ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.152 by root, Fri Jul 17 14:57:03 2009 UTC

14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.22; 19our $VERSION = 4.83;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
25 25
26 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
27 27
28 my $handle = 28 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 29 fh => \*STDIN,
31 on_eof => sub { 30 on_error => sub {
32 $cv->broadcast; 31 my ($hdl, $fatal, $msg) = @_;
33 }, 32 warn "got error $msg\n";
33 $hdl->destroy;
34 $cv->send;
34 ); 35 );
35 36
36 # send some request line 37 # send some request line
37 $handle->push_write ("getinfo\015\012"); 38 $hdl->push_write ("getinfo\015\012");
38 39
39 # read the response line 40 # read the response line
40 $handle->push_read (line => sub { 41 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 42 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 43 warn "got line <$line>\n";
43 $cv->send; 44 $cv->send;
44 }); 45 });
45 46
46 $cv->recv; 47 $cv->recv;
47 48
49 50
50This module is a helper module to make it easier to do event-based I/O on 51This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 52filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 53on sockets see L<AnyEvent::Util>.
53 54
55The L<AnyEvent::Intro> tutorial contains some well-documented
56AnyEvent::Handle examples.
57
54In the following, when the documentation refers to of "bytes" then this 58In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 59means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 60treatment of characters applies to this module as well.
57 61
58All callbacks will be invoked with the handle object as their first 62All callbacks will be invoked with the handle object as their first
60 64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74 78
75NOTE: The filehandle will be set to non-blocking (using 79NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 80C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
81that mode.
77 82
78=item on_eof => $cb->($handle) 83=item on_eof => $cb->($handle)
79 84
80Set the callback to be called when an end-of-file condition is detected, 85Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 86i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 87connection cleanly, and there are no outstanding read requests in the
88queue (if there are read requests, then an EOF counts as an unexpected
89connection close and will be flagged as an error).
83 90
84While not mandatory, it is highly recommended to set an eof callback, 91For sockets, this just means that the other side has stopped sending data,
85otherwise you might end up with a closed socket while you are still 92you can still try to write data, and, in fact, one can return from the EOF
86waiting for data. 93callback and continue writing data, as only the read part has been shut
94down.
87 95
96If an EOF condition has been detected but no C<on_eof> callback has been
97set, then a fatal error will be raised with C<$!> set to <0>.
98
88=item on_error => $cb->($handle, $fatal) 99=item on_error => $cb->($handle, $fatal, $message)
89 100
90This is the error callback, which is called when, well, some error 101This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 102occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 103connect or a read error.
93 104
94Some errors are fatal (which is indicated by C<$fatal> being true). On 105Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 106fatal errors the handle object will be destroyed (by a call to C<< ->
107destroy >>) after invoking the error callback (which means you are free to
108examine the handle object). Examples of fatal errors are an EOF condition
109with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110
111AnyEvent::Handle tries to find an appropriate error code for you to check
112against, but in some cases (TLS errors), this does not work well. It is
113recommended to always output the C<$message> argument in human-readable
114error messages (it's usually the same as C<"$!">).
115
96usable. Non-fatal errors can be retried by simply returning, but it is 116Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 117to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 118when this callback is invoked. Examples of non-fatal errors are timeouts
119C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 120
100On callback entrance, the value of C<$!> contains the operating system 121On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 122error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
123C<EPROTO>).
102 124
103While not mandatory, it is I<highly> recommended to set this callback, as 125While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 126you will not be notified of errors otherwise. The default simply calls
105C<croak>. 127C<croak>.
106 128
110and no read request is in the queue (unlike read queue callbacks, this 132and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 133callback will only be called when at least one octet of data is in the
112read buffer). 134read buffer).
113 135
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 136To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 137method or access the C<< $handle->{rbuf} >> member directly. Note that you
138must not enlarge or modify the read buffer, you can only remove data at
139the beginning from it.
116 140
117When an EOF condition is detected then AnyEvent::Handle will first try to 141When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 142feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 143calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 144error will be raised (with C<$!> set to C<EPIPE>).
145
146Note that, unlike requests in the read queue, an C<on_read> callback
147doesn't mean you I<require> some data: if there is an EOF and there
148are outstanding read requests then an error will be flagged. With an
149C<on_read> callback, the C<on_eof> callback will be invoked.
121 150
122=item on_drain => $cb->($handle) 151=item on_drain => $cb->($handle)
123 152
124This sets the callback that is called when the write buffer becomes empty 153This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 154(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 164=item timeout => $fractional_seconds
136 165
137If non-zero, then this enables an "inactivity" timeout: whenever this many 166If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 167seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 168handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 169missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 170
142Note that timeout processing is also active when you currently do not have 171Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 172any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 173idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 174in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
175restart the timeout.
146 176
147Zero (the default) disables this timeout. 177Zero (the default) disables this timeout.
148 178
149=item on_timeout => $cb->($handle) 179=item on_timeout => $cb->($handle)
150 180
154 184
155=item rbuf_max => <bytes> 185=item rbuf_max => <bytes>
156 186
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 187If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 188when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 189avoid some forms of denial-of-service attacks.
160 190
161For example, a server accepting connections from untrusted sources should 191For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 192be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 193(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 194amount of data without a callback ever being called as long as the line
165isn't finished). 195isn't finished).
166 196
167=item autocork => <boolean> 197=item autocork => <boolean>
168 198
169When disabled (the default), then C<push_write> will try to immediately 199When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 200write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 201a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 202be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 203disadvantage is usually avoided by your kernel's nagle algorithm, see
204C<no_delay>, but this option can save costly syscalls).
174 205
175When enabled, then writes will always be queued till the next event loop 206When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 207iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 208but less efficient when you do a single write only per iteration (or when
209the write buffer often is full). It also increases write latency.
178 210
179=item no_delay => <boolean> 211=item no_delay => <boolean>
180 212
181When doing small writes on sockets, your operating system kernel might 213When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 214wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 215the Nagle algorithm, and usually it is beneficial.
184 216
185In some situations you want as low a delay as possible, which cna be 217In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 218accomplishd by setting this option to a true value.
187 219
188The default is your opertaing system's default behaviour, this option 220The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 221enabled), this option explicitly enables or disables it, if possible.
190 222
191=item read_size => <bytes> 223=item read_size => <bytes>
192 224
193The default read block size (the amount of bytes this module will try to read 225The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 226try to read during each loop iteration, which affects memory
227requirements). Default: C<8192>.
195 228
196=item low_water_mark => <bytes> 229=item low_water_mark => <bytes>
197 230
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 231Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 232buffer: If the write reaches this size or gets even samller it is
200considered empty. 233considered empty.
201 234
235Sometimes it can be beneficial (for performance reasons) to add data to
236the write buffer before it is fully drained, but this is a rare case, as
237the operating system kernel usually buffers data as well, so the default
238is good in almost all cases.
239
202=item linger => <seconds> 240=item linger => <seconds>
203 241
204If non-zero (default: C<3600>), then the destructor of the 242If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 243AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 244write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 245socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 246system treats outstanding data at socket close time).
209 247
210This will not work for partial TLS data that could not yet been 248This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 249yet. This data will be lost. Calling the C<stoptls> method in time might
250help.
251
252=item peername => $string
253
254A string used to identify the remote site - usually the DNS hostname
255(I<not> IDN!) used to create the connection, rarely the IP address.
256
257Apart from being useful in error messages, this string is also used in TLS
258peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
259verification will be skipped when C<peername> is not specified or
260C<undef>.
212 261
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 262=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 263
215When this parameter is given, it enables TLS (SSL) mode, that means it 264When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 265AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 266established and will transparently encrypt/decrypt data afterwards.
267
268All TLS protocol errors will be signalled as C<EPROTO>, with an
269appropriate error message.
218 270
219TLS mode requires Net::SSLeay to be installed (it will be loaded 271TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 272automatically when you try to create a TLS handle): this module doesn't
273have a dependency on that module, so if your module requires it, you have
274to add the dependency yourself.
221 275
222For the TLS server side, use C<accept>, and for the TLS client side of a 276Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 277C<accept>, and for the TLS client side of a connection, use C<connect>
278mode.
224 279
225You can also provide your own TLS connection object, but you have 280You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 281to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 282or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 283AnyEvent::Handle. Also, this module will take ownership of this connection
284object.
229 285
286At some future point, AnyEvent::Handle might switch to another TLS
287implementation, then the option to use your own session object will go
288away.
289
290B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
291passing in the wrong integer will lead to certain crash. This most often
292happens when one uses a stylish C<< tls => 1 >> and is surprised about the
293segmentation fault.
294
230See the C<starttls> method if you need to start TLS negotiation later. 295See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 296
232=item tls_ctx => $ssl_ctx 297=item tls_ctx => $anyevent_tls
233 298
234Use the given Net::SSLeay::CTX object to create the new TLS connection 299Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 300(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 301missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 302
303Instead of an object, you can also specify a hash reference with C<< key
304=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
305new TLS context object.
306
307=item on_starttls => $cb->($handle, $success[, $error_message])
308
309This callback will be invoked when the TLS/SSL handshake has finished. If
310C<$success> is true, then the TLS handshake succeeded, otherwise it failed
311(C<on_stoptls> will not be called in this case).
312
313The session in C<< $handle->{tls} >> can still be examined in this
314callback, even when the handshake was not successful.
315
316TLS handshake failures will not cause C<on_error> to be invoked when this
317callback is in effect, instead, the error message will be passed to C<on_starttls>.
318
319Without this callback, handshake failures lead to C<on_error> being
320called, as normal.
321
322Note that you cannot call C<starttls> right again in this callback. If you
323need to do that, start an zero-second timer instead whose callback can
324then call C<< ->starttls >> again.
325
326=item on_stoptls => $cb->($handle)
327
328When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
329set, then it will be invoked after freeing the TLS session. If it is not,
330then a TLS shutdown condition will be treated like a normal EOF condition
331on the handle.
332
333The session in C<< $handle->{tls} >> can still be examined in this
334callback.
335
336This callback will only be called on TLS shutdowns, not when the
337underlying handle signals EOF.
338
238=item json => JSON or JSON::XS object 339=item json => JSON or JSON::XS object
239 340
240This is the json coder object used by the C<json> read and write types. 341This is the json coder object used by the C<json> read and write types.
241 342
242If you don't supply it, then AnyEvent::Handle will create and use a 343If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 344suitable one (on demand), which will write and expect UTF-8 encoded JSON
345texts.
244 346
245Note that you are responsible to depend on the JSON module if you want to 347Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 348use this functionality, as AnyEvent does not have a dependency itself.
247 349
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 350=back
255 351
256=cut 352=cut
257 353
258sub new { 354sub new {
259 my $class = shift; 355 my $class = shift;
260
261 my $self = bless { @_ }, $class; 356 my $self = bless { @_ }, $class;
262 357
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 358 $self->{fh} or Carp::croak "mandatory argument fh is missing";
264 359
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 360 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266
267 if ($self->{tls}) {
268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271 361
272 $self->{_activity} = AnyEvent->now; 362 $self->{_activity} = AnyEvent->now;
273 $self->_timeout; 363 $self->_timeout;
274 364
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 365 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
366
367 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
368 if $self->{tls};
369
370 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
277 371
278 $self->start_read 372 $self->start_read
279 if $self->{on_read}; 373 if $self->{on_read};
280 374
281 $self 375 $self->{fh} && $self
282} 376}
283 377
284sub _shutdown { 378#sub _shutdown {
285 my ($self) = @_; 379# my ($self) = @_;
286 380#
287 delete $self->{_tw}; 381# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 382# $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww}; 383#
290 delete $self->{fh}; 384# &_freetls;
291 385#}
292 $self->stoptls;
293}
294 386
295sub _error { 387sub _error {
296 my ($self, $errno, $fatal) = @_; 388 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 389
301 $! = $errno; 390 $! = $errno;
391 $message ||= "$!";
302 392
303 if ($self->{on_error}) { 393 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 394 $self->{on_error}($self, $fatal, $message);
305 } else { 395 $self->destroy if $fatal;
396 } elsif ($self->{fh}) {
397 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 398 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 399 }
308} 400}
309 401
310=item $fh = $handle->fh 402=item $fh = $handle->fh
311 403
312This method returns the file handle of the L<AnyEvent::Handle> object. 404This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 405
314=cut 406=cut
315 407
316sub fh { $_[0]{fh} } 408sub fh { $_[0]{fh} }
317 409
335 $_[0]{on_eof} = $_[1]; 427 $_[0]{on_eof} = $_[1];
336} 428}
337 429
338=item $handle->on_timeout ($cb) 430=item $handle->on_timeout ($cb)
339 431
340Replace the current C<on_timeout> callback, or disables the callback 432Replace the current C<on_timeout> callback, or disables the callback (but
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 433not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
342argument. 434argument and method.
343 435
344=cut 436=cut
345 437
346sub on_timeout { 438sub on_timeout {
347 $_[0]{on_timeout} = $_[1]; 439 $_[0]{on_timeout} = $_[1];
348} 440}
349 441
350=item $handle->autocork ($boolean) 442=item $handle->autocork ($boolean)
351 443
352Enables or disables the current autocork behaviour (see C<autocork> 444Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 445constructor argument). Changes will only take effect on the next write.
354 446
355=cut 447=cut
448
449sub autocork {
450 $_[0]{autocork} = $_[1];
451}
356 452
357=item $handle->no_delay ($boolean) 453=item $handle->no_delay ($boolean)
358 454
359Enables or disables the C<no_delay> setting (see constructor argument of 455Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 456the same name for details).
368 local $SIG{__DIE__}; 464 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 465 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
370 }; 466 };
371} 467}
372 468
469=item $handle->on_starttls ($cb)
470
471Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
472
473=cut
474
475sub on_starttls {
476 $_[0]{on_starttls} = $_[1];
477}
478
479=item $handle->on_stoptls ($cb)
480
481Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
482
483=cut
484
485sub on_starttls {
486 $_[0]{on_stoptls} = $_[1];
487}
488
373############################################################################# 489#############################################################################
374 490
375=item $handle->timeout ($seconds) 491=item $handle->timeout ($seconds)
376 492
377Configures (or disables) the inactivity timeout. 493Configures (or disables) the inactivity timeout.
401 $self->{_activity} = $NOW; 517 $self->{_activity} = $NOW;
402 518
403 if ($self->{on_timeout}) { 519 if ($self->{on_timeout}) {
404 $self->{on_timeout}($self); 520 $self->{on_timeout}($self);
405 } else { 521 } else {
406 $self->_error (&Errno::ETIMEDOUT); 522 $self->_error (Errno::ETIMEDOUT);
407 } 523 }
408 524
409 # callback could have changed timeout value, optimise 525 # callback could have changed timeout value, optimise
410 return unless $self->{timeout}; 526 return unless $self->{timeout};
411 527
453 my ($self, $cb) = @_; 569 my ($self, $cb) = @_;
454 570
455 $self->{on_drain} = $cb; 571 $self->{on_drain} = $cb;
456 572
457 $cb->($self) 573 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 574 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 575}
460 576
461=item $handle->push_write ($data) 577=item $handle->push_write ($data)
462 578
463Queues the given scalar to be written. You can push as much data as you 579Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 590 Scalar::Util::weaken $self;
475 591
476 my $cb = sub { 592 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 593 my $len = syswrite $self->{fh}, $self->{wbuf};
478 594
479 if ($len >= 0) { 595 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 596 substr $self->{wbuf}, 0, $len, "";
481 597
482 $self->{_activity} = AnyEvent->now; 598 $self->{_activity} = AnyEvent->now;
483 599
484 $self->{on_drain}($self) 600 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 601 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 602 && $self->{on_drain};
487 603
488 delete $self->{_ww} unless length $self->{wbuf}; 604 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 605 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 606 $self->_error ($!, 1);
514 630
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 631 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 632 ->($self, @_);
517 } 633 }
518 634
519 if ($self->{filter_w}) { 635 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 636 $self->{_tls_wbuf} .= $_[0];
637
638 &_dotls ($self);
521 } else { 639 } else {
522 $self->{wbuf} .= $_[0]; 640 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 641 $self->_drain_wbuf;
524 } 642 }
525} 643}
542=cut 660=cut
543 661
544register_write_type netstring => sub { 662register_write_type netstring => sub {
545 my ($self, $string) = @_; 663 my ($self, $string) = @_;
546 664
547 sprintf "%d:%s,", (length $string), $string 665 (length $string) . ":$string,"
548}; 666};
549 667
550=item packstring => $format, $data 668=item packstring => $format, $data
551 669
552An octet string prefixed with an encoded length. The encoding C<$format> 670An octet string prefixed with an encoded length. The encoding C<$format>
617 735
618 pack "w/a*", Storable::nfreeze ($ref) 736 pack "w/a*", Storable::nfreeze ($ref)
619}; 737};
620 738
621=back 739=back
740
741=item $handle->push_shutdown
742
743Sometimes you know you want to close the socket after writing your data
744before it was actually written. One way to do that is to replace your
745C<on_drain> handler by a callback that shuts down the socket (and set
746C<low_water_mark> to C<0>). This method is a shorthand for just that, and
747replaces the C<on_drain> callback with:
748
749 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
750
751This simply shuts down the write side and signals an EOF condition to the
752the peer.
753
754You can rely on the normal read queue and C<on_eof> handling
755afterwards. This is the cleanest way to close a connection.
756
757=cut
758
759sub push_shutdown {
760 my ($self) = @_;
761
762 delete $self->{low_water_mark};
763 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
764}
622 765
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 766=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 767
625This function (not method) lets you add your own types to C<push_write>. 768This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 769Whenever the given C<type> is used, C<push_write> will invoke the code
726 869
727 if ( 870 if (
728 defined $self->{rbuf_max} 871 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf} 872 && $self->{rbuf_max} < length $self->{rbuf}
730 ) { 873 ) {
731 return $self->_error (&Errno::ENOSPC, 1); 874 $self->_error (Errno::ENOSPC, 1), return;
732 } 875 }
733 876
734 while () { 877 while () {
878 # we need to use a separate tls read buffer, as we must not receive data while
879 # we are draining the buffer, and this can only happen with TLS.
880 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
881
735 my $len = length $self->{rbuf}; 882 my $len = length $self->{rbuf};
736 883
737 if (my $cb = shift @{ $self->{_queue} }) { 884 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 885 unless ($cb->($self)) {
739 if ($self->{_eof}) { 886 if ($self->{_eof}) {
740 # no progress can be made (not enough data and no data forthcoming) 887 # no progress can be made (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 888 $self->_error (Errno::EPIPE, 1), return;
742 } 889 }
743 890
744 unshift @{ $self->{_queue} }, $cb; 891 unshift @{ $self->{_queue} }, $cb;
745 last; 892 last;
746 } 893 }
754 && !@{ $self->{_queue} } # and the queue is still empty 901 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 902 && $self->{on_read} # but we still have on_read
756 ) { 903 ) {
757 # no further data will arrive 904 # no further data will arrive
758 # so no progress can be made 905 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 906 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 907 if $self->{_eof};
761 908
762 last; # more data might arrive 909 last; # more data might arrive
763 } 910 }
764 } else { 911 } else {
765 # read side becomes idle 912 # read side becomes idle
766 delete $self->{_rw}; 913 delete $self->{_rw} unless $self->{tls};
767 last; 914 last;
768 } 915 }
769 } 916 }
770 917
918 if ($self->{_eof}) {
919 if ($self->{on_eof}) {
771 $self->{on_eof}($self) 920 $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 921 } else {
922 $self->_error (0, 1, "Unexpected end-of-file");
923 }
924 }
773 925
774 # may need to restart read watcher 926 # may need to restart read watcher
775 unless ($self->{_rw}) { 927 unless ($self->{_rw}) {
776 $self->start_read 928 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 929 if $self->{on_read} || @{ $self->{_queue} };
795 947
796=item $handle->rbuf 948=item $handle->rbuf
797 949
798Returns the read buffer (as a modifiable lvalue). 950Returns the read buffer (as a modifiable lvalue).
799 951
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 952You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 953member, if you want. However, the only operation allowed on the
954read buffer (apart from looking at it) is removing data from its
955beginning. Otherwise modifying or appending to it is not allowed and will
956lead to hard-to-track-down bugs.
802 957
803NOTE: The read buffer should only be used or modified if the C<on_read>, 958NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 959C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 960automatically manage the read buffer.
806 961
1006 return 1; 1161 return 1;
1007 } 1162 }
1008 1163
1009 # reject 1164 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1165 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1166 $self->_error (Errno::EBADMSG);
1012 } 1167 }
1013 1168
1014 # skip 1169 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1170 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1171 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1187 my ($self, $cb) = @_;
1033 1188
1034 sub { 1189 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1190 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1191 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1192 $self->_error (Errno::EBADMSG);
1038 } 1193 }
1039 return; 1194 return;
1040 } 1195 }
1041 1196
1042 my $len = $1; 1197 my $len = $1;
1045 my $string = $_[1]; 1200 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1201 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1202 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1203 $cb->($_[0], $string);
1049 } else { 1204 } else {
1050 $self->_error (&Errno::EBADMSG); 1205 $self->_error (Errno::EBADMSG);
1051 } 1206 }
1052 }); 1207 });
1053 }); 1208 });
1054 1209
1055 1 1210 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1216An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1217uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1218integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1219optional C<!>, C<< < >> or C<< > >> modifier).
1065 1220
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1221For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1222EPP uses a prefix of C<N> (4 octtes).
1067 1223
1068Example: read a block of data prefixed by its length in BER-encoded 1224Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1225format (very efficient).
1070 1226
1071 $handle->push_read (packstring => "w", sub { 1227 $handle->push_read (packstring => "w", sub {
1101 } 1257 }
1102}; 1258};
1103 1259
1104=item json => $cb->($handle, $hash_or_arrayref) 1260=item json => $cb->($handle, $hash_or_arrayref)
1105 1261
1106Reads a JSON object or array, decodes it and passes it to the callback. 1262Reads a JSON object or array, decodes it and passes it to the
1263callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1264
1108If a C<json> object was passed to the constructor, then that will be used 1265If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1266for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1267
1111This read type uses the incremental parser available with JSON version 1268This read type uses the incremental parser available with JSON version
1120=cut 1277=cut
1121 1278
1122register_read_type json => sub { 1279register_read_type json => sub {
1123 my ($self, $cb) = @_; 1280 my ($self, $cb) = @_;
1124 1281
1125 require JSON; 1282 my $json = $self->{json} ||=
1283 eval { require JSON::XS; JSON::XS->new->utf8 }
1284 || do { require JSON; JSON->new->utf8 };
1126 1285
1127 my $data; 1286 my $data;
1128 my $rbuf = \$self->{rbuf}; 1287 my $rbuf = \$self->{rbuf};
1129 1288
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1289 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1290 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1291
1135 if ($ref) { 1292 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1293 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1294 $json->incr_text = "";
1138 $cb->($self, $ref); 1295 $cb->($self, $ref);
1139 1296
1140 1 1297 1
1298 } elsif ($@) {
1299 # error case
1300 $json->incr_skip;
1301
1302 $self->{rbuf} = $json->incr_text;
1303 $json->incr_text = "";
1304
1305 $self->_error (Errno::EBADMSG);
1306
1307 ()
1141 } else { 1308 } else {
1142 $self->{rbuf} = ""; 1309 $self->{rbuf} = "";
1310
1143 () 1311 ()
1144 } 1312 }
1145 } 1313 }
1146}; 1314};
1147 1315
1179 # read remaining chunk 1347 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1348 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1349 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1350 $cb->($_[0], $ref);
1183 } else { 1351 } else {
1184 $self->_error (&Errno::EBADMSG); 1352 $self->_error (Errno::EBADMSG);
1185 } 1353 }
1186 }); 1354 });
1187 } 1355 }
1188 1356
1189 1 1357 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1392Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1393you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1394will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1395there are any read requests in the queue.
1228 1396
1397These methods will have no effect when in TLS mode (as TLS doesn't support
1398half-duplex connections).
1399
1229=cut 1400=cut
1230 1401
1231sub stop_read { 1402sub stop_read {
1232 my ($self) = @_; 1403 my ($self) = @_;
1233 1404
1234 delete $self->{_rw}; 1405 delete $self->{_rw} unless $self->{tls};
1235} 1406}
1236 1407
1237sub start_read { 1408sub start_read {
1238 my ($self) = @_; 1409 my ($self) = @_;
1239 1410
1240 unless ($self->{_rw} || $self->{_eof}) { 1411 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1412 Scalar::Util::weaken $self;
1242 1413
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1414 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1415 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1416 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1417
1247 if ($len > 0) { 1418 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1419 $self->{_activity} = AnyEvent->now;
1249 1420
1250 $self->{filter_r} 1421 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1422 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1423
1424 &_dotls ($self);
1425 } else {
1426 $self->_drain_rbuf unless $self->{_in_drain};
1427 }
1253 1428
1254 } elsif (defined $len) { 1429 } elsif (defined $len) {
1255 delete $self->{_rw}; 1430 delete $self->{_rw};
1256 $self->{_eof} = 1; 1431 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1432 $self->_drain_rbuf unless $self->{_in_drain};
1261 } 1436 }
1262 }); 1437 });
1263 } 1438 }
1264} 1439}
1265 1440
1441our $ERROR_SYSCALL;
1442our $ERROR_WANT_READ;
1443
1444sub _tls_error {
1445 my ($self, $err) = @_;
1446
1447 return $self->_error ($!, 1)
1448 if $err == Net::SSLeay::ERROR_SYSCALL ();
1449
1450 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1451
1452 # reduce error string to look less scary
1453 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1454
1455 if ($self->{_on_starttls}) {
1456 (delete $self->{_on_starttls})->($self, undef, $err);
1457 &_freetls;
1458 } else {
1459 &_freetls;
1460 $self->_error (Errno::EPROTO, 1, $err);
1461 }
1462}
1463
1464# poll the write BIO and send the data if applicable
1465# also decode read data if possible
1466# this is basiclaly our TLS state machine
1467# more efficient implementations are possible with openssl,
1468# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1469sub _dotls {
1267 my ($self) = @_; 1470 my ($self) = @_;
1268 1471
1269 my $buf; 1472 my $tmp;
1270 1473
1271 if (length $self->{_tls_wbuf}) { 1474 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1475 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1476 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1477 }
1275 }
1276 1478
1479 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1480 return $self->_tls_error ($tmp)
1481 if $tmp != $ERROR_WANT_READ
1482 && ($tmp != $ERROR_SYSCALL || $!);
1483 }
1484
1485 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1486 unless (length $tmp) {
1487 $self->{_on_starttls}
1488 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1489 &_freetls;
1490
1491 if ($self->{on_stoptls}) {
1492 $self->{on_stoptls}($self);
1493 return;
1494 } else {
1495 # let's treat SSL-eof as we treat normal EOF
1496 delete $self->{_rw};
1497 $self->{_eof} = 1;
1498 }
1499 }
1500
1501 $self->{_tls_rbuf} .= $tmp;
1502 $self->_drain_rbuf unless $self->{_in_drain};
1503 $self->{tls} or return; # tls session might have gone away in callback
1504 }
1505
1506 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1507 return $self->_tls_error ($tmp)
1508 if $tmp != $ERROR_WANT_READ
1509 && ($tmp != $ERROR_SYSCALL || $!);
1510
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1511 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1512 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1513 $self->_drain_wbuf;
1280 } 1514 }
1281 1515
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1516 $self->{_on_starttls}
1283 if (length $buf) { 1517 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1518 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1519}
1306 1520
1307=item $handle->starttls ($tls[, $tls_ctx]) 1521=item $handle->starttls ($tls[, $tls_ctx])
1308 1522
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1523Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1311C<starttls>. 1525C<starttls>.
1312 1526
1313The first argument is the same as the C<tls> constructor argument (either 1527The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1528C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1529
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1530The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1531when AnyEvent::Handle has to create its own TLS connection object, or
1532a hash reference with C<< key => value >> pairs that will be used to
1533construct a new context.
1318 1534
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1535The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1536context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1537changed to your liking. Note that the handshake might have already started
1538when this function returns.
1322 1539
1540If it an error to start a TLS handshake more than once per
1541AnyEvent::Handle object (this is due to bugs in OpenSSL).
1542
1323=cut 1543=cut
1544
1545our %TLS_CACHE; #TODO not yet documented, should we?
1324 1546
1325sub starttls { 1547sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1548 my ($self, $ssl, $ctx) = @_;
1327 1549
1328 $self->stoptls; 1550 require Net::SSLeay;
1329 1551
1330 if ($ssl eq "accept") { 1552 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 if $self->{tls};
1332 Net::SSLeay::set_accept_state ($ssl); 1554
1333 } elsif ($ssl eq "connect") { 1555 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1556 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1335 Net::SSLeay::set_connect_state ($ssl); 1557
1558 $ctx ||= $self->{tls_ctx};
1559
1560 if ("HASH" eq ref $ctx) {
1561 require AnyEvent::TLS;
1562
1563 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1564
1565 if ($ctx->{cache}) {
1566 my $key = $ctx+0;
1567 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1568 } else {
1569 $ctx = new AnyEvent::TLS %$ctx;
1570 }
1571 }
1336 } 1572
1337 1573 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1574 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1339 1575
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1576 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1577 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1578 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1579 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1580 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1581 #
1582 # in short: this is a mess.
1583 #
1584 # note that we do not try to keep the length constant between writes as we are required to do.
1585 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1586 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1587 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1588# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1589# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1590# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1591 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1348 1592
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1593 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1594 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1595
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1596 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1353 1597
1354 $self->{filter_w} = sub { 1598 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1599 if $self->{on_starttls};
1356 &_dotls; 1600
1357 }; 1601 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1602 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1603}
1363 1604
1364=item $handle->stoptls 1605=item $handle->stoptls
1365 1606
1366Destroys the SSL connection, if any. Partial read or write data will be 1607Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1608sending a close notify to the other side, but since OpenSSL doesn't
1609support non-blocking shut downs, it is not possible to re-use the stream
1610afterwards.
1368 1611
1369=cut 1612=cut
1370 1613
1371sub stoptls { 1614sub stoptls {
1372 my ($self) = @_; 1615 my ($self) = @_;
1373 1616
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1617 if ($self->{tls}) {
1618 Net::SSLeay::shutdown ($self->{tls});
1375 1619
1376 delete $self->{_rbio}; 1620 &_dotls;
1377 delete $self->{_wbio}; 1621
1378 delete $self->{_tls_wbuf}; 1622# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1623# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1624# &_freetls;#d#
1625 }
1626}
1627
1628sub _freetls {
1629 my ($self) = @_;
1630
1631 return unless $self->{tls};
1632
1633 $self->{tls_ctx}->_put_session (delete $self->{tls});
1634
1635 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1636}
1382 1637
1383sub DESTROY { 1638sub DESTROY {
1384 my $self = shift; 1639 my ($self) = @_;
1385 1640
1386 $self->stoptls; 1641 &_freetls;
1387 1642
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1643 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1644
1390 if ($linger && length $self->{wbuf}) { 1645 if ($linger && length $self->{wbuf}) {
1391 my $fh = delete $self->{fh}; 1646 my $fh = delete $self->{fh};
1406 @linger = (); 1661 @linger = ();
1407 }); 1662 });
1408 } 1663 }
1409} 1664}
1410 1665
1666=item $handle->destroy
1667
1668Shuts down the handle object as much as possible - this call ensures that
1669no further callbacks will be invoked and as many resources as possible
1670will be freed. You must not call any methods on the object afterwards.
1671
1672Normally, you can just "forget" any references to an AnyEvent::Handle
1673object and it will simply shut down. This works in fatal error and EOF
1674callbacks, as well as code outside. It does I<NOT> work in a read or write
1675callback, so when you want to destroy the AnyEvent::Handle object from
1676within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1677that case.
1678
1679Destroying the handle object in this way has the advantage that callbacks
1680will be removed as well, so if those are the only reference holders (as
1681is common), then one doesn't need to do anything special to break any
1682reference cycles.
1683
1684The handle might still linger in the background and write out remaining
1685data, as specified by the C<linger> option, however.
1686
1687=cut
1688
1689sub destroy {
1690 my ($self) = @_;
1691
1692 $self->DESTROY;
1693 %$self = ();
1694}
1695
1411=item AnyEvent::Handle::TLS_CTX 1696=item AnyEvent::Handle::TLS_CTX
1412 1697
1413This function creates and returns the Net::SSLeay::CTX object used by 1698This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1699for TLS mode.
1415 1700
1416The context is created like this: 1701The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1702
1426=cut 1703=cut
1427 1704
1428our $TLS_CTX; 1705our $TLS_CTX;
1429 1706
1430sub TLS_CTX() { 1707sub TLS_CTX() {
1431 $TLS_CTX || do { 1708 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1709 require AnyEvent::TLS;
1433 1710
1434 Net::SSLeay::load_error_strings (); 1711 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1712 }
1444} 1713}
1445 1714
1446=back 1715=back
1716
1717
1718=head1 NONFREQUENTLY ASKED QUESTIONS
1719
1720=over 4
1721
1722=item I C<undef> the AnyEvent::Handle reference inside my callback and
1723still get further invocations!
1724
1725That's because AnyEvent::Handle keeps a reference to itself when handling
1726read or write callbacks.
1727
1728It is only safe to "forget" the reference inside EOF or error callbacks,
1729from within all other callbacks, you need to explicitly call the C<<
1730->destroy >> method.
1731
1732=item I get different callback invocations in TLS mode/Why can't I pause
1733reading?
1734
1735Unlike, say, TCP, TLS connections do not consist of two independent
1736communication channels, one for each direction. Or put differently. The
1737read and write directions are not independent of each other: you cannot
1738write data unless you are also prepared to read, and vice versa.
1739
1740This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1741callback invocations when you are not expecting any read data - the reason
1742is that AnyEvent::Handle always reads in TLS mode.
1743
1744During the connection, you have to make sure that you always have a
1745non-empty read-queue, or an C<on_read> watcher. At the end of the
1746connection (or when you no longer want to use it) you can call the
1747C<destroy> method.
1748
1749=item How do I read data until the other side closes the connection?
1750
1751If you just want to read your data into a perl scalar, the easiest way
1752to achieve this is by setting an C<on_read> callback that does nothing,
1753clearing the C<on_eof> callback and in the C<on_error> callback, the data
1754will be in C<$_[0]{rbuf}>:
1755
1756 $handle->on_read (sub { });
1757 $handle->on_eof (undef);
1758 $handle->on_error (sub {
1759 my $data = delete $_[0]{rbuf};
1760 });
1761
1762The reason to use C<on_error> is that TCP connections, due to latencies
1763and packets loss, might get closed quite violently with an error, when in
1764fact, all data has been received.
1765
1766It is usually better to use acknowledgements when transferring data,
1767to make sure the other side hasn't just died and you got the data
1768intact. This is also one reason why so many internet protocols have an
1769explicit QUIT command.
1770
1771=item I don't want to destroy the handle too early - how do I wait until
1772all data has been written?
1773
1774After writing your last bits of data, set the C<on_drain> callback
1775and destroy the handle in there - with the default setting of
1776C<low_water_mark> this will be called precisely when all data has been
1777written to the socket:
1778
1779 $handle->push_write (...);
1780 $handle->on_drain (sub {
1781 warn "all data submitted to the kernel\n";
1782 undef $handle;
1783 });
1784
1785If you just want to queue some data and then signal EOF to the other side,
1786consider using C<< ->push_shutdown >> instead.
1787
1788=item I want to contact a TLS/SSL server, I don't care about security.
1789
1790If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1791simply connect to it and then create the AnyEvent::Handle with the C<tls>
1792parameter:
1793
1794 tcp_connect $host, $port, sub {
1795 my ($fh) = @_;
1796
1797 my $handle = new AnyEvent::Handle
1798 fh => $fh,
1799 tls => "connect",
1800 on_error => sub { ... };
1801
1802 $handle->push_write (...);
1803 };
1804
1805=item I want to contact a TLS/SSL server, I do care about security.
1806
1807Then you should additionally enable certificate verification, including
1808peername verification, if the protocol you use supports it (see
1809L<AnyEvent::TLS>, C<verify_peername>).
1810
1811E.g. for HTTPS:
1812
1813 tcp_connect $host, $port, sub {
1814 my ($fh) = @_;
1815
1816 my $handle = new AnyEvent::Handle
1817 fh => $fh,
1818 peername => $host,
1819 tls => "connect",
1820 tls_ctx => { verify => 1, verify_peername => "https" },
1821 ...
1822
1823Note that you must specify the hostname you connected to (or whatever
1824"peername" the protocol needs) as the C<peername> argument, otherwise no
1825peername verification will be done.
1826
1827The above will use the system-dependent default set of trusted CA
1828certificates. If you want to check against a specific CA, add the
1829C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1830
1831 tls_ctx => {
1832 verify => 1,
1833 verify_peername => "https",
1834 ca_file => "my-ca-cert.pem",
1835 },
1836
1837=item I want to create a TLS/SSL server, how do I do that?
1838
1839Well, you first need to get a server certificate and key. You have
1840three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1841self-signed certificate (cheap. check the search engine of your choice,
1842there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1843nice program for that purpose).
1844
1845Then create a file with your private key (in PEM format, see
1846L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1847file should then look like this:
1848
1849 -----BEGIN RSA PRIVATE KEY-----
1850 ...header data
1851 ... lots of base64'y-stuff
1852 -----END RSA PRIVATE KEY-----
1853
1854 -----BEGIN CERTIFICATE-----
1855 ... lots of base64'y-stuff
1856 -----END CERTIFICATE-----
1857
1858The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1859specify this file as C<cert_file>:
1860
1861 tcp_server undef, $port, sub {
1862 my ($fh) = @_;
1863
1864 my $handle = new AnyEvent::Handle
1865 fh => $fh,
1866 tls => "accept",
1867 tls_ctx => { cert_file => "my-server-keycert.pem" },
1868 ...
1869
1870When you have intermediate CA certificates that your clients might not
1871know about, just append them to the C<cert_file>.
1872
1873=back
1874
1447 1875
1448=head1 SUBCLASSING AnyEvent::Handle 1876=head1 SUBCLASSING AnyEvent::Handle
1449 1877
1450In many cases, you might want to subclass AnyEvent::Handle. 1878In many cases, you might want to subclass AnyEvent::Handle.
1451 1879

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines