ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.173 by root, Thu Aug 6 13:45:04 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.22; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
121 205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
136 220
137If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 225
142Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
146 231
147Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
148 233
149=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
150 235
154 239
155=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
156 241
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
160 245
161For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
165isn't finished). 250isn't finished).
166 251
167=item autocork => <boolean> 252=item autocork => <boolean>
168 253
169When disabled (the default), then C<push_write> will try to immediately 254When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 255write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 256a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 257be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
174 260
175When enabled, then writes will always be queued till the next event loop 261When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 262iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
178 265
179=item no_delay => <boolean> 266=item no_delay => <boolean>
180 267
181When doing small writes on sockets, your operating system kernel might 268When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 269wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 270the Nagle algorithm, and usually it is beneficial.
184 271
185In some situations you want as low a delay as possible, which cna be 272In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 273accomplishd by setting this option to a true value.
187 274
188The default is your opertaing system's default behaviour, this option 275The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 276enabled), this option explicitly enables or disables it, if possible.
190 277
191=item read_size => <bytes> 278=item read_size => <bytes>
192 279
193The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
195 283
196=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
197 285
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
200considered empty. 288considered empty.
201 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
202=item linger => <seconds> 295=item linger => <seconds>
203 296
204If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 301system treats outstanding data at socket close time).
209 302
210This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
212 316
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 318
215When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
218 325
219TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
221 330
222For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
224 334
225You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
229 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
230See the C<starttls> method if you need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 351
232=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
233 353
234Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
238=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
239 395
240This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
241 397
242If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
244 401
245Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
247 404
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 405=back
255 406
256=cut 407=cut
257 408
258sub new { 409sub new {
259 my $class = shift; 410 my $class = shift;
260
261 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
262 412
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
264 476
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266
267 if ($self->{tls}) {
268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271 478
272 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
273 $self->_timeout; 480 $self->_timeout;
274 481
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
278 $self->start_read 489 $self->start_read
279 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
280 491
281 $self 492 $self->_drain_wbuf;
282} 493}
283 494
284sub _shutdown { 495#sub _shutdown {
285 my ($self) = @_; 496# my ($self) = @_;
286 497#
287 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww}; 500#
290 delete $self->{fh}; 501# &_freetls;
291 502#}
292 $self->stoptls;
293}
294 503
295sub _error { 504sub _error {
296 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 506
301 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
302 509
303 if ($self->{on_error}) { 510 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
305 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 516 }
308} 517}
309 518
310=item $fh = $handle->fh 519=item $fh = $handle->fh
311 520
312This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 522
314=cut 523=cut
315 524
316sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
317 526
335 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
336} 545}
337 546
338=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
339 548
340Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
342argument. 551argument and method.
343 552
344=cut 553=cut
345 554
346sub on_timeout { 555sub on_timeout {
347 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
348} 557}
349 558
350=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
351 560
352Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 562constructor argument). Changes will only take effect on the next write.
354 563
355=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
356 569
357=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
358 571
359Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 573the same name for details).
364sub no_delay { 577sub no_delay {
365 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
366 579
367 eval { 580 eval {
368 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
370 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
371} 615}
372 616
373############################################################################# 617#############################################################################
374 618
375=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
388# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
389# also check for time-outs 633# also check for time-outs
390sub _timeout { 634sub _timeout {
391 my ($self) = @_; 635 my ($self) = @_;
392 636
393 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
395 639
396 # when would the timeout trigger? 640 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
398 642
401 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
402 646
403 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
404 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
405 } else { 649 } else {
406 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
407 } 651 }
408 652
409 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
410 return unless $self->{timeout}; 654 return unless $self->{timeout};
411 655
453 my ($self, $cb) = @_; 697 my ($self, $cb) = @_;
454 698
455 $self->{on_drain} = $cb; 699 $self->{on_drain} = $cb;
456 700
457 $cb->($self) 701 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 702 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 703}
460 704
461=item $handle->push_write ($data) 705=item $handle->push_write ($data)
462 706
463Queues the given scalar to be written. You can push as much data as you 707Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
475 719
476 my $cb = sub { 720 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
478 722
479 if ($len >= 0) { 723 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
481 725
482 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
483 727
484 $self->{on_drain}($self) 728 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 729 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 730 && $self->{on_drain};
487 731
488 delete $self->{_ww} unless length $self->{wbuf}; 732 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 733 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 734 $self->_error ($!, 1);
514 758
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 759 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 760 ->($self, @_);
517 } 761 }
518 762
519 if ($self->{filter_w}) { 763 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 764 $self->{_tls_wbuf} .= $_[0];
765 &_dotls ($self) if $self->{fh};
521 } else { 766 } else {
522 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
524 } 769 }
525} 770}
526 771
527=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
528 773
542=cut 787=cut
543 788
544register_write_type netstring => sub { 789register_write_type netstring => sub {
545 my ($self, $string) = @_; 790 my ($self, $string) = @_;
546 791
547 sprintf "%d:%s,", (length $string), $string 792 (length $string) . ":$string,"
548}; 793};
549 794
550=item packstring => $format, $data 795=item packstring => $format, $data
551 796
552An octet string prefixed with an encoded length. The encoding C<$format> 797An octet string prefixed with an encoded length. The encoding C<$format>
617 862
618 pack "w/a*", Storable::nfreeze ($ref) 863 pack "w/a*", Storable::nfreeze ($ref)
619}; 864};
620 865
621=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
622 892
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 894
625This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 990=cut
721 991
722sub _drain_rbuf { 992sub _drain_rbuf {
723 my ($self) = @_; 993 my ($self) = @_;
724 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 998
734 while () { 999 while () {
1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
1004
735 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
736 1006
737 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1009 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1011 $self->_error (Errno::EPIPE, 1), return
742 } 1012 if $self->{_eof};
743 1013
744 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
745 last; 1015 last;
746 } 1016 }
747 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
756 ) { 1026 ) {
757 # no further data will arrive 1027 # no further data will arrive
758 # so no progress can be made 1028 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1029 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1030 if $self->{_eof};
761 1031
762 last; # more data might arrive 1032 last; # more data might arrive
763 } 1033 }
764 } else { 1034 } else {
765 # read side becomes idle 1035 # read side becomes idle
766 delete $self->{_rw}; 1036 delete $self->{_rw} unless $self->{tls};
767 last; 1037 last;
768 } 1038 }
769 } 1039 }
770 1040
1041 if ($self->{_eof}) {
1042 $self->{on_eof}
771 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1044 : $self->_error (0, 1, "Unexpected end-of-file");
1045
1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
1054 }
773 1055
774 # may need to restart read watcher 1056 # may need to restart read watcher
775 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
776 $self->start_read 1058 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1059 if $self->{on_read} || @{ $self->{_queue} };
788 1070
789sub on_read { 1071sub on_read {
790 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
791 1073
792 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
794} 1076}
795 1077
796=item $handle->rbuf 1078=item $handle->rbuf
797 1079
798Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
799 1081
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
802 1087
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1090automatically manage the read buffer.
806 1091
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
849 } 1134 }
850 1135
851 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
853} 1138}
854 1139
855sub unshift_read { 1140sub unshift_read {
856 my $self = shift; 1141 my $self = shift;
857 my $cb = pop; 1142 my $cb = pop;
863 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
864 } 1149 }
865 1150
866 1151
867 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
869} 1154}
870 1155
871=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
872 1157
873=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
1006 return 1; 1291 return 1;
1007 } 1292 }
1008 1293
1009 # reject 1294 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
1012 } 1297 }
1013 1298
1014 # skip 1299 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
1033 1318
1034 sub { 1319 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
1038 } 1323 }
1039 return; 1324 return;
1040 } 1325 }
1041 1326
1042 my $len = $1; 1327 my $len = $1;
1045 my $string = $_[1]; 1330 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
1049 } else { 1334 } else {
1050 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
1051 } 1336 }
1052 }); 1337 });
1053 }); 1338 });
1054 1339
1055 1 1340 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1346An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1347uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1348integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1349optional C<!>, C<< < >> or C<< > >> modifier).
1065 1350
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1351For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1352EPP uses a prefix of C<N> (4 octtes).
1067 1353
1068Example: read a block of data prefixed by its length in BER-encoded 1354Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1355format (very efficient).
1070 1356
1071 $handle->push_read (packstring => "w", sub { 1357 $handle->push_read (packstring => "w", sub {
1101 } 1387 }
1102}; 1388};
1103 1389
1104=item json => $cb->($handle, $hash_or_arrayref) 1390=item json => $cb->($handle, $hash_or_arrayref)
1105 1391
1106Reads a JSON object or array, decodes it and passes it to the callback. 1392Reads a JSON object or array, decodes it and passes it to the
1393callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1394
1108If a C<json> object was passed to the constructor, then that will be used 1395If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1396for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1397
1111This read type uses the incremental parser available with JSON version 1398This read type uses the incremental parser available with JSON version
1120=cut 1407=cut
1121 1408
1122register_read_type json => sub { 1409register_read_type json => sub {
1123 my ($self, $cb) = @_; 1410 my ($self, $cb) = @_;
1124 1411
1125 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1126 1415
1127 my $data; 1416 my $data;
1128 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1129 1418
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1419 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1421
1135 if ($ref) { 1422 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1423 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1424 $json->incr_text = "";
1138 $cb->($self, $ref); 1425 $cb->($self, $ref);
1139 1426
1140 1 1427 1
1428 } elsif ($@) {
1429 # error case
1430 $json->incr_skip;
1431
1432 $self->{rbuf} = $json->incr_text;
1433 $json->incr_text = "";
1434
1435 $self->_error (Errno::EBADMSG);
1436
1437 ()
1141 } else { 1438 } else {
1142 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1440
1143 () 1441 ()
1144 } 1442 }
1145 } 1443 }
1146}; 1444};
1147 1445
1179 # read remaining chunk 1477 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1478 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1480 $cb->($_[0], $ref);
1183 } else { 1481 } else {
1184 $self->_error (&Errno::EBADMSG); 1482 $self->_error (Errno::EBADMSG);
1185 } 1483 }
1186 }); 1484 });
1187 } 1485 }
1188 1486
1189 1 1487 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1522Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1523you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1524will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1525there are any read requests in the queue.
1228 1526
1527These methods will have no effect when in TLS mode (as TLS doesn't support
1528half-duplex connections).
1529
1229=cut 1530=cut
1230 1531
1231sub stop_read { 1532sub stop_read {
1232 my ($self) = @_; 1533 my ($self) = @_;
1233 1534
1234 delete $self->{_rw}; 1535 delete $self->{_rw} unless $self->{tls};
1235} 1536}
1236 1537
1237sub start_read { 1538sub start_read {
1238 my ($self) = @_; 1539 my ($self) = @_;
1239 1540
1240 unless ($self->{_rw} || $self->{_eof}) { 1541 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1542 Scalar::Util::weaken $self;
1242 1543
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1544 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1545 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1546 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1547
1247 if ($len > 0) { 1548 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1549 $self->{_activity} = AnyEvent->now;
1249 1550
1250 $self->{filter_r} 1551 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1553
1554 &_dotls ($self);
1555 } else {
1556 $self->_drain_rbuf;
1557 }
1253 1558
1254 } elsif (defined $len) { 1559 } elsif (defined $len) {
1255 delete $self->{_rw}; 1560 delete $self->{_rw};
1256 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1258 1563
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1261 } 1566 }
1262 }); 1567 });
1263 } 1568 }
1264} 1569}
1265 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1599sub _dotls {
1267 my ($self) = @_; 1600 my ($self) = @_;
1268 1601
1269 my $buf; 1602 my $tmp;
1270 1603
1271 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1607 }
1275 }
1276 1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1613 }
1614
1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1616 unless (length $tmp) {
1617 $self->{_on_starttls}
1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1629 }
1630
1631 $self->{_tls_rbuf} .= $tmp;
1632 $self->_drain_rbuf;
1633 $self->{tls} or return; # tls session might have gone away in callback
1634 }
1635
1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1637 return $self->_tls_error ($tmp)
1638 if $tmp != $ERROR_WANT_READ
1639 && ($tmp != $ERROR_SYSCALL || $!);
1640
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1642 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1280 } 1644 }
1281 1645
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1646 $self->{_on_starttls}
1283 if (length $buf) { 1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1649}
1306 1650
1307=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1308 1652
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1311C<starttls>. 1655C<starttls>.
1312 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1313The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1663
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1318 1668
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1322 1673
1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1677
1323=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1324 1681
1325sub starttls { 1682sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1327 1684
1328 $self->stoptls; 1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1329 1687
1330 if ($ssl eq "accept") { 1688 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1689 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1690
1333 } elsif ($ssl eq "connect") { 1691 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1692
1335 Net::SSLeay::set_connect_state ($ssl); 1693 require Net::SSLeay;
1694
1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1336 } 1713
1337 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1716
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1721 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1722 #
1723 # in short: this is a mess.
1724 #
1725 # note that we do not try to keep the length constant between writes as we are required to do.
1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1728 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1733
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1736
1737 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1738
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1739 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1740
1354 $self->{filter_w} = sub { 1741 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1742 if $self->{on_starttls};
1356 &_dotls; 1743
1357 }; 1744 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1745 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1746}
1363 1747
1364=item $handle->stoptls 1748=item $handle->stoptls
1365 1749
1366Destroys the SSL connection, if any. Partial read or write data will be 1750Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1751sending a close notify to the other side, but since OpenSSL doesn't
1752support non-blocking shut downs, it is not guarenteed that you can re-use
1753the stream afterwards.
1368 1754
1369=cut 1755=cut
1370 1756
1371sub stoptls { 1757sub stoptls {
1372 my ($self) = @_; 1758 my ($self) = @_;
1373 1759
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1760 if ($self->{tls}) {
1761 Net::SSLeay::shutdown ($self->{tls});
1375 1762
1376 delete $self->{_rbio}; 1763 &_dotls;
1377 delete $self->{_wbio}; 1764
1378 delete $self->{_tls_wbuf}; 1765# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1766# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1767# &_freetls;#d#
1768 }
1769}
1770
1771sub _freetls {
1772 my ($self) = @_;
1773
1774 return unless $self->{tls};
1775
1776 $self->{tls_ctx}->_put_session (delete $self->{tls})
1777 if $self->{tls} > 0;
1778
1779 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1780}
1382 1781
1383sub DESTROY { 1782sub DESTROY {
1384 my $self = shift; 1783 my ($self) = @_;
1385 1784
1386 $self->stoptls; 1785 &_freetls;
1387 1786
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1787 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1788
1390 if ($linger && length $self->{wbuf}) { 1789 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1790 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1791 my $wbuf = delete $self->{wbuf};
1393 1792
1394 my @linger; 1793 my @linger;
1395 1794
1406 @linger = (); 1805 @linger = ();
1407 }); 1806 });
1408 } 1807 }
1409} 1808}
1410 1809
1810=item $handle->destroy
1811
1812Shuts down the handle object as much as possible - this call ensures that
1813no further callbacks will be invoked and as many resources as possible
1814will be freed. Any method you will call on the handle object after
1815destroying it in this way will be silently ignored (and it will return the
1816empty list).
1817
1818Normally, you can just "forget" any references to an AnyEvent::Handle
1819object and it will simply shut down. This works in fatal error and EOF
1820callbacks, as well as code outside. It does I<NOT> work in a read or write
1821callback, so when you want to destroy the AnyEvent::Handle object from
1822within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1823that case.
1824
1825Destroying the handle object in this way has the advantage that callbacks
1826will be removed as well, so if those are the only reference holders (as
1827is common), then one doesn't need to do anything special to break any
1828reference cycles.
1829
1830The handle might still linger in the background and write out remaining
1831data, as specified by the C<linger> option, however.
1832
1833=cut
1834
1835sub destroy {
1836 my ($self) = @_;
1837
1838 $self->DESTROY;
1839 %$self = ();
1840 bless $self, "AnyEvent::Handle::destroyed";
1841}
1842
1843sub AnyEvent::Handle::destroyed::AUTOLOAD {
1844 #nop
1845}
1846
1411=item AnyEvent::Handle::TLS_CTX 1847=item AnyEvent::Handle::TLS_CTX
1412 1848
1413This function creates and returns the Net::SSLeay::CTX object used by 1849This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1850for TLS mode.
1415 1851
1416The context is created like this: 1852The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1853
1426=cut 1854=cut
1427 1855
1428our $TLS_CTX; 1856our $TLS_CTX;
1429 1857
1430sub TLS_CTX() { 1858sub TLS_CTX() {
1431 $TLS_CTX || do { 1859 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1860 require AnyEvent::TLS;
1433 1861
1434 Net::SSLeay::load_error_strings (); 1862 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1863 }
1444} 1864}
1445 1865
1446=back 1866=back
1867
1868
1869=head1 NONFREQUENTLY ASKED QUESTIONS
1870
1871=over 4
1872
1873=item I C<undef> the AnyEvent::Handle reference inside my callback and
1874still get further invocations!
1875
1876That's because AnyEvent::Handle keeps a reference to itself when handling
1877read or write callbacks.
1878
1879It is only safe to "forget" the reference inside EOF or error callbacks,
1880from within all other callbacks, you need to explicitly call the C<<
1881->destroy >> method.
1882
1883=item I get different callback invocations in TLS mode/Why can't I pause
1884reading?
1885
1886Unlike, say, TCP, TLS connections do not consist of two independent
1887communication channels, one for each direction. Or put differently. The
1888read and write directions are not independent of each other: you cannot
1889write data unless you are also prepared to read, and vice versa.
1890
1891This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1892callback invocations when you are not expecting any read data - the reason
1893is that AnyEvent::Handle always reads in TLS mode.
1894
1895During the connection, you have to make sure that you always have a
1896non-empty read-queue, or an C<on_read> watcher. At the end of the
1897connection (or when you no longer want to use it) you can call the
1898C<destroy> method.
1899
1900=item How do I read data until the other side closes the connection?
1901
1902If you just want to read your data into a perl scalar, the easiest way
1903to achieve this is by setting an C<on_read> callback that does nothing,
1904clearing the C<on_eof> callback and in the C<on_error> callback, the data
1905will be in C<$_[0]{rbuf}>:
1906
1907 $handle->on_read (sub { });
1908 $handle->on_eof (undef);
1909 $handle->on_error (sub {
1910 my $data = delete $_[0]{rbuf};
1911 });
1912
1913The reason to use C<on_error> is that TCP connections, due to latencies
1914and packets loss, might get closed quite violently with an error, when in
1915fact, all data has been received.
1916
1917It is usually better to use acknowledgements when transferring data,
1918to make sure the other side hasn't just died and you got the data
1919intact. This is also one reason why so many internet protocols have an
1920explicit QUIT command.
1921
1922=item I don't want to destroy the handle too early - how do I wait until
1923all data has been written?
1924
1925After writing your last bits of data, set the C<on_drain> callback
1926and destroy the handle in there - with the default setting of
1927C<low_water_mark> this will be called precisely when all data has been
1928written to the socket:
1929
1930 $handle->push_write (...);
1931 $handle->on_drain (sub {
1932 warn "all data submitted to the kernel\n";
1933 undef $handle;
1934 });
1935
1936If you just want to queue some data and then signal EOF to the other side,
1937consider using C<< ->push_shutdown >> instead.
1938
1939=item I want to contact a TLS/SSL server, I don't care about security.
1940
1941If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1942simply connect to it and then create the AnyEvent::Handle with the C<tls>
1943parameter:
1944
1945 tcp_connect $host, $port, sub {
1946 my ($fh) = @_;
1947
1948 my $handle = new AnyEvent::Handle
1949 fh => $fh,
1950 tls => "connect",
1951 on_error => sub { ... };
1952
1953 $handle->push_write (...);
1954 };
1955
1956=item I want to contact a TLS/SSL server, I do care about security.
1957
1958Then you should additionally enable certificate verification, including
1959peername verification, if the protocol you use supports it (see
1960L<AnyEvent::TLS>, C<verify_peername>).
1961
1962E.g. for HTTPS:
1963
1964 tcp_connect $host, $port, sub {
1965 my ($fh) = @_;
1966
1967 my $handle = new AnyEvent::Handle
1968 fh => $fh,
1969 peername => $host,
1970 tls => "connect",
1971 tls_ctx => { verify => 1, verify_peername => "https" },
1972 ...
1973
1974Note that you must specify the hostname you connected to (or whatever
1975"peername" the protocol needs) as the C<peername> argument, otherwise no
1976peername verification will be done.
1977
1978The above will use the system-dependent default set of trusted CA
1979certificates. If you want to check against a specific CA, add the
1980C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1981
1982 tls_ctx => {
1983 verify => 1,
1984 verify_peername => "https",
1985 ca_file => "my-ca-cert.pem",
1986 },
1987
1988=item I want to create a TLS/SSL server, how do I do that?
1989
1990Well, you first need to get a server certificate and key. You have
1991three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1992self-signed certificate (cheap. check the search engine of your choice,
1993there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1994nice program for that purpose).
1995
1996Then create a file with your private key (in PEM format, see
1997L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1998file should then look like this:
1999
2000 -----BEGIN RSA PRIVATE KEY-----
2001 ...header data
2002 ... lots of base64'y-stuff
2003 -----END RSA PRIVATE KEY-----
2004
2005 -----BEGIN CERTIFICATE-----
2006 ... lots of base64'y-stuff
2007 -----END CERTIFICATE-----
2008
2009The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2010specify this file as C<cert_file>:
2011
2012 tcp_server undef, $port, sub {
2013 my ($fh) = @_;
2014
2015 my $handle = new AnyEvent::Handle
2016 fh => $fh,
2017 tls => "accept",
2018 tls_ctx => { cert_file => "my-server-keycert.pem" },
2019 ...
2020
2021When you have intermediate CA certificates that your clients might not
2022know about, just append them to the C<cert_file>.
2023
2024=back
2025
1447 2026
1448=head1 SUBCLASSING AnyEvent::Handle 2027=head1 SUBCLASSING AnyEvent::Handle
1449 2028
1450In many cases, you might want to subclass AnyEvent::Handle. 2029In many cases, you might want to subclass AnyEvent::Handle.
1451 2030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines