1);
642 }
643 1065
644 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
645 last; 1067 last;
646 } 1068 }
647 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
1070 last unless $len;
1071
648 $self->{on_read}($self); 1072 $self->{on_read}($self);
649 1073
650 if ( 1074 if (
651 $len == length $self->{rbuf} # if no data has been consumed 1075 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
654 ) { 1078 ) {
655 # no further data will arrive 1079 # no further data will arrive
656 # so no progress can be made 1080 # so no progress can be made
657 return $self->_error (&Errno::EPIPE, 1) 1081 $self->_error (Errno::EPIPE, 1), return
658 if $self->{_eof}; 1082 if $self->{_eof};
659 1083
660 last; # more data might arrive 1084 last; # more data might arrive
661 } 1085 }
662 } else { 1086 } else {
663 # read side becomes idle 1087 # read side becomes idle
664 delete $self->{_rw}; 1088 delete $self->{_rw} unless $self->{tls};
665 last; 1089 last;
666 } 1090 }
667 } 1091 }
668 1092
1093 if ($self->{_eof}) {
1094 $self->{on_eof}
669 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
670 if $self->{_eof} && $self->{on_eof}; 1096 : $self->_error (0, 1, "Unexpected end-of-file");
1097
1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
1106 }
671 1107
672 # may need to restart read watcher 1108 # may need to restart read watcher
673 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
674 $self->start_read 1110 $self->start_read
675 if $self->{on_read} || @{ $self->{_queue} }; 1111 if $self->{on_read} || @{ $self->{_queue} };
686 1122
687sub on_read { 1123sub on_read {
688 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
689 1125
690 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
1127 $self->_drain_rbuf if $cb;
691} 1128}
692 1129
693=item $handle->rbuf 1130=item $handle->rbuf
694 1131
695Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
696 1133
697You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
698you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
699 1139
700NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
701C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
702automatically manage the read buffer. 1142automatically manage the read buffer.
703 1143
800 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1240 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 1 1241 1
802 } 1242 }
803}; 1243};
804 1244
805# compatibility with older API
806sub push_read_chunk {
807 $_[0]->push_read (chunk => $_[1], $_[2]);
808}
809
810sub unshift_read_chunk {
811 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812}
813
814=item line => [$eol, ]$cb->($handle, $line, $eol) 1245=item line => [$eol, ]$cb->($handle, $line, $eol)
815 1246
816The callback will be called only once a full line (including the end of 1247The callback will be called only once a full line (including the end of
817line marker, C<$eol>) has been read. This line (excluding the end of line 1248line marker, C<$eol>) has been read. This line (excluding the end of line
818marker) will be passed to the callback as second argument (C<$line>), and 1249marker) will be passed to the callback as second argument (C<$line>), and
833=cut 1264=cut
834 1265
835register_read_type line => sub { 1266register_read_type line => sub {
836 my ($self, $cb, $eol) = @_; 1267 my ($self, $cb, $eol) = @_;
837 1268
838 $eol = qr|(\015?\012)| if @_ < 3; 1269 if (@_ < 3) {
839 $eol = quotemeta $eol unless ref $eol; 1270 # this is more than twice as fast as the generic code below
840 $eol = qr|^(.*?)($eol)|s;
841
842 sub { 1271 sub {
843 $_[0]{rbuf} =~ s/$eol// or return; 1272 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
844 1273
845 $cb->($_[0], $1, $2); 1274 $cb->($_[0], $1, $2);
846 1
847 }
848};
849
850# compatibility with older API
851sub push_read_line {
852 my $self = shift;
853 $self->push_read (line => @_);
854}
855
856sub unshift_read_line {
857 my $self = shift;
858 $self->unshift_read (line => @_);
859}
860
861=item netstring => $cb->($handle, $string)
862
863A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864
865Throws an error with C<$!> set to EBADMSG on format violations.
866
867=cut
868
869register_read_type netstring => sub {
870 my ($self, $cb) = @_;
871
872 sub {
873 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874 if ($_[0]{rbuf} =~ /[^0-9]/) {
875 $self->_error (&Errno::EBADMSG);
876 } 1275 1
877 return;
878 } 1276 }
1277 } else {
1278 $eol = quotemeta $eol unless ref $eol;
1279 $eol = qr|^(.*?)($eol)|s;
879 1280
880 my $len = $1; 1281 sub {
1282 $_[0]{rbuf} =~ s/$eol// or return;
881 1283
882 $self->unshift_read (chunk => $len, sub { 1284 $cb->($_[0], $1, $2);
883 my $string = $_[1];
884 $_[0]->unshift_read (chunk => 1, sub {
885 if ($_[1] eq ",") {
886 $cb->($_[0], $string);
887 } else {
888 $self->_error (&Errno::EBADMSG);
889 }
890 }); 1285 1
891 }); 1286 }
892
893 1
894 } 1287 }
895}; 1288};
896 1289
897=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1290=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 1291
950 return 1; 1343 return 1;
951 } 1344 }
952 1345
953 # reject 1346 # reject
954 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
955 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
956 } 1349 }
957 1350
958 # skip 1351 # skip
959 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
962 1355
963 () 1356 ()
964 } 1357 }
965}; 1358};
966 1359
1360=item netstring => $cb->($handle, $string)
1361
1362A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1363
1364Throws an error with C<$!> set to EBADMSG on format violations.
1365
1366=cut
1367
1368register_read_type netstring => sub {
1369 my ($self, $cb) = @_;
1370
1371 sub {
1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1374 $self->_error (Errno::EBADMSG);
1375 }
1376 return;
1377 }
1378
1379 my $len = $1;
1380
1381 $self->unshift_read (chunk => $len, sub {
1382 my $string = $_[1];
1383 $_[0]->unshift_read (chunk => 1, sub {
1384 if ($_[1] eq ",") {
1385 $cb->($_[0], $string);
1386 } else {
1387 $self->_error (Errno::EBADMSG);
1388 }
1389 });
1390 });
1391
1392 1
1393 }
1394};
1395
1396=item packstring => $format, $cb->($handle, $string)
1397
1398An octet string prefixed with an encoded length. The encoding C<$format>
1399uses the same format as a Perl C<pack> format, but must specify a single
1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1401optional C<!>, C<< < >> or C<< > >> modifier).
1402
1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1405
1406Example: read a block of data prefixed by its length in BER-encoded
1407format (very efficient).
1408
1409 $handle->push_read (packstring => "w", sub {
1410 my ($handle, $data) = @_;
1411 });
1412
1413=cut
1414
1415register_read_type packstring => sub {
1416 my ($self, $cb, $format) = @_;
1417
1418 sub {
1419 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1420 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1421 or return;
1422
1423 $format = length pack $format, $len;
1424
1425 # bypass unshift if we already have the remaining chunk
1426 if ($format + $len <= length $_[0]{rbuf}) {
1427 my $data = substr $_[0]{rbuf}, $format, $len;
1428 substr $_[0]{rbuf}, 0, $format + $len, "";
1429 $cb->($_[0], $data);
1430 } else {
1431 # remove prefix
1432 substr $_[0]{rbuf}, 0, $format, "";
1433
1434 # read remaining chunk
1435 $_[0]->unshift_read (chunk => $len, $cb);
1436 }
1437
1438 1
1439 }
1440};
1441
967=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
968 1443
969Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1446
971If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1449
974This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1457the C<json> write type description, above, for an actual example.
982 1458
983=cut 1459=cut
984 1460
985register_read_type json => sub { 1461register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1462 my ($self, $cb) = @_;
987 1463
988 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
989 1467
990 my $data; 1468 my $data;
991 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
992 1470
993 my $json = $self->{json} ||= JSON->new->utf8;
994
995 sub { 1471 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1473
998 if ($ref) { 1474 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1476 $json->incr_text = "";
1001 $cb->($self, $ref); 1477 $cb->($self, $ref);
1002 1478
1003 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1004 } else { 1490 } else {
1005 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1006 () 1493 ()
1007 } 1494 }
1495 }
1496};
1497
1498=item storable => $cb->($handle, $ref)
1499
1500Deserialises a L<Storable> frozen representation as written by the
1501C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1502data).
1503
1504Raises C<EBADMSG> error if the data could not be decoded.
1505
1506=cut
1507
1508register_read_type storable => sub {
1509 my ($self, $cb) = @_;
1510
1511 require Storable;
1512
1513 sub {
1514 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1515 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1516 or return;
1517
1518 my $format = length pack "w", $len;
1519
1520 # bypass unshift if we already have the remaining chunk
1521 if ($format + $len <= length $_[0]{rbuf}) {
1522 my $data = substr $_[0]{rbuf}, $format, $len;
1523 substr $_[0]{rbuf}, 0, $format + $len, "";
1524 $cb->($_[0], Storable::thaw ($data));
1525 } else {
1526 # remove prefix
1527 substr $_[0]{rbuf}, 0, $format, "";
1528
1529 # read remaining chunk
1530 $_[0]->unshift_read (chunk => $len, sub {
1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1532 $cb->($_[0], $ref);
1533 } else {
1534 $self->_error (Errno::EBADMSG);
1535 }
1536 });
1537 }
1538
1539 1
1008 } 1540 }
1009}; 1541};
1010 1542
1011=back 1543=back
1012 1544
1033=item $handle->stop_read 1565=item $handle->stop_read
1034 1566
1035=item $handle->start_read 1567=item $handle->start_read
1036 1568
1037In rare cases you actually do not want to read anything from the 1569In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1570socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1571any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1572C<start_read>.
1041 1573
1042Note that AnyEvent::Handle will automatically C<start_read> for you when 1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1043you change the C<on_read> callback or push/unshift a read callback, and it 1575you change the C<on_read> callback or push/unshift a read callback, and it
1044will automatically C<stop_read> for you when neither C<on_read> is set nor 1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1045there are any read requests in the queue. 1577there are any read requests in the queue.
1046 1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1047=cut 1582=cut
1048 1583
1049sub stop_read { 1584sub stop_read {
1050 my ($self) = @_; 1585 my ($self) = @_;
1051 1586
1052 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1053} 1588}
1054 1589
1055sub start_read { 1590sub start_read {
1056 my ($self) = @_; 1591 my ($self) = @_;
1057 1592
1058 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1059 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1060 1595
1061 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1062 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1063 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 1599
1065 if ($len > 0) { 1600 if ($len > 0) {
1066 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1067 1602
1068 $self->{filter_r} 1603 if ($self->{tls}) {
1069 ? $self->{filter_r}($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1605
1606 &_dotls ($self);
1607 } else {
1070 : $self->_drain_rbuf; 1608 $self->_drain_rbuf;
1609 }
1071 1610
1072 } elsif (defined $len) { 1611 } elsif (defined $len) {
1073 delete $self->{_rw}; 1612 delete $self->{_rw};
1074 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1075 $self->_drain_rbuf; 1614 $self->_drain_rbuf;
1076 1615
1077 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1079 } 1618 }
1080 }); 1619 };
1081 } 1620 }
1082} 1621}
1083 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1084sub _dotls { 1651sub _dotls {
1085 my ($self) = @_; 1652 my ($self) = @_;
1086 1653
1087 my $buf; 1654 my $tmp;
1088 1655
1089 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1090 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1092 } 1659 }
1093 }
1094 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
1095 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1097 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1098 } 1696 }
1099 1697
1100 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
1101 if (length $buf) { 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1102 $self->{rbuf} .= $buf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1103 $self->_drain_rbuf;
1104 } else {
1105 # let's treat SSL-eof as we treat normal EOF
1106 $self->{_eof} = 1;
1107 $self->_shutdown;
1108 return;
1109 }
1110 }
1111
1112 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1113
1114 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1115 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1116 return $self->_error ($!, 1);
1117 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1118 return $self->_error (&Errno::EIO, 1);
1119 }
1120
1121 # all others are fine for our purposes
1122 }
1123} 1701}
1124 1702
1125=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1126 1704
1127Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1128object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1129C<starttls>. 1707C<starttls>.
1130 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1131The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1132C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133 1715
1134The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1135used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1136 1720
1137The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1138call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1139might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1140 1725
1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1729
1141=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1142 1733
1143sub starttls { 1734sub starttls {
1144 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1145 1736
1146 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1147 1739
1148 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1150 Net::SSLeay::set_accept_state ($ssl); 1742
1151 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1152 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1153 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1154 } 1765
1155 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1156 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1157 1768
1158 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1159 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1160 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1162 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1163 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1164 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1166 1785
1167 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1170 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1171 1792
1172 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1173 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1174 &_dotls; 1795
1175 }; 1796 &_dotls; # need to trigger the initial handshake
1176 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1177 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 &_dotls;
1179 };
1180} 1798}
1181 1799
1182=item $handle->stoptls 1800=item $handle->stoptls
1183 1801
1184Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1185lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1186 1806
1187=cut 1807=cut
1188 1808
1189sub stoptls { 1809sub stoptls {
1190 my ($self) = @_; 1810 my ($self) = @_;
1191 1811
1192 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1193 1814
1194 delete $self->{_rbio}; 1815 &_dotls;
1195 delete $self->{_wbio}; 1816
1196 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1197 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1198 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1199} 1832}
1200 1833
1201sub DESTROY { 1834sub DESTROY {
1202 my $self = shift; 1835 my ($self) = @_;
1203 1836
1204 $self->stoptls; 1837 &_freetls;
1838
1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1840
1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1842 my $fh = delete $self->{fh};
1843 my $wbuf = delete $self->{wbuf};
1844
1845 my @linger;
1846
1847 push @linger, AE::io $fh, 1, sub {
1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1849
1850 if ($len > 0) {
1851 substr $wbuf, 0, $len, "";
1852 } else {
1853 @linger = (); # end
1854 }
1855 };
1856 push @linger, AE::timer $linger, 0, sub {
1857 @linger = ();
1858 };
1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1205} 1897}
1206 1898
1207=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1208 1900
1209This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1210default for TLS mode. 1902for TLS mode.
1211 1903
1212The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1213
1214 Net::SSLeay::load_error_strings;
1215 Net::SSLeay::SSLeay_add_ssl_algorithms;
1216 Net::SSLeay::randomize;
1217
1218 my $CTX = Net::SSLeay::CTX_new;
1219
1220 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221 1905
1222=cut 1906=cut
1223 1907
1224our $TLS_CTX; 1908our $TLS_CTX;
1225 1909
1226sub TLS_CTX() { 1910sub TLS_CTX() {
1227 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1228 require Net::SSLeay; 1912 require AnyEvent::TLS;
1229 1913
1230 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1231 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232 Net::SSLeay::randomize ();
1233
1234 $TLS_CTX = Net::SSLeay::CTX_new ();
1235
1236 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237
1238 $TLS_CTX
1239 } 1915 }
1240} 1916}
1241 1917
1242=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1243 2078
1244=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1245 2080
1246In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1247 2082
1251=over 4 2086=over 4
1252 2087
1253=item * all constructor arguments become object members. 2088=item * all constructor arguments become object members.
1254 2089
1255At least initially, when you pass a C<tls>-argument to the constructor it 2090At least initially, when you pass a C<tls>-argument to the constructor it
1256will end up in C<< $handle->{tls} >>. Those members might be changes or 2091will end up in C<< $handle->{tls} >>. Those members might be changed or
1257mutated later on (for example C<tls> will hold the TLS connection object). 2092mutated later on (for example C<tls> will hold the TLS connection object).
1258 2093
1259=item * other object member names are prefixed with an C<_>. 2094=item * other object member names are prefixed with an C<_>.
1260 2095
1261All object members not explicitly documented (internal use) are prefixed 2096All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines