ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.59 by root, Thu Jun 5 16:53:11 2008 UTC vs.
Revision 1.143 by root, Mon Jul 6 21:02:34 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.13; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
107=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
108 131
109This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
111 136
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
114 141
115When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
122This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
124 151
125To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
126 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
127=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
128 161
129If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 166
134Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
138 172
139Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
140 174
141=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
142 176
146 180
147=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
148 182
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
152 186
153For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
157isn't finished). 191isn't finished).
158 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
159=item read_size => <bytes> 219=item read_size => <bytes>
160 220
161The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
163 224
164=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
165 226
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
168considered empty. 229considered empty.
169 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>).
255
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 257
172When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
175 264
176TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
178 269
179For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
181 273
182You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
186 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
187See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 290
189=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
190 292
191Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
301=item on_starttls => $cb->($handle, $success[, $error_message])
302
303This callback will be invoked when the TLS/SSL handshake has finished. If
304C<$success> is true, then the TLS handshake succeeded, otherwise it failed
305(C<on_stoptls> will not be called in this case).
306
307The session in C<< $handle->{tls} >> can still be examined in this
308callback, even when the handshake was not successful.
309
310TLS handshake failures will not cause C<on_error> to be invoked when this
311callback is in effect, instead, the error message will be passed to C<on_starttls>.
312
313Without this callback, handshake failures lead to C<on_error> being
314called, as normal.
315
316Note that you cannot call C<starttls> right again in this callback. If you
317need to do that, start an zero-second timer instead whose callback can
318then call C<< ->starttls >> again.
319
320=item on_stoptls => $cb->($handle)
321
322When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
323set, then it will be invoked after freeing the TLS session. If it is not,
324then a TLS shutdown condition will be treated like a normal EOF condition
325on the handle.
326
327The session in C<< $handle->{tls} >> can still be examined in this
328callback.
329
330This callback will only be called on TLS shutdowns, not when the
331underlying handle signals EOF.
332
195=item json => JSON or JSON::XS object 333=item json => JSON or JSON::XS object
196 334
197This is the json coder object used by the C<json> read and write types. 335This is the json coder object used by the C<json> read and write types.
198 336
199If you don't supply it, then AnyEvent::Handle will create and use a 337If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 338suitable one (on demand), which will write and expect UTF-8 encoded JSON
339texts.
201 340
202Note that you are responsible to depend on the JSON module if you want to 341Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 342use this functionality, as AnyEvent does not have a dependency itself.
204 343
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 344=back
212 345
213=cut 346=cut
214 347
215sub new { 348sub new {
216 my $class = shift; 349 my $class = shift;
217
218 my $self = bless { @_ }, $class; 350 my $self = bless { @_ }, $class;
219 351
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 352 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 353
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 354 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228 355
229 $self->{_activity} = AnyEvent->now; 356 $self->{_activity} = AnyEvent->now;
230 $self->_timeout; 357 $self->_timeout;
231 358
359 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
360
361 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
362 if $self->{tls};
363
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 364 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 365
235 $self 366 $self->start_read
367 if $self->{on_read};
368
369 $self->{fh} && $self
236} 370}
237 371
238sub _shutdown { 372sub _shutdown {
239 my ($self) = @_; 373 my ($self) = @_;
240 374
241 delete $self->{_tw}; 375 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
242 delete $self->{_rw}; 376 $self->{_eof} = 1; # tell starttls et. al to stop trying
243 delete $self->{_ww};
244 delete $self->{fh};
245 377
246 $self->stoptls; 378 &_freetls;
247} 379}
248 380
249sub _error { 381sub _error {
250 my ($self, $errno, $fatal) = @_; 382 my ($self, $errno, $fatal, $message) = @_;
251 383
252 $self->_shutdown 384 $self->_shutdown
253 if $fatal; 385 if $fatal;
254 386
255 $! = $errno; 387 $! = $errno;
388 $message ||= "$!";
256 389
257 if ($self->{on_error}) { 390 if ($self->{on_error}) {
258 $self->{on_error}($self, $fatal); 391 $self->{on_error}($self, $fatal, $message);
259 } else { 392 } elsif ($self->{fh}) {
260 Carp::croak "AnyEvent::Handle uncaught error: $!"; 393 Carp::croak "AnyEvent::Handle uncaught error: $message";
261 } 394 }
262} 395}
263 396
264=item $fh = $handle->fh 397=item $fh = $handle->fh
265 398
266This method returns the file handle of the L<AnyEvent::Handle> object. 399This method returns the file handle used to create the L<AnyEvent::Handle> object.
267 400
268=cut 401=cut
269 402
270sub fh { $_[0]{fh} } 403sub fh { $_[0]{fh} }
271 404
289 $_[0]{on_eof} = $_[1]; 422 $_[0]{on_eof} = $_[1];
290} 423}
291 424
292=item $handle->on_timeout ($cb) 425=item $handle->on_timeout ($cb)
293 426
294Replace the current C<on_timeout> callback, or disables the callback 427Replace the current C<on_timeout> callback, or disables the callback (but
295(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 428not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
296argument. 429argument and method.
297 430
298=cut 431=cut
299 432
300sub on_timeout { 433sub on_timeout {
301 $_[0]{on_timeout} = $_[1]; 434 $_[0]{on_timeout} = $_[1];
435}
436
437=item $handle->autocork ($boolean)
438
439Enables or disables the current autocork behaviour (see C<autocork>
440constructor argument). Changes will only take effect on the next write.
441
442=cut
443
444sub autocork {
445 $_[0]{autocork} = $_[1];
446}
447
448=item $handle->no_delay ($boolean)
449
450Enables or disables the C<no_delay> setting (see constructor argument of
451the same name for details).
452
453=cut
454
455sub no_delay {
456 $_[0]{no_delay} = $_[1];
457
458 eval {
459 local $SIG{__DIE__};
460 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
461 };
462}
463
464=item $handle->on_starttls ($cb)
465
466Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
467
468=cut
469
470sub on_starttls {
471 $_[0]{on_starttls} = $_[1];
472}
473
474=item $handle->on_stoptls ($cb)
475
476Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
477
478=cut
479
480sub on_starttls {
481 $_[0]{on_stoptls} = $_[1];
302} 482}
303 483
304############################################################################# 484#############################################################################
305 485
306=item $handle->timeout ($seconds) 486=item $handle->timeout ($seconds)
384 my ($self, $cb) = @_; 564 my ($self, $cb) = @_;
385 565
386 $self->{on_drain} = $cb; 566 $self->{on_drain} = $cb;
387 567
388 $cb->($self) 568 $cb->($self)
389 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 569 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
390} 570}
391 571
392=item $handle->push_write ($data) 572=item $handle->push_write ($data)
393 573
394Queues the given scalar to be written. You can push as much data as you 574Queues the given scalar to be written. You can push as much data as you
411 substr $self->{wbuf}, 0, $len, ""; 591 substr $self->{wbuf}, 0, $len, "";
412 592
413 $self->{_activity} = AnyEvent->now; 593 $self->{_activity} = AnyEvent->now;
414 594
415 $self->{on_drain}($self) 595 $self->{on_drain}($self)
416 if $self->{low_water_mark} >= length $self->{wbuf} 596 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
417 && $self->{on_drain}; 597 && $self->{on_drain};
418 598
419 delete $self->{_ww} unless length $self->{wbuf}; 599 delete $self->{_ww} unless length $self->{wbuf};
420 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 600 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 $self->_error ($!, 1); 601 $self->_error ($!, 1);
422 } 602 }
423 }; 603 };
424 604
425 # try to write data immediately 605 # try to write data immediately
426 $cb->(); 606 $cb->() unless $self->{autocork};
427 607
428 # if still data left in wbuf, we need to poll 608 # if still data left in wbuf, we need to poll
429 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 609 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
430 if length $self->{wbuf}; 610 if length $self->{wbuf};
431 }; 611 };
445 625
446 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 626 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447 ->($self, @_); 627 ->($self, @_);
448 } 628 }
449 629
450 if ($self->{filter_w}) { 630 if ($self->{tls}) {
451 $self->{filter_w}($self, \$_[0]); 631 $self->{_tls_wbuf} .= $_[0];
632
633 &_dotls ($self);
452 } else { 634 } else {
453 $self->{wbuf} .= $_[0]; 635 $self->{wbuf} .= $_[0];
454 $self->_drain_wbuf; 636 $self->_drain_wbuf;
455 } 637 }
456} 638}
473=cut 655=cut
474 656
475register_write_type netstring => sub { 657register_write_type netstring => sub {
476 my ($self, $string) = @_; 658 my ($self, $string) = @_;
477 659
478 sprintf "%d:%s,", (length $string), $string 660 (length $string) . ":$string,"
661};
662
663=item packstring => $format, $data
664
665An octet string prefixed with an encoded length. The encoding C<$format>
666uses the same format as a Perl C<pack> format, but must specify a single
667integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
668optional C<!>, C<< < >> or C<< > >> modifier).
669
670=cut
671
672register_write_type packstring => sub {
673 my ($self, $format, $string) = @_;
674
675 pack "$format/a*", $string
479}; 676};
480 677
481=item json => $array_or_hashref 678=item json => $array_or_hashref
482 679
483Encodes the given hash or array reference into a JSON object. Unless you 680Encodes the given hash or array reference into a JSON object. Unless you
517 714
518 $self->{json} ? $self->{json}->encode ($ref) 715 $self->{json} ? $self->{json}->encode ($ref)
519 : JSON::encode_json ($ref) 716 : JSON::encode_json ($ref)
520}; 717};
521 718
719=item storable => $reference
720
721Freezes the given reference using L<Storable> and writes it to the
722handle. Uses the C<nfreeze> format.
723
724=cut
725
726register_write_type storable => sub {
727 my ($self, $ref) = @_;
728
729 require Storable;
730
731 pack "w/a*", Storable::nfreeze ($ref)
732};
733
522=back 734=back
735
736=item $handle->push_shutdown
737
738Sometimes you know you want to close the socket after writing your data
739before it was actually written. One way to do that is to replace your
740C<on_drain> handler by a callback that shuts down the socket (and set
741C<low_water_mark> to C<0>). This method is a shorthand for just that, and
742replaces the C<on_drain> callback with:
743
744 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
745
746This simply shuts down the write side and signals an EOF condition to the
747the peer.
748
749You can rely on the normal read queue and C<on_eof> handling
750afterwards. This is the cleanest way to close a connection.
751
752=cut
753
754sub push_shutdown {
755 my ($self) = @_;
756
757 delete $self->{low_water_mark};
758 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
759}
523 760
524=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 761=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 762
526This function (not method) lets you add your own types to C<push_write>. 763This function (not method) lets you add your own types to C<push_write>.
527Whenever the given C<type> is used, C<push_write> will invoke the code 764Whenever the given C<type> is used, C<push_write> will invoke the code
548ways, the "simple" way, using only C<on_read> and the "complex" way, using 785ways, the "simple" way, using only C<on_read> and the "complex" way, using
549a queue. 786a queue.
550 787
551In the simple case, you just install an C<on_read> callback and whenever 788In the simple case, you just install an C<on_read> callback and whenever
552new data arrives, it will be called. You can then remove some data (if 789new data arrives, it will be called. You can then remove some data (if
553enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 790enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
554or not. 791leave the data there if you want to accumulate more (e.g. when only a
792partial message has been received so far).
555 793
556In the more complex case, you want to queue multiple callbacks. In this 794In the more complex case, you want to queue multiple callbacks. In this
557case, AnyEvent::Handle will call the first queued callback each time new 795case, AnyEvent::Handle will call the first queued callback each time new
558data arrives and removes it when it has done its job (see C<push_read>, 796data arrives (also the first time it is queued) and removes it when it has
559below). 797done its job (see C<push_read>, below).
560 798
561This way you can, for example, push three line-reads, followed by reading 799This way you can, for example, push three line-reads, followed by reading
562a chunk of data, and AnyEvent::Handle will execute them in order. 800a chunk of data, and AnyEvent::Handle will execute them in order.
563 801
564Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 802Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
577 # handle xml 815 # handle xml
578 }); 816 });
579 }); 817 });
580 }); 818 });
581 819
582Example 2: Implement a client for a protocol that replies either with 820Example 2: Implement a client for a protocol that replies either with "OK"
583"OK" and another line or "ERROR" for one request, and 64 bytes for the 821and another line or "ERROR" for the first request that is sent, and 64
584second request. Due tot he availability of a full queue, we can just 822bytes for the second request. Due to the availability of a queue, we can
585pipeline sending both requests and manipulate the queue as necessary in 823just pipeline sending both requests and manipulate the queue as necessary
586the callbacks: 824in the callbacks.
587 825
588 # request one 826When the first callback is called and sees an "OK" response, it will
827C<unshift> another line-read. This line-read will be queued I<before> the
82864-byte chunk callback.
829
830 # request one, returns either "OK + extra line" or "ERROR"
589 $handle->push_write ("request 1\015\012"); 831 $handle->push_write ("request 1\015\012");
590 832
591 # we expect "ERROR" or "OK" as response, so push a line read 833 # we expect "ERROR" or "OK" as response, so push a line read
592 $handle->push_read (line => sub { 834 $handle->push_read (line => sub {
593 # if we got an "OK", we have to _prepend_ another line, 835 # if we got an "OK", we have to _prepend_ another line,
600 ... 842 ...
601 }); 843 });
602 } 844 }
603 }); 845 });
604 846
605 # request two 847 # request two, simply returns 64 octets
606 $handle->push_write ("request 2\015\012"); 848 $handle->push_write ("request 2\015\012");
607 849
608 # simply read 64 bytes, always 850 # simply read 64 bytes, always
609 $handle->push_read (chunk => 64, sub { 851 $handle->push_read (chunk => 64, sub {
610 my $response = $_[1]; 852 my $response = $_[1];
622 864
623 if ( 865 if (
624 defined $self->{rbuf_max} 866 defined $self->{rbuf_max}
625 && $self->{rbuf_max} < length $self->{rbuf} 867 && $self->{rbuf_max} < length $self->{rbuf}
626 ) { 868 ) {
627 return $self->_error (&Errno::ENOSPC, 1); 869 $self->_error (&Errno::ENOSPC, 1), return;
628 } 870 }
629 871
630 while () { 872 while () {
631 no strict 'refs'; 873 # we need to use a separate tls read buffer, as we must not receive data while
874 # we are draining the buffer, and this can only happen with TLS.
875 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
632 876
633 my $len = length $self->{rbuf}; 877 my $len = length $self->{rbuf};
634 878
635 if (my $cb = shift @{ $self->{_queue} }) { 879 if (my $cb = shift @{ $self->{_queue} }) {
636 unless ($cb->($self)) { 880 unless ($cb->($self)) {
637 if ($self->{_eof}) { 881 if ($self->{_eof}) {
638 # no progress can be made (not enough data and no data forthcoming) 882 # no progress can be made (not enough data and no data forthcoming)
639 return $self->_error (&Errno::EPIPE, 1); 883 $self->_error (&Errno::EPIPE, 1), return;
640 } 884 }
641 885
642 unshift @{ $self->{_queue} }, $cb; 886 unshift @{ $self->{_queue} }, $cb;
643 last; 887 last;
644 } 888 }
645 } elsif ($self->{on_read}) { 889 } elsif ($self->{on_read}) {
890 last unless $len;
891
646 $self->{on_read}($self); 892 $self->{on_read}($self);
647 893
648 if ( 894 if (
649 $len == length $self->{rbuf} # if no data has been consumed 895 $len == length $self->{rbuf} # if no data has been consumed
650 && !@{ $self->{_queue} } # and the queue is still empty 896 && !@{ $self->{_queue} } # and the queue is still empty
651 && $self->{on_read} # but we still have on_read 897 && $self->{on_read} # but we still have on_read
652 ) { 898 ) {
653 # no further data will arrive 899 # no further data will arrive
654 # so no progress can be made 900 # so no progress can be made
655 return $self->_error (&Errno::EPIPE, 1) 901 $self->_error (&Errno::EPIPE, 1), return
656 if $self->{_eof}; 902 if $self->{_eof};
657 903
658 last; # more data might arrive 904 last; # more data might arrive
659 } 905 }
660 } else { 906 } else {
661 # read side becomes idle 907 # read side becomes idle
662 delete $self->{_rw}; 908 delete $self->{_rw} unless $self->{tls};
663 last; 909 last;
664 } 910 }
665 } 911 }
666 912
913 if ($self->{_eof}) {
914 if ($self->{on_eof}) {
667 $self->{on_eof}($self) 915 $self->{on_eof}($self)
668 if $self->{_eof} && $self->{on_eof}; 916 } else {
917 $self->_error (0, 1, "Unexpected end-of-file");
918 }
919 }
669 920
670 # may need to restart read watcher 921 # may need to restart read watcher
671 unless ($self->{_rw}) { 922 unless ($self->{_rw}) {
672 $self->start_read 923 $self->start_read
673 if $self->{on_read} || @{ $self->{_queue} }; 924 if $self->{on_read} || @{ $self->{_queue} };
691 942
692=item $handle->rbuf 943=item $handle->rbuf
693 944
694Returns the read buffer (as a modifiable lvalue). 945Returns the read buffer (as a modifiable lvalue).
695 946
696You can access the read buffer directly as the C<< ->{rbuf} >> member, if 947You can access the read buffer directly as the C<< ->{rbuf} >>
697you want. 948member, if you want. However, the only operation allowed on the
949read buffer (apart from looking at it) is removing data from its
950beginning. Otherwise modifying or appending to it is not allowed and will
951lead to hard-to-track-down bugs.
698 952
699NOTE: The read buffer should only be used or modified if the C<on_read>, 953NOTE: The read buffer should only be used or modified if the C<on_read>,
700C<push_read> or C<unshift_read> methods are used. The other read methods 954C<push_read> or C<unshift_read> methods are used. The other read methods
701automatically manage the read buffer. 955automatically manage the read buffer.
702 956
799 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1053 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 1 1054 1
801 } 1055 }
802}; 1056};
803 1057
804# compatibility with older API
805sub push_read_chunk {
806 $_[0]->push_read (chunk => $_[1], $_[2]);
807}
808
809sub unshift_read_chunk {
810 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811}
812
813=item line => [$eol, ]$cb->($handle, $line, $eol) 1058=item line => [$eol, ]$cb->($handle, $line, $eol)
814 1059
815The callback will be called only once a full line (including the end of 1060The callback will be called only once a full line (including the end of
816line marker, C<$eol>) has been read. This line (excluding the end of line 1061line marker, C<$eol>) has been read. This line (excluding the end of line
817marker) will be passed to the callback as second argument (C<$line>), and 1062marker) will be passed to the callback as second argument (C<$line>), and
832=cut 1077=cut
833 1078
834register_read_type line => sub { 1079register_read_type line => sub {
835 my ($self, $cb, $eol) = @_; 1080 my ($self, $cb, $eol) = @_;
836 1081
837 $eol = qr|(\015?\012)| if @_ < 3; 1082 if (@_ < 3) {
838 $eol = quotemeta $eol unless ref $eol; 1083 # this is more than twice as fast as the generic code below
839 $eol = qr|^(.*?)($eol)|s;
840
841 sub { 1084 sub {
842 $_[0]{rbuf} =~ s/$eol// or return; 1085 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
843 1086
844 $cb->($_[0], $1, $2); 1087 $cb->($_[0], $1, $2);
845 1
846 }
847};
848
849# compatibility with older API
850sub push_read_line {
851 my $self = shift;
852 $self->push_read (line => @_);
853}
854
855sub unshift_read_line {
856 my $self = shift;
857 $self->unshift_read (line => @_);
858}
859
860=item netstring => $cb->($handle, $string)
861
862A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863
864Throws an error with C<$!> set to EBADMSG on format violations.
865
866=cut
867
868register_read_type netstring => sub {
869 my ($self, $cb) = @_;
870
871 sub {
872 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873 if ($_[0]{rbuf} =~ /[^0-9]/) {
874 $self->_error (&Errno::EBADMSG);
875 } 1088 1
876 return;
877 } 1089 }
1090 } else {
1091 $eol = quotemeta $eol unless ref $eol;
1092 $eol = qr|^(.*?)($eol)|s;
878 1093
879 my $len = $1; 1094 sub {
1095 $_[0]{rbuf} =~ s/$eol// or return;
880 1096
881 $self->unshift_read (chunk => $len, sub { 1097 $cb->($_[0], $1, $2);
882 my $string = $_[1];
883 $_[0]->unshift_read (chunk => 1, sub {
884 if ($_[1] eq ",") {
885 $cb->($_[0], $string);
886 } else {
887 $self->_error (&Errno::EBADMSG);
888 }
889 }); 1098 1
890 }); 1099 }
891
892 1
893 } 1100 }
894}; 1101};
895 1102
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1103=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1104
961 1168
962 () 1169 ()
963 } 1170 }
964}; 1171};
965 1172
1173=item netstring => $cb->($handle, $string)
1174
1175A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1176
1177Throws an error with C<$!> set to EBADMSG on format violations.
1178
1179=cut
1180
1181register_read_type netstring => sub {
1182 my ($self, $cb) = @_;
1183
1184 sub {
1185 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1186 if ($_[0]{rbuf} =~ /[^0-9]/) {
1187 $self->_error (&Errno::EBADMSG);
1188 }
1189 return;
1190 }
1191
1192 my $len = $1;
1193
1194 $self->unshift_read (chunk => $len, sub {
1195 my $string = $_[1];
1196 $_[0]->unshift_read (chunk => 1, sub {
1197 if ($_[1] eq ",") {
1198 $cb->($_[0], $string);
1199 } else {
1200 $self->_error (&Errno::EBADMSG);
1201 }
1202 });
1203 });
1204
1205 1
1206 }
1207};
1208
1209=item packstring => $format, $cb->($handle, $string)
1210
1211An octet string prefixed with an encoded length. The encoding C<$format>
1212uses the same format as a Perl C<pack> format, but must specify a single
1213integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1214optional C<!>, C<< < >> or C<< > >> modifier).
1215
1216For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1217EPP uses a prefix of C<N> (4 octtes).
1218
1219Example: read a block of data prefixed by its length in BER-encoded
1220format (very efficient).
1221
1222 $handle->push_read (packstring => "w", sub {
1223 my ($handle, $data) = @_;
1224 });
1225
1226=cut
1227
1228register_read_type packstring => sub {
1229 my ($self, $cb, $format) = @_;
1230
1231 sub {
1232 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1233 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1234 or return;
1235
1236 $format = length pack $format, $len;
1237
1238 # bypass unshift if we already have the remaining chunk
1239 if ($format + $len <= length $_[0]{rbuf}) {
1240 my $data = substr $_[0]{rbuf}, $format, $len;
1241 substr $_[0]{rbuf}, 0, $format + $len, "";
1242 $cb->($_[0], $data);
1243 } else {
1244 # remove prefix
1245 substr $_[0]{rbuf}, 0, $format, "";
1246
1247 # read remaining chunk
1248 $_[0]->unshift_read (chunk => $len, $cb);
1249 }
1250
1251 1
1252 }
1253};
1254
966=item json => $cb->($handle, $hash_or_arrayref) 1255=item json => $cb->($handle, $hash_or_arrayref)
967 1256
968Reads a JSON object or array, decodes it and passes it to the callback. 1257Reads a JSON object or array, decodes it and passes it to the
1258callback. When a parse error occurs, an C<EBADMSG> error will be raised.
969 1259
970If a C<json> object was passed to the constructor, then that will be used 1260If a C<json> object was passed to the constructor, then that will be used
971for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1261for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972 1262
973This read type uses the incremental parser available with JSON version 1263This read type uses the incremental parser available with JSON version
980the C<json> write type description, above, for an actual example. 1270the C<json> write type description, above, for an actual example.
981 1271
982=cut 1272=cut
983 1273
984register_read_type json => sub { 1274register_read_type json => sub {
985 my ($self, $cb, $accept, $reject, $skip) = @_; 1275 my ($self, $cb) = @_;
986 1276
987 require JSON; 1277 my $json = $self->{json} ||=
1278 eval { require JSON::XS; JSON::XS->new->utf8 }
1279 || do { require JSON; JSON->new->utf8 };
988 1280
989 my $data; 1281 my $data;
990 my $rbuf = \$self->{rbuf}; 1282 my $rbuf = \$self->{rbuf};
991 1283
992 my $json = $self->{json} ||= JSON->new->utf8;
993
994 sub { 1284 sub {
995 my $ref = $json->incr_parse ($self->{rbuf}); 1285 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
996 1286
997 if ($ref) { 1287 if ($ref) {
998 $self->{rbuf} = $json->incr_text; 1288 $self->{rbuf} = $json->incr_text;
999 $json->incr_text = ""; 1289 $json->incr_text = "";
1000 $cb->($self, $ref); 1290 $cb->($self, $ref);
1001 1291
1002 1 1292 1
1293 } elsif ($@) {
1294 # error case
1295 $json->incr_skip;
1296
1297 $self->{rbuf} = $json->incr_text;
1298 $json->incr_text = "";
1299
1300 $self->_error (&Errno::EBADMSG);
1301
1302 ()
1003 } else { 1303 } else {
1004 $self->{rbuf} = ""; 1304 $self->{rbuf} = "";
1305
1005 () 1306 ()
1006 } 1307 }
1308 }
1309};
1310
1311=item storable => $cb->($handle, $ref)
1312
1313Deserialises a L<Storable> frozen representation as written by the
1314C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1315data).
1316
1317Raises C<EBADMSG> error if the data could not be decoded.
1318
1319=cut
1320
1321register_read_type storable => sub {
1322 my ($self, $cb) = @_;
1323
1324 require Storable;
1325
1326 sub {
1327 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1328 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1329 or return;
1330
1331 my $format = length pack "w", $len;
1332
1333 # bypass unshift if we already have the remaining chunk
1334 if ($format + $len <= length $_[0]{rbuf}) {
1335 my $data = substr $_[0]{rbuf}, $format, $len;
1336 substr $_[0]{rbuf}, 0, $format + $len, "";
1337 $cb->($_[0], Storable::thaw ($data));
1338 } else {
1339 # remove prefix
1340 substr $_[0]{rbuf}, 0, $format, "";
1341
1342 # read remaining chunk
1343 $_[0]->unshift_read (chunk => $len, sub {
1344 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1345 $cb->($_[0], $ref);
1346 } else {
1347 $self->_error (&Errno::EBADMSG);
1348 }
1349 });
1350 }
1351
1352 1
1007 } 1353 }
1008}; 1354};
1009 1355
1010=back 1356=back
1011 1357
1041Note that AnyEvent::Handle will automatically C<start_read> for you when 1387Note that AnyEvent::Handle will automatically C<start_read> for you when
1042you change the C<on_read> callback or push/unshift a read callback, and it 1388you change the C<on_read> callback or push/unshift a read callback, and it
1043will automatically C<stop_read> for you when neither C<on_read> is set nor 1389will automatically C<stop_read> for you when neither C<on_read> is set nor
1044there are any read requests in the queue. 1390there are any read requests in the queue.
1045 1391
1392These methods will have no effect when in TLS mode (as TLS doesn't support
1393half-duplex connections).
1394
1046=cut 1395=cut
1047 1396
1048sub stop_read { 1397sub stop_read {
1049 my ($self) = @_; 1398 my ($self) = @_;
1050 1399
1051 delete $self->{_rw}; 1400 delete $self->{_rw} unless $self->{tls};
1052} 1401}
1053 1402
1054sub start_read { 1403sub start_read {
1055 my ($self) = @_; 1404 my ($self) = @_;
1056 1405
1057 unless ($self->{_rw} || $self->{_eof}) { 1406 unless ($self->{_rw} || $self->{_eof}) {
1058 Scalar::Util::weaken $self; 1407 Scalar::Util::weaken $self;
1059 1408
1060 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1409 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1061 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1410 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1062 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1411 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1063 1412
1064 if ($len > 0) { 1413 if ($len > 0) {
1065 $self->{_activity} = AnyEvent->now; 1414 $self->{_activity} = AnyEvent->now;
1066 1415
1067 $self->{filter_r} 1416 if ($self->{tls}) {
1068 ? $self->{filter_r}($self, $rbuf) 1417 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1069 : $self->{_in_drain} || $self->_drain_rbuf; 1418
1419 &_dotls ($self);
1420 } else {
1421 $self->_drain_rbuf unless $self->{_in_drain};
1422 }
1070 1423
1071 } elsif (defined $len) { 1424 } elsif (defined $len) {
1072 delete $self->{_rw}; 1425 delete $self->{_rw};
1073 $self->{_eof} = 1; 1426 $self->{_eof} = 1;
1074 $self->_drain_rbuf unless $self->{_in_drain}; 1427 $self->_drain_rbuf unless $self->{_in_drain};
1078 } 1431 }
1079 }); 1432 });
1080 } 1433 }
1081} 1434}
1082 1435
1436our $ERROR_SYSCALL;
1437our $ERROR_WANT_READ;
1438
1439sub _tls_error {
1440 my ($self, $err) = @_;
1441
1442 return $self->_error ($!, 1)
1443 if $err == Net::SSLeay::ERROR_SYSCALL ();
1444
1445 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1446
1447 # reduce error string to look less scary
1448 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1449
1450 if ($self->{_on_starttls}) {
1451 (delete $self->{_on_starttls})->($self, undef, $err);
1452 &_freetls;
1453 } else {
1454 &_freetls;
1455 $self->_error (&Errno::EPROTO, 1, $err);
1456 }
1457}
1458
1459# poll the write BIO and send the data if applicable
1460# also decode read data if possible
1461# this is basiclaly our TLS state machine
1462# more efficient implementations are possible with openssl,
1463# but not with the buggy and incomplete Net::SSLeay.
1083sub _dotls { 1464sub _dotls {
1084 my ($self) = @_; 1465 my ($self) = @_;
1085 1466
1086 my $buf; 1467 my $tmp;
1087 1468
1088 if (length $self->{_tls_wbuf}) { 1469 if (length $self->{_tls_wbuf}) {
1089 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1470 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1090 substr $self->{_tls_wbuf}, 0, $len, ""; 1471 substr $self->{_tls_wbuf}, 0, $tmp, "";
1091 } 1472 }
1092 }
1093 1473
1474 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1475 return $self->_tls_error ($tmp)
1476 if $tmp != $ERROR_WANT_READ
1477 && ($tmp != $ERROR_SYSCALL || $!);
1478 }
1479
1480 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1481 unless (length $tmp) {
1482 $self->{_on_starttls}
1483 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1484 &_freetls;
1485
1486 if ($self->{on_stoptls}) {
1487 $self->{on_stoptls}($self);
1488 return;
1489 } else {
1490 # let's treat SSL-eof as we treat normal EOF
1491 delete $self->{_rw};
1492 $self->{_eof} = 1;
1493 }
1494 }
1495
1496 $self->{_tls_rbuf} .= $tmp;
1497 $self->_drain_rbuf unless $self->{_in_drain};
1498 $self->{tls} or return; # tls session might have gone away in callback
1499 }
1500
1501 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1502 return $self->_tls_error ($tmp)
1503 if $tmp != $ERROR_WANT_READ
1504 && ($tmp != $ERROR_SYSCALL || $!);
1505
1094 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1506 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1095 $self->{wbuf} .= $buf; 1507 $self->{wbuf} .= $tmp;
1096 $self->_drain_wbuf; 1508 $self->_drain_wbuf;
1097 } 1509 }
1098 1510
1099 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1511 $self->{_on_starttls}
1100 if (length $buf) { 1512 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1101 $self->{rbuf} .= $buf; 1513 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1102 $self->_drain_rbuf unless $self->{_in_drain};
1103 } else {
1104 # let's treat SSL-eof as we treat normal EOF
1105 $self->{_eof} = 1;
1106 $self->_shutdown;
1107 return;
1108 }
1109 }
1110
1111 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1112
1113 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1114 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1115 return $self->_error ($!, 1);
1116 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1117 return $self->_error (&Errno::EIO, 1);
1118 }
1119
1120 # all others are fine for our purposes
1121 }
1122} 1514}
1123 1515
1124=item $handle->starttls ($tls[, $tls_ctx]) 1516=item $handle->starttls ($tls[, $tls_ctx])
1125 1517
1126Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1518Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1128C<starttls>. 1520C<starttls>.
1129 1521
1130The first argument is the same as the C<tls> constructor argument (either 1522The first argument is the same as the C<tls> constructor argument (either
1131C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1523C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1132 1524
1133The second argument is the optional C<Net::SSLeay::CTX> object that is 1525The second argument is the optional C<AnyEvent::TLS> object that is used
1134used when AnyEvent::Handle has to create its own TLS connection object. 1526when AnyEvent::Handle has to create its own TLS connection object, or
1527a hash reference with C<< key => value >> pairs that will be used to
1528construct a new context.
1135 1529
1136The TLS connection object will end up in C<< $handle->{tls} >> after this 1530The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1137call and can be used or changed to your liking. Note that the handshake 1531context in C<< $handle->{tls_ctx} >> after this call and can be used or
1138might have already started when this function returns. 1532changed to your liking. Note that the handshake might have already started
1533when this function returns.
1139 1534
1535If it an error to start a TLS handshake more than once per
1536AnyEvent::Handle object (this is due to bugs in OpenSSL).
1537
1140=cut 1538=cut
1539
1540our %TLS_CACHE; #TODO not yet documented, should we?
1141 1541
1142sub starttls { 1542sub starttls {
1143 my ($self, $ssl, $ctx) = @_; 1543 my ($self, $ssl, $ctx) = @_;
1144 1544
1145 $self->stoptls; 1545 require Net::SSLeay;
1146 1546
1147 if ($ssl eq "accept") { 1547 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1148 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1548 if $self->{tls};
1149 Net::SSLeay::set_accept_state ($ssl); 1549
1150 } elsif ($ssl eq "connect") { 1550 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1151 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1551 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1152 Net::SSLeay::set_connect_state ($ssl); 1552
1553 $ctx ||= $self->{tls_ctx};
1554
1555 if ("HASH" eq ref $ctx) {
1556 require AnyEvent::TLS;
1557
1558 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1559
1560 if ($ctx->{cache}) {
1561 my $key = $ctx+0;
1562 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1563 } else {
1564 $ctx = new AnyEvent::TLS %$ctx;
1565 }
1566 }
1153 } 1567
1154 1568 $self->{tls_ctx} = $ctx || TLS_CTX ();
1155 $self->{tls} = $ssl; 1569 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1156 1570
1157 # basically, this is deep magic (because SSL_read should have the same issues) 1571 # basically, this is deep magic (because SSL_read should have the same issues)
1158 # but the openssl maintainers basically said: "trust us, it just works". 1572 # but the openssl maintainers basically said: "trust us, it just works".
1159 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1573 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1160 # and mismaintained ssleay-module doesn't even offer them). 1574 # and mismaintained ssleay-module doesn't even offer them).
1161 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1575 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1576 #
1577 # in short: this is a mess.
1578 #
1579 # note that we do not try to keep the length constant between writes as we are required to do.
1580 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1581 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1582 # have identity issues in that area.
1162 Net::SSLeay::CTX_set_mode ($self->{tls}, 1583# Net::SSLeay::CTX_set_mode ($ssl,
1163 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1584# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1164 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1585# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1586 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1165 1587
1166 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1588 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1167 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1589 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 1590
1169 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1591 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1170 1592
1171 $self->{filter_w} = sub { 1593 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1172 $_[0]{_tls_wbuf} .= ${$_[1]}; 1594 if $self->{on_starttls};
1173 &_dotls; 1595
1174 }; 1596 &_dotls; # need to trigger the initial handshake
1175 $self->{filter_r} = sub { 1597 $self->start_read; # make sure we actually do read
1176 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1177 &_dotls;
1178 };
1179} 1598}
1180 1599
1181=item $handle->stoptls 1600=item $handle->stoptls
1182 1601
1183Destroys the SSL connection, if any. Partial read or write data will be 1602Shuts down the SSL connection - this makes a proper EOF handshake by
1184lost. 1603sending a close notify to the other side, but since OpenSSL doesn't
1604support non-blocking shut downs, it is not possible to re-use the stream
1605afterwards.
1185 1606
1186=cut 1607=cut
1187 1608
1188sub stoptls { 1609sub stoptls {
1189 my ($self) = @_; 1610 my ($self) = @_;
1190 1611
1191 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1612 if ($self->{tls}) {
1613 Net::SSLeay::shutdown ($self->{tls});
1192 1614
1193 delete $self->{_rbio}; 1615 &_dotls;
1194 delete $self->{_wbio}; 1616
1195 delete $self->{_tls_wbuf}; 1617# # we don't give a shit. no, we do, but we can't. no...#d#
1196 delete $self->{filter_r}; 1618# # we, we... have to use openssl :/#d#
1197 delete $self->{filter_w}; 1619# &_freetls;#d#
1620 }
1621}
1622
1623sub _freetls {
1624 my ($self) = @_;
1625
1626 return unless $self->{tls};
1627
1628 $self->{tls_ctx}->_put_session (delete $self->{tls});
1629
1630 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1198} 1631}
1199 1632
1200sub DESTROY { 1633sub DESTROY {
1201 my $self = shift; 1634 my ($self) = @_;
1202 1635
1203 $self->stoptls; 1636 &_freetls;
1637
1638 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1639
1640 if ($linger && length $self->{wbuf}) {
1641 my $fh = delete $self->{fh};
1642 my $wbuf = delete $self->{wbuf};
1643
1644 my @linger;
1645
1646 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1647 my $len = syswrite $fh, $wbuf, length $wbuf;
1648
1649 if ($len > 0) {
1650 substr $wbuf, 0, $len, "";
1651 } else {
1652 @linger = (); # end
1653 }
1654 });
1655 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1656 @linger = ();
1657 });
1658 }
1659}
1660
1661=item $handle->destroy
1662
1663Shuts down the handle object as much as possible - this call ensures that
1664no further callbacks will be invoked and as many resources as possible
1665will be freed. You must not call any methods on the object afterwards.
1666
1667Normally, you can just "forget" any references to an AnyEvent::Handle
1668object and it will simply shut down. This works in fatal error and EOF
1669callbacks, as well as code outside. It does I<NOT> work in a read or write
1670callback, so when you want to destroy the AnyEvent::Handle object from
1671within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1672that case.
1673
1674The handle might still linger in the background and write out remaining
1675data, as specified by the C<linger> option, however.
1676
1677=cut
1678
1679sub destroy {
1680 my ($self) = @_;
1681
1682 $self->DESTROY;
1683 %$self = ();
1204} 1684}
1205 1685
1206=item AnyEvent::Handle::TLS_CTX 1686=item AnyEvent::Handle::TLS_CTX
1207 1687
1208This function creates and returns the Net::SSLeay::CTX object used by 1688This function creates and returns the AnyEvent::TLS object used by default
1209default for TLS mode. 1689for TLS mode.
1210 1690
1211The context is created like this: 1691The context is created by calling L<AnyEvent::TLS> without any arguments.
1212
1213 Net::SSLeay::load_error_strings;
1214 Net::SSLeay::SSLeay_add_ssl_algorithms;
1215 Net::SSLeay::randomize;
1216
1217 my $CTX = Net::SSLeay::CTX_new;
1218
1219 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1220 1692
1221=cut 1693=cut
1222 1694
1223our $TLS_CTX; 1695our $TLS_CTX;
1224 1696
1225sub TLS_CTX() { 1697sub TLS_CTX() {
1226 $TLS_CTX || do { 1698 $TLS_CTX ||= do {
1227 require Net::SSLeay; 1699 require AnyEvent::TLS;
1228 1700
1229 Net::SSLeay::load_error_strings (); 1701 new AnyEvent::TLS
1230 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1231 Net::SSLeay::randomize ();
1232
1233 $TLS_CTX = Net::SSLeay::CTX_new ();
1234
1235 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1236
1237 $TLS_CTX
1238 } 1702 }
1239} 1703}
1240 1704
1241=back 1705=back
1706
1707
1708=head1 NONFREQUENTLY ASKED QUESTIONS
1709
1710=over 4
1711
1712=item I C<undef> the AnyEvent::Handle reference inside my callback and
1713still get further invocations!
1714
1715That's because AnyEvent::Handle keeps a reference to itself when handling
1716read or write callbacks.
1717
1718It is only safe to "forget" the reference inside EOF or error callbacks,
1719from within all other callbacks, you need to explicitly call the C<<
1720->destroy >> method.
1721
1722=item I get different callback invocations in TLS mode/Why can't I pause
1723reading?
1724
1725Unlike, say, TCP, TLS connections do not consist of two independent
1726communication channels, one for each direction. Or put differently. The
1727read and write directions are not independent of each other: you cannot
1728write data unless you are also prepared to read, and vice versa.
1729
1730This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1731callback invocations when you are not expecting any read data - the reason
1732is that AnyEvent::Handle always reads in TLS mode.
1733
1734During the connection, you have to make sure that you always have a
1735non-empty read-queue, or an C<on_read> watcher. At the end of the
1736connection (or when you no longer want to use it) you can call the
1737C<destroy> method.
1738
1739=item How do I read data until the other side closes the connection?
1740
1741If you just want to read your data into a perl scalar, the easiest way
1742to achieve this is by setting an C<on_read> callback that does nothing,
1743clearing the C<on_eof> callback and in the C<on_error> callback, the data
1744will be in C<$_[0]{rbuf}>:
1745
1746 $handle->on_read (sub { });
1747 $handle->on_eof (undef);
1748 $handle->on_error (sub {
1749 my $data = delete $_[0]{rbuf};
1750 undef $handle;
1751 });
1752
1753The reason to use C<on_error> is that TCP connections, due to latencies
1754and packets loss, might get closed quite violently with an error, when in
1755fact, all data has been received.
1756
1757It is usually better to use acknowledgements when transferring data,
1758to make sure the other side hasn't just died and you got the data
1759intact. This is also one reason why so many internet protocols have an
1760explicit QUIT command.
1761
1762=item I don't want to destroy the handle too early - how do I wait until
1763all data has been written?
1764
1765After writing your last bits of data, set the C<on_drain> callback
1766and destroy the handle in there - with the default setting of
1767C<low_water_mark> this will be called precisely when all data has been
1768written to the socket:
1769
1770 $handle->push_write (...);
1771 $handle->on_drain (sub {
1772 warn "all data submitted to the kernel\n";
1773 undef $handle;
1774 });
1775
1776If you just want to queue some data and then signal EOF to the other side,
1777consider using C<< ->push_shutdown >> instead.
1778
1779=item I want to contact a TLS/SSL server, I don't care about security.
1780
1781If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1782simply connect to it and then create the AnyEvent::Handle with the C<tls>
1783parameter:
1784
1785 my $handle = new AnyEvent::Handle
1786 fh => $fh,
1787 tls => "connect",
1788 on_error => sub { ... };
1789
1790 $handle->push_write (...);
1791
1792=item I want to contact a TLS/SSL server, I do care about security.
1793
1794Then you #x##TODO#
1795
1796
1797
1798=back
1799
1242 1800
1243=head1 SUBCLASSING AnyEvent::Handle 1801=head1 SUBCLASSING AnyEvent::Handle
1244 1802
1245In many cases, you might want to subclass AnyEvent::Handle. 1803In many cases, you might want to subclass AnyEvent::Handle.
1246 1804
1250=over 4 1808=over 4
1251 1809
1252=item * all constructor arguments become object members. 1810=item * all constructor arguments become object members.
1253 1811
1254At least initially, when you pass a C<tls>-argument to the constructor it 1812At least initially, when you pass a C<tls>-argument to the constructor it
1255will end up in C<< $handle->{tls} >>. Those members might be changes or 1813will end up in C<< $handle->{tls} >>. Those members might be changed or
1256mutated later on (for example C<tls> will hold the TLS connection object). 1814mutated later on (for example C<tls> will hold the TLS connection object).
1257 1815
1258=item * other object member names are prefixed with an C<_>. 1816=item * other object member names are prefixed with an C<_>.
1259 1817
1260All object members not explicitly documented (internal use) are prefixed 1818All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines