ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.176 by root, Sun Aug 9 00:20:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 4
17=cut 5=cut
18 6
19our $VERSION = 4.22; 7our $VERSION = 4.92;
20 8
21=head1 SYNOPSIS 9=head1 SYNOPSIS
22 10
23 use AnyEvent; 11 use AnyEvent;
24 use AnyEvent::Handle; 12 use AnyEvent::Handle;
25 13
26 my $cv = AnyEvent->condvar; 14 my $cv = AnyEvent->condvar;
27 15
28 my $handle = 16 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 17 fh => \*STDIN,
31 on_eof => sub { 18 on_error => sub {
32 $cv->broadcast; 19 my ($hdl, $fatal, $msg) = @_;
33 }, 20 warn "got error $msg\n";
21 $hdl->destroy;
22 $cv->send;
34 ); 23 );
35 24
36 # send some request line 25 # send some request line
37 $handle->push_write ("getinfo\015\012"); 26 $hdl->push_write ("getinfo\015\012");
38 27
39 # read the response line 28 # read the response line
40 $handle->push_read (line => sub { 29 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 30 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 31 warn "got line <$line>\n";
43 $cv->send; 32 $cv->send;
44 }); 33 });
45 34
46 $cv->recv; 35 $cv->recv;
47 36
48=head1 DESCRIPTION 37=head1 DESCRIPTION
49 38
50This module is a helper module to make it easier to do event-based I/O on 39This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 40filehandles.
52on sockets see L<AnyEvent::Util>. 41
42The L<AnyEvent::Intro> tutorial contains some well-documented
43AnyEvent::Handle examples.
53 44
54In the following, when the documentation refers to of "bytes" then this 45In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 46means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 47treatment of characters applies to this module as well.
57 48
49At the very minimum, you should specify C<fh> or C<connect>, and the
50C<on_error> callback.
51
58All callbacks will be invoked with the handle object as their first 52All callbacks will be invoked with the handle object as their first
59argument. 53argument.
60 54
55=cut
56
57package AnyEvent::Handle;
58
59use Scalar::Util ();
60use List::Util ();
61use Carp ();
62use Errno qw(EAGAIN EINTR);
63
64use AnyEvent (); BEGIN { AnyEvent::common_sense }
65use AnyEvent::Util qw(WSAEWOULDBLOCK);
66
61=head1 METHODS 67=head1 METHODS
62 68
63=over 4 69=over 4
64 70
65=item B<new (%args)> 71=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 72
67The constructor supports these arguments (all as key => value pairs). 73The constructor supports these arguments (all as C<< key => value >> pairs).
68 74
69=over 4 75=over 4
70 76
71=item fh => $filehandle [MANDATORY] 77=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 78
73The filehandle this L<AnyEvent::Handle> object will operate on. 79The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 80NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 81C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82that mode.
77 83
84=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85
86Try to connect to the specified host and service (port), using
87C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88default C<peername>.
89
90You have to specify either this parameter, or C<fh>, above.
91
92It is possible to push requests on the read and write queues, and modify
93properties of the stream, even while AnyEvent::Handle is connecting.
94
95When this parameter is specified, then the C<on_prepare>,
96C<on_connect_error> and C<on_connect> callbacks will be called under the
97appropriate circumstances:
98
99=over 4
100
78=item on_eof => $cb->($handle) 101=item on_prepare => $cb->($handle)
79 102
80Set the callback to be called when an end-of-file condition is detected, 103This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 104attempted, but after the file handle has been created. It could be used to
82connection cleanly. 105prepare the file handle with parameters required for the actual connect
106(as opposed to settings that can be changed when the connection is already
107established).
83 108
84While not mandatory, it is highly recommended to set an eof callback, 109The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 110seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 111timeout is to be used).
87 112
113=item on_connect => $cb->($handle, $host, $port, $retry->())
114
115This callback is called when a connection has been successfully established.
116
117The actual numeric host and port (the socket peername) are passed as
118parameters, together with a retry callback.
119
120When, for some reason, the handle is not acceptable, then calling
121C<$retry> will continue with the next conenction target (in case of
122multi-homed hosts or SRV records there can be multiple connection
123endpoints). When it is called then the read and write queues, eof status,
124tls status and similar properties of the handle are being reset.
125
126In most cases, ignoring the C<$retry> parameter is the way to go.
127
128=item on_connect_error => $cb->($handle, $message)
129
130This callback is called when the conenction could not be
131established. C<$!> will contain the relevant error code, and C<$message> a
132message describing it (usually the same as C<"$!">).
133
134If this callback isn't specified, then C<on_error> will be called with a
135fatal error instead.
136
137=back
138
88=item on_error => $cb->($handle, $fatal) 139=item on_error => $cb->($handle, $fatal, $message)
89 140
90This is the error callback, which is called when, well, some error 141This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 142occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 143connect or a read error.
93 144
94Some errors are fatal (which is indicated by C<$fatal> being true). On 145Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 146fatal errors the handle object will be destroyed (by a call to C<< ->
147destroy >>) after invoking the error callback (which means you are free to
148examine the handle object). Examples of fatal errors are an EOF condition
149with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150cases where the other side can close the connection at their will it is
151often easiest to not report C<EPIPE> errors in this callback.
152
153AnyEvent::Handle tries to find an appropriate error code for you to check
154against, but in some cases (TLS errors), this does not work well. It is
155recommended to always output the C<$message> argument in human-readable
156error messages (it's usually the same as C<"$!">).
157
96usable. Non-fatal errors can be retried by simply returning, but it is 158Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 159to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 160when this callback is invoked. Examples of non-fatal errors are timeouts
161C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 162
100On callback entrance, the value of C<$!> contains the operating system 163On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 164error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165C<EPROTO>).
102 166
103While not mandatory, it is I<highly> recommended to set this callback, as 167While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 168you will not be notified of errors otherwise. The default simply calls
105C<croak>. 169C<croak>.
106 170
110and no read request is in the queue (unlike read queue callbacks, this 174and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 175callback will only be called when at least one octet of data is in the
112read buffer). 176read buffer).
113 177
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 178To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 179method or access the C<< $handle->{rbuf} >> member directly. Note that you
180must not enlarge or modify the read buffer, you can only remove data at
181the beginning from it.
116 182
117When an EOF condition is detected then AnyEvent::Handle will first try to 183When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 184feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 185calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 186error will be raised (with C<$!> set to C<EPIPE>).
187
188Note that, unlike requests in the read queue, an C<on_read> callback
189doesn't mean you I<require> some data: if there is an EOF and there
190are outstanding read requests then an error will be flagged. With an
191C<on_read> callback, the C<on_eof> callback will be invoked.
192
193=item on_eof => $cb->($handle)
194
195Set the callback to be called when an end-of-file condition is detected,
196i.e. in the case of a socket, when the other side has closed the
197connection cleanly, and there are no outstanding read requests in the
198queue (if there are read requests, then an EOF counts as an unexpected
199connection close and will be flagged as an error).
200
201For sockets, this just means that the other side has stopped sending data,
202you can still try to write data, and, in fact, one can return from the EOF
203callback and continue writing data, as only the read part has been shut
204down.
205
206If an EOF condition has been detected but no C<on_eof> callback has been
207set, then a fatal error will be raised with C<$!> set to <0>.
121 208
122=item on_drain => $cb->($handle) 209=item on_drain => $cb->($handle)
123 210
124This sets the callback that is called when the write buffer becomes empty 211This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 212(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 219memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 220the file when the write queue becomes empty.
134 221
135=item timeout => $fractional_seconds 222=item timeout => $fractional_seconds
136 223
224=item rtimeout => $fractional_seconds
225
226=item wtimeout => $fractional_seconds
227
137If non-zero, then this enables an "inactivity" timeout: whenever this many 228If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 229many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 230file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 231will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232error will be raised).
233
234There are three variants of the timeouts that work fully independent
235of each other, for both read and write, just read, and just write:
236C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 239
142Note that timeout processing is also active when you currently do not have 240Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 241any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 242idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 243in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244restart the timeout.
146 245
147Zero (the default) disables this timeout. 246Zero (the default) disables this timeout.
148 247
149=item on_timeout => $cb->($handle) 248=item on_timeout => $cb->($handle)
150 249
154 253
155=item rbuf_max => <bytes> 254=item rbuf_max => <bytes>
156 255
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 256If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 257when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 258avoid some forms of denial-of-service attacks.
160 259
161For example, a server accepting connections from untrusted sources should 260For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 261be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 262(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 263amount of data without a callback ever being called as long as the line
165isn't finished). 264isn't finished).
166 265
167=item autocork => <boolean> 266=item autocork => <boolean>
168 267
169When disabled (the default), then C<push_write> will try to immediately 268When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 269write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 270a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 271be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 272disadvantage is usually avoided by your kernel's nagle algorithm, see
273C<no_delay>, but this option can save costly syscalls).
174 274
175When enabled, then writes will always be queued till the next event loop 275When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 276iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 277but less efficient when you do a single write only per iteration (or when
278the write buffer often is full). It also increases write latency.
178 279
179=item no_delay => <boolean> 280=item no_delay => <boolean>
180 281
181When doing small writes on sockets, your operating system kernel might 282When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 283wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 284the Nagle algorithm, and usually it is beneficial.
184 285
185In some situations you want as low a delay as possible, which cna be 286In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 287accomplishd by setting this option to a true value.
187 288
188The default is your opertaing system's default behaviour, this option 289The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 290enabled), this option explicitly enables or disables it, if possible.
190 291
191=item read_size => <bytes> 292=item read_size => <bytes>
192 293
193The default read block size (the amount of bytes this module will try to read 294The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 295try to read during each loop iteration, which affects memory
296requirements). Default: C<8192>.
195 297
196=item low_water_mark => <bytes> 298=item low_water_mark => <bytes>
197 299
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 300Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 301buffer: If the write reaches this size or gets even samller it is
200considered empty. 302considered empty.
201 303
304Sometimes it can be beneficial (for performance reasons) to add data to
305the write buffer before it is fully drained, but this is a rare case, as
306the operating system kernel usually buffers data as well, so the default
307is good in almost all cases.
308
202=item linger => <seconds> 309=item linger => <seconds>
203 310
204If non-zero (default: C<3600>), then the destructor of the 311If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 312AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 313write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 314socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 315system treats outstanding data at socket close time).
209 316
210This will not work for partial TLS data that could not yet been 317This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 318yet. This data will be lost. Calling the C<stoptls> method in time might
319help.
320
321=item peername => $string
322
323A string used to identify the remote site - usually the DNS hostname
324(I<not> IDN!) used to create the connection, rarely the IP address.
325
326Apart from being useful in error messages, this string is also used in TLS
327peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328verification will be skipped when C<peername> is not specified or
329C<undef>.
212 330
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 331=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 332
215When this parameter is given, it enables TLS (SSL) mode, that means it 333When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 334AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 335established and will transparently encrypt/decrypt data afterwards.
336
337All TLS protocol errors will be signalled as C<EPROTO>, with an
338appropriate error message.
218 339
219TLS mode requires Net::SSLeay to be installed (it will be loaded 340TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 341automatically when you try to create a TLS handle): this module doesn't
342have a dependency on that module, so if your module requires it, you have
343to add the dependency yourself.
221 344
222For the TLS server side, use C<accept>, and for the TLS client side of a 345Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 346C<accept>, and for the TLS client side of a connection, use C<connect>
347mode.
224 348
225You can also provide your own TLS connection object, but you have 349You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 350to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 351or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 352AnyEvent::Handle. Also, this module will take ownership of this connection
353object.
229 354
355At some future point, AnyEvent::Handle might switch to another TLS
356implementation, then the option to use your own session object will go
357away.
358
359B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360passing in the wrong integer will lead to certain crash. This most often
361happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362segmentation fault.
363
230See the C<starttls> method if you need to start TLS negotiation later. 364See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 365
232=item tls_ctx => $ssl_ctx 366=item tls_ctx => $anyevent_tls
233 367
234Use the given Net::SSLeay::CTX object to create the new TLS connection 368Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 369(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 370missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 371
372Instead of an object, you can also specify a hash reference with C<< key
373=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374new TLS context object.
375
376=item on_starttls => $cb->($handle, $success[, $error_message])
377
378This callback will be invoked when the TLS/SSL handshake has finished. If
379C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380(C<on_stoptls> will not be called in this case).
381
382The session in C<< $handle->{tls} >> can still be examined in this
383callback, even when the handshake was not successful.
384
385TLS handshake failures will not cause C<on_error> to be invoked when this
386callback is in effect, instead, the error message will be passed to C<on_starttls>.
387
388Without this callback, handshake failures lead to C<on_error> being
389called, as normal.
390
391Note that you cannot call C<starttls> right again in this callback. If you
392need to do that, start an zero-second timer instead whose callback can
393then call C<< ->starttls >> again.
394
395=item on_stoptls => $cb->($handle)
396
397When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398set, then it will be invoked after freeing the TLS session. If it is not,
399then a TLS shutdown condition will be treated like a normal EOF condition
400on the handle.
401
402The session in C<< $handle->{tls} >> can still be examined in this
403callback.
404
405This callback will only be called on TLS shutdowns, not when the
406underlying handle signals EOF.
407
238=item json => JSON or JSON::XS object 408=item json => JSON or JSON::XS object
239 409
240This is the json coder object used by the C<json> read and write types. 410This is the json coder object used by the C<json> read and write types.
241 411
242If you don't supply it, then AnyEvent::Handle will create and use a 412If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 413suitable one (on demand), which will write and expect UTF-8 encoded JSON
414texts.
244 415
245Note that you are responsible to depend on the JSON module if you want to 416Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 417use this functionality, as AnyEvent does not have a dependency itself.
247 418
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 419=back
255 420
256=cut 421=cut
257 422
258sub new { 423sub new {
259 my $class = shift; 424 my $class = shift;
260
261 my $self = bless { @_ }, $class; 425 my $self = bless { @_ }, $class;
262 426
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 427 if ($self->{fh}) {
428 $self->_start;
429 return unless $self->{fh}; # could be gone by now
430
431 } elsif ($self->{connect}) {
432 require AnyEvent::Socket;
433
434 $self->{peername} = $self->{connect}[0]
435 unless exists $self->{peername};
436
437 $self->{_skip_drain_rbuf} = 1;
438
439 {
440 Scalar::Util::weaken (my $self = $self);
441
442 $self->{_connect} =
443 AnyEvent::Socket::tcp_connect (
444 $self->{connect}[0],
445 $self->{connect}[1],
446 sub {
447 my ($fh, $host, $port, $retry) = @_;
448
449 if ($fh) {
450 $self->{fh} = $fh;
451
452 delete $self->{_skip_drain_rbuf};
453 $self->_start;
454
455 $self->{on_connect}
456 and $self->{on_connect}($self, $host, $port, sub {
457 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458 $self->{_skip_drain_rbuf} = 1;
459 &$retry;
460 });
461
462 } else {
463 if ($self->{on_connect_error}) {
464 $self->{on_connect_error}($self, "$!");
465 $self->destroy;
466 } else {
467 $self->_error ($!, 1);
468 }
469 }
470 },
471 sub {
472 local $self->{fh} = $_[0];
473
474 $self->{on_prepare}
475 ? $self->{on_prepare}->($self)
476 : ()
477 }
478 );
479 }
480
481 } else {
482 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483 }
484
485 $self
486}
487
488sub _start {
489 my ($self) = @_;
264 490
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 491 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 492
267 if ($self->{tls}) { 493 $self->{_activity} =
268 require Net::SSLeay; 494 $self->{_ractivity} =
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271
272 $self->{_activity} = AnyEvent->now; 495 $self->{_wactivity} = AE::now;
273 $self->_timeout;
274 496
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 497 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 501 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 502
503 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
504 if $self->{tls};
505
506 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
507
278 $self->start_read 508 $self->start_read
279 if $self->{on_read}; 509 if $self->{on_read} || @{ $self->{_queue} };
280 510
281 $self 511 $self->_drain_wbuf;
282} 512}
283 513
284sub _shutdown { 514#sub _shutdown {
285 my ($self) = @_; 515# my ($self) = @_;
286 516#
287 delete $self->{_tw}; 517# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 518# $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww}; 519#
290 delete $self->{fh}; 520# &_freetls;
291 521#}
292 $self->stoptls;
293}
294 522
295sub _error { 523sub _error {
296 my ($self, $errno, $fatal) = @_; 524 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 525
301 $! = $errno; 526 $! = $errno;
527 $message ||= "$!";
302 528
303 if ($self->{on_error}) { 529 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 530 $self->{on_error}($self, $fatal, $message);
305 } else { 531 $self->destroy if $fatal;
532 } elsif ($self->{fh}) {
533 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 534 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 535 }
308} 536}
309 537
310=item $fh = $handle->fh 538=item $fh = $handle->fh
311 539
312This method returns the file handle of the L<AnyEvent::Handle> object. 540This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 541
314=cut 542=cut
315 543
316sub fh { $_[0]{fh} } 544sub fh { $_[0]{fh} }
317 545
335 $_[0]{on_eof} = $_[1]; 563 $_[0]{on_eof} = $_[1];
336} 564}
337 565
338=item $handle->on_timeout ($cb) 566=item $handle->on_timeout ($cb)
339 567
340Replace the current C<on_timeout> callback, or disables the callback 568=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 569
344=cut 570=item $handle->on_wtimeout ($cb)
345 571
346sub on_timeout { 572Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 573callback, or disables the callback (but not the timeout) if C<$cb> =
348} 574C<undef>. See the C<timeout> constructor argument and method.
575
576=cut
577
578# see below
349 579
350=item $handle->autocork ($boolean) 580=item $handle->autocork ($boolean)
351 581
352Enables or disables the current autocork behaviour (see C<autocork> 582Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 583constructor argument). Changes will only take effect on the next write.
354 584
355=cut 585=cut
586
587sub autocork {
588 $_[0]{autocork} = $_[1];
589}
356 590
357=item $handle->no_delay ($boolean) 591=item $handle->no_delay ($boolean)
358 592
359Enables or disables the C<no_delay> setting (see constructor argument of 593Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 594the same name for details).
364sub no_delay { 598sub no_delay {
365 $_[0]{no_delay} = $_[1]; 599 $_[0]{no_delay} = $_[1];
366 600
367 eval { 601 eval {
368 local $SIG{__DIE__}; 602 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 603 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604 if $_[0]{fh};
370 }; 605 };
371} 606}
372 607
608=item $handle->on_starttls ($cb)
609
610Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611
612=cut
613
614sub on_starttls {
615 $_[0]{on_starttls} = $_[1];
616}
617
618=item $handle->on_stoptls ($cb)
619
620Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621
622=cut
623
624sub on_starttls {
625 $_[0]{on_stoptls} = $_[1];
626}
627
628=item $handle->rbuf_max ($max_octets)
629
630Configures the C<rbuf_max> setting (C<undef> disables it).
631
632=cut
633
634sub rbuf_max {
635 $_[0]{rbuf_max} = $_[1];
636}
637
373############################################################################# 638#############################################################################
374 639
375=item $handle->timeout ($seconds) 640=item $handle->timeout ($seconds)
376 641
642=item $handle->rtimeout ($seconds)
643
644=item $handle->wtimeout ($seconds)
645
377Configures (or disables) the inactivity timeout. 646Configures (or disables) the inactivity timeout.
378 647
379=cut 648=item $handle->timeout_reset
380 649
381sub timeout { 650=item $handle->rtimeout_reset
651
652=item $handle->wtimeout_reset
653
654Reset the activity timeout, as if data was received or sent.
655
656These methods are cheap to call.
657
658=cut
659
660for my $dir ("", "r", "w") {
661 my $timeout = "${dir}timeout";
662 my $tw = "_${dir}tw";
663 my $on_timeout = "on_${dir}timeout";
664 my $activity = "_${dir}activity";
665 my $cb;
666
667 *$on_timeout = sub {
668 $_[0]{$on_timeout} = $_[1];
669 };
670
671 *$timeout = sub {
382 my ($self, $timeout) = @_; 672 my ($self, $new_value) = @_;
383 673
384 $self->{timeout} = $timeout; 674 $self->{$timeout} = $new_value;
385 $self->_timeout; 675 delete $self->{$tw}; &$cb;
386} 676 };
387 677
678 *{"${dir}timeout_reset"} = sub {
679 $_[0]{$activity} = AE::now;
680 };
681
682 # main workhorse:
388# reset the timeout watcher, as neccessary 683 # reset the timeout watcher, as neccessary
389# also check for time-outs 684 # also check for time-outs
390sub _timeout { 685 $cb = sub {
391 my ($self) = @_; 686 my ($self) = @_;
392 687
393 if ($self->{timeout}) { 688 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 689 my $NOW = AE::now;
395 690
396 # when would the timeout trigger? 691 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 692 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 693
399 # now or in the past already? 694 # now or in the past already?
400 if ($after <= 0) { 695 if ($after <= 0) {
401 $self->{_activity} = $NOW; 696 $self->{$activity} = $NOW;
402 697
403 if ($self->{on_timeout}) { 698 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 699 $self->{$on_timeout}($self);
405 } else { 700 } else {
406 $self->_error (&Errno::ETIMEDOUT); 701 $self->_error (Errno::ETIMEDOUT);
702 }
703
704 # callback could have changed timeout value, optimise
705 return unless $self->{$timeout};
706
707 # calculate new after
708 $after = $self->{$timeout};
407 } 709 }
408 710
409 # callback could have changed timeout value, optimise 711 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 712 return unless $self; # ->error could have destroyed $self
411 713
412 # calculate new after 714 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 715 delete $self->{$tw};
716 $cb->($self);
717 };
718 } else {
719 delete $self->{$tw};
414 } 720 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 721 }
426} 722}
427 723
428############################################################################# 724#############################################################################
429 725
453 my ($self, $cb) = @_; 749 my ($self, $cb) = @_;
454 750
455 $self->{on_drain} = $cb; 751 $self->{on_drain} = $cb;
456 752
457 $cb->($self) 753 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 754 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 755}
460 756
461=item $handle->push_write ($data) 757=item $handle->push_write ($data)
462 758
463Queues the given scalar to be written. You can push as much data as you 759Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 770 Scalar::Util::weaken $self;
475 771
476 my $cb = sub { 772 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 773 my $len = syswrite $self->{fh}, $self->{wbuf};
478 774
479 if ($len >= 0) { 775 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 776 substr $self->{wbuf}, 0, $len, "";
481 777
482 $self->{_activity} = AnyEvent->now; 778 $self->{_activity} = $self->{_wactivity} = AE::now;
483 779
484 $self->{on_drain}($self) 780 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 781 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 782 && $self->{on_drain};
487 783
488 delete $self->{_ww} unless length $self->{wbuf}; 784 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 785 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 786 $self->_error ($!, 1);
493 789
494 # try to write data immediately 790 # try to write data immediately
495 $cb->() unless $self->{autocork}; 791 $cb->() unless $self->{autocork};
496 792
497 # if still data left in wbuf, we need to poll 793 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 794 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 795 if length $self->{wbuf};
500 }; 796 };
501} 797}
502 798
503our %WH; 799our %WH;
514 810
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 811 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 812 ->($self, @_);
517 } 813 }
518 814
519 if ($self->{filter_w}) { 815 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 816 $self->{_tls_wbuf} .= $_[0];
817 &_dotls ($self) if $self->{fh};
521 } else { 818 } else {
522 $self->{wbuf} .= $_[0]; 819 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 820 $self->_drain_wbuf if $self->{fh};
524 } 821 }
525} 822}
526 823
527=item $handle->push_write (type => @args) 824=item $handle->push_write (type => @args)
528 825
542=cut 839=cut
543 840
544register_write_type netstring => sub { 841register_write_type netstring => sub {
545 my ($self, $string) = @_; 842 my ($self, $string) = @_;
546 843
547 sprintf "%d:%s,", (length $string), $string 844 (length $string) . ":$string,"
548}; 845};
549 846
550=item packstring => $format, $data 847=item packstring => $format, $data
551 848
552An octet string prefixed with an encoded length. The encoding C<$format> 849An octet string prefixed with an encoded length. The encoding C<$format>
617 914
618 pack "w/a*", Storable::nfreeze ($ref) 915 pack "w/a*", Storable::nfreeze ($ref)
619}; 916};
620 917
621=back 918=back
919
920=item $handle->push_shutdown
921
922Sometimes you know you want to close the socket after writing your data
923before it was actually written. One way to do that is to replace your
924C<on_drain> handler by a callback that shuts down the socket (and set
925C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926replaces the C<on_drain> callback with:
927
928 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929
930This simply shuts down the write side and signals an EOF condition to the
931the peer.
932
933You can rely on the normal read queue and C<on_eof> handling
934afterwards. This is the cleanest way to close a connection.
935
936=cut
937
938sub push_shutdown {
939 my ($self) = @_;
940
941 delete $self->{low_water_mark};
942 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943}
622 944
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 945=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 946
625This function (not method) lets you add your own types to C<push_write>. 947This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 948Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1042=cut
721 1043
722sub _drain_rbuf { 1044sub _drain_rbuf {
723 my ($self) = @_; 1045 my ($self) = @_;
724 1046
1047 # avoid recursion
1048 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1049 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1050
734 while () { 1051 while () {
1052 # we need to use a separate tls read buffer, as we must not receive data while
1053 # we are draining the buffer, and this can only happen with TLS.
1054 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055 if exists $self->{_tls_rbuf};
1056
735 my $len = length $self->{rbuf}; 1057 my $len = length $self->{rbuf};
736 1058
737 if (my $cb = shift @{ $self->{_queue} }) { 1059 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1060 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1061 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1062 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1063 $self->_error (Errno::EPIPE, 1), return
742 } 1064 if $self->{_eof};
743 1065
744 unshift @{ $self->{_queue} }, $cb; 1066 unshift @{ $self->{_queue} }, $cb;
745 last; 1067 last;
746 } 1068 }
747 } elsif ($self->{on_read}) { 1069 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1076 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1077 && $self->{on_read} # but we still have on_read
756 ) { 1078 ) {
757 # no further data will arrive 1079 # no further data will arrive
758 # so no progress can be made 1080 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1081 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1082 if $self->{_eof};
761 1083
762 last; # more data might arrive 1084 last; # more data might arrive
763 } 1085 }
764 } else { 1086 } else {
765 # read side becomes idle 1087 # read side becomes idle
766 delete $self->{_rw}; 1088 delete $self->{_rw} unless $self->{tls};
767 last; 1089 last;
768 } 1090 }
769 } 1091 }
770 1092
1093 if ($self->{_eof}) {
1094 $self->{on_eof}
771 $self->{on_eof}($self) 1095 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1096 : $self->_error (0, 1, "Unexpected end-of-file");
1097
1098 return;
1099 }
1100
1101 if (
1102 defined $self->{rbuf_max}
1103 && $self->{rbuf_max} < length $self->{rbuf}
1104 ) {
1105 $self->_error (Errno::ENOSPC, 1), return;
1106 }
773 1107
774 # may need to restart read watcher 1108 # may need to restart read watcher
775 unless ($self->{_rw}) { 1109 unless ($self->{_rw}) {
776 $self->start_read 1110 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1111 if $self->{on_read} || @{ $self->{_queue} };
788 1122
789sub on_read { 1123sub on_read {
790 my ($self, $cb) = @_; 1124 my ($self, $cb) = @_;
791 1125
792 $self->{on_read} = $cb; 1126 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1127 $self->_drain_rbuf if $cb;
794} 1128}
795 1129
796=item $handle->rbuf 1130=item $handle->rbuf
797 1131
798Returns the read buffer (as a modifiable lvalue). 1132Returns the read buffer (as a modifiable lvalue).
799 1133
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1134You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1135member, if you want. However, the only operation allowed on the
1136read buffer (apart from looking at it) is removing data from its
1137beginning. Otherwise modifying or appending to it is not allowed and will
1138lead to hard-to-track-down bugs.
802 1139
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1140NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1141C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1142automatically manage the read buffer.
806 1143
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1184 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1185 ->($self, $cb, @_);
849 } 1186 }
850 1187
851 push @{ $self->{_queue} }, $cb; 1188 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1189 $self->_drain_rbuf;
853} 1190}
854 1191
855sub unshift_read { 1192sub unshift_read {
856 my $self = shift; 1193 my $self = shift;
857 my $cb = pop; 1194 my $cb = pop;
863 ->($self, $cb, @_); 1200 ->($self, $cb, @_);
864 } 1201 }
865 1202
866 1203
867 unshift @{ $self->{_queue} }, $cb; 1204 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1205 $self->_drain_rbuf;
869} 1206}
870 1207
871=item $handle->push_read (type => @args, $cb) 1208=item $handle->push_read (type => @args, $cb)
872 1209
873=item $handle->unshift_read (type => @args, $cb) 1210=item $handle->unshift_read (type => @args, $cb)
1006 return 1; 1343 return 1;
1007 } 1344 }
1008 1345
1009 # reject 1346 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1347 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1348 $self->_error (Errno::EBADMSG);
1012 } 1349 }
1013 1350
1014 # skip 1351 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1352 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1353 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1369 my ($self, $cb) = @_;
1033 1370
1034 sub { 1371 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1372 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1373 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1374 $self->_error (Errno::EBADMSG);
1038 } 1375 }
1039 return; 1376 return;
1040 } 1377 }
1041 1378
1042 my $len = $1; 1379 my $len = $1;
1045 my $string = $_[1]; 1382 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1383 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1384 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1385 $cb->($_[0], $string);
1049 } else { 1386 } else {
1050 $self->_error (&Errno::EBADMSG); 1387 $self->_error (Errno::EBADMSG);
1051 } 1388 }
1052 }); 1389 });
1053 }); 1390 });
1054 1391
1055 1 1392 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1398An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1399uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1400integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1401optional C<!>, C<< < >> or C<< > >> modifier).
1065 1402
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1403For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404EPP uses a prefix of C<N> (4 octtes).
1067 1405
1068Example: read a block of data prefixed by its length in BER-encoded 1406Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1407format (very efficient).
1070 1408
1071 $handle->push_read (packstring => "w", sub { 1409 $handle->push_read (packstring => "w", sub {
1101 } 1439 }
1102}; 1440};
1103 1441
1104=item json => $cb->($handle, $hash_or_arrayref) 1442=item json => $cb->($handle, $hash_or_arrayref)
1105 1443
1106Reads a JSON object or array, decodes it and passes it to the callback. 1444Reads a JSON object or array, decodes it and passes it to the
1445callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1446
1108If a C<json> object was passed to the constructor, then that will be used 1447If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1448for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1449
1111This read type uses the incremental parser available with JSON version 1450This read type uses the incremental parser available with JSON version
1120=cut 1459=cut
1121 1460
1122register_read_type json => sub { 1461register_read_type json => sub {
1123 my ($self, $cb) = @_; 1462 my ($self, $cb) = @_;
1124 1463
1125 require JSON; 1464 my $json = $self->{json} ||=
1465 eval { require JSON::XS; JSON::XS->new->utf8 }
1466 || do { require JSON; JSON->new->utf8 };
1126 1467
1127 my $data; 1468 my $data;
1128 my $rbuf = \$self->{rbuf}; 1469 my $rbuf = \$self->{rbuf};
1129 1470
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1471 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1472 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1473
1135 if ($ref) { 1474 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1475 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1476 $json->incr_text = "";
1138 $cb->($self, $ref); 1477 $cb->($self, $ref);
1139 1478
1140 1 1479 1
1480 } elsif ($@) {
1481 # error case
1482 $json->incr_skip;
1483
1484 $self->{rbuf} = $json->incr_text;
1485 $json->incr_text = "";
1486
1487 $self->_error (Errno::EBADMSG);
1488
1489 ()
1141 } else { 1490 } else {
1142 $self->{rbuf} = ""; 1491 $self->{rbuf} = "";
1492
1143 () 1493 ()
1144 } 1494 }
1145 } 1495 }
1146}; 1496};
1147 1497
1179 # read remaining chunk 1529 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1530 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1531 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1532 $cb->($_[0], $ref);
1183 } else { 1533 } else {
1184 $self->_error (&Errno::EBADMSG); 1534 $self->_error (Errno::EBADMSG);
1185 } 1535 }
1186 }); 1536 });
1187 } 1537 }
1188 1538
1189 1 1539 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1574Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1575you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1576will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1577there are any read requests in the queue.
1228 1578
1579These methods will have no effect when in TLS mode (as TLS doesn't support
1580half-duplex connections).
1581
1229=cut 1582=cut
1230 1583
1231sub stop_read { 1584sub stop_read {
1232 my ($self) = @_; 1585 my ($self) = @_;
1233 1586
1234 delete $self->{_rw}; 1587 delete $self->{_rw} unless $self->{tls};
1235} 1588}
1236 1589
1237sub start_read { 1590sub start_read {
1238 my ($self) = @_; 1591 my ($self) = @_;
1239 1592
1240 unless ($self->{_rw} || $self->{_eof}) { 1593 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1594 Scalar::Util::weaken $self;
1242 1595
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1596 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1597 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1598 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1599
1247 if ($len > 0) { 1600 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1601 $self->{_activity} = $self->{_ractivity} = AE::now;
1249 1602
1250 $self->{filter_r} 1603 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1604 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1605
1606 &_dotls ($self);
1607 } else {
1608 $self->_drain_rbuf;
1609 }
1253 1610
1254 } elsif (defined $len) { 1611 } elsif (defined $len) {
1255 delete $self->{_rw}; 1612 delete $self->{_rw};
1256 $self->{_eof} = 1; 1613 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1614 $self->_drain_rbuf;
1258 1615
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1616 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1617 return $self->_error ($!, 1);
1261 } 1618 }
1262 }); 1619 };
1263 } 1620 }
1264} 1621}
1265 1622
1623our $ERROR_SYSCALL;
1624our $ERROR_WANT_READ;
1625
1626sub _tls_error {
1627 my ($self, $err) = @_;
1628
1629 return $self->_error ($!, 1)
1630 if $err == Net::SSLeay::ERROR_SYSCALL ();
1631
1632 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633
1634 # reduce error string to look less scary
1635 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636
1637 if ($self->{_on_starttls}) {
1638 (delete $self->{_on_starttls})->($self, undef, $err);
1639 &_freetls;
1640 } else {
1641 &_freetls;
1642 $self->_error (Errno::EPROTO, 1, $err);
1643 }
1644}
1645
1646# poll the write BIO and send the data if applicable
1647# also decode read data if possible
1648# this is basiclaly our TLS state machine
1649# more efficient implementations are possible with openssl,
1650# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1651sub _dotls {
1267 my ($self) = @_; 1652 my ($self) = @_;
1268 1653
1269 my $buf; 1654 my $tmp;
1270 1655
1271 if (length $self->{_tls_wbuf}) { 1656 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1657 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1658 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1659 }
1275 }
1276 1660
1661 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662 return $self->_tls_error ($tmp)
1663 if $tmp != $ERROR_WANT_READ
1664 && ($tmp != $ERROR_SYSCALL || $!);
1665 }
1666
1667 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668 unless (length $tmp) {
1669 $self->{_on_starttls}
1670 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 &_freetls;
1672
1673 if ($self->{on_stoptls}) {
1674 $self->{on_stoptls}($self);
1675 return;
1676 } else {
1677 # let's treat SSL-eof as we treat normal EOF
1678 delete $self->{_rw};
1679 $self->{_eof} = 1;
1680 }
1681 }
1682
1683 $self->{_tls_rbuf} .= $tmp;
1684 $self->_drain_rbuf;
1685 $self->{tls} or return; # tls session might have gone away in callback
1686 }
1687
1688 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 return $self->_tls_error ($tmp)
1690 if $tmp != $ERROR_WANT_READ
1691 && ($tmp != $ERROR_SYSCALL || $!);
1692
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1693 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1694 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1695 $self->_drain_wbuf;
1280 } 1696 }
1281 1697
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1698 $self->{_on_starttls}
1283 if (length $buf) { 1699 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1700 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1701}
1306 1702
1307=item $handle->starttls ($tls[, $tls_ctx]) 1703=item $handle->starttls ($tls[, $tls_ctx])
1308 1704
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1705Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1706object is created, you can also do that at a later time by calling
1311C<starttls>. 1707C<starttls>.
1312 1708
1709Starting TLS is currently an asynchronous operation - when you push some
1710write data and then call C<< ->starttls >> then TLS negotiation will start
1711immediately, after which the queued write data is then sent.
1712
1313The first argument is the same as the C<tls> constructor argument (either 1713The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1714C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1715
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1716The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1717when AnyEvent::Handle has to create its own TLS connection object, or
1718a hash reference with C<< key => value >> pairs that will be used to
1719construct a new context.
1318 1720
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1721The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1722context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1723changed to your liking. Note that the handshake might have already started
1724when this function returns.
1322 1725
1726Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727handshakes on the same stream. Best do not attempt to use the stream after
1728stopping TLS.
1729
1323=cut 1730=cut
1731
1732our %TLS_CACHE; #TODO not yet documented, should we?
1324 1733
1325sub starttls { 1734sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1735 my ($self, $tls, $ctx) = @_;
1327 1736
1328 $self->stoptls; 1737 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738 if $self->{tls};
1329 1739
1330 if ($ssl eq "accept") { 1740 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1741 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1742
1333 } elsif ($ssl eq "connect") { 1743 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1744
1335 Net::SSLeay::set_connect_state ($ssl); 1745 require Net::SSLeay;
1746
1747 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749
1750 $tls = $self->{tls};
1751 $ctx = $self->{tls_ctx};
1752
1753 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754
1755 if ("HASH" eq ref $ctx) {
1756 require AnyEvent::TLS;
1757
1758 if ($ctx->{cache}) {
1759 my $key = $ctx+0;
1760 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761 } else {
1762 $ctx = new AnyEvent::TLS %$ctx;
1763 }
1764 }
1336 } 1765
1337 1766 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1767 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1768
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1769 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1770 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1771 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1772 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1773 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 #
1775 # in short: this is a mess.
1776 #
1777 # note that we do not try to keep the length constant between writes as we are required to do.
1778 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1781# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1782# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1783# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1785
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1786 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1787 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1788
1789 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1791 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1792
1354 $self->{filter_w} = sub { 1793 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1794 if $self->{on_starttls};
1356 &_dotls; 1795
1357 }; 1796 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1797 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1798}
1363 1799
1364=item $handle->stoptls 1800=item $handle->stoptls
1365 1801
1366Destroys the SSL connection, if any. Partial read or write data will be 1802Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1803sending a close notify to the other side, but since OpenSSL doesn't
1804support non-blocking shut downs, it is not guarenteed that you can re-use
1805the stream afterwards.
1368 1806
1369=cut 1807=cut
1370 1808
1371sub stoptls { 1809sub stoptls {
1372 my ($self) = @_; 1810 my ($self) = @_;
1373 1811
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1812 if ($self->{tls}) {
1813 Net::SSLeay::shutdown ($self->{tls});
1375 1814
1376 delete $self->{_rbio}; 1815 &_dotls;
1377 delete $self->{_wbio}; 1816
1378 delete $self->{_tls_wbuf}; 1817# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1818# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1819# &_freetls;#d#
1820 }
1821}
1822
1823sub _freetls {
1824 my ($self) = @_;
1825
1826 return unless $self->{tls};
1827
1828 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 if $self->{tls} > 0;
1830
1831 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1832}
1382 1833
1383sub DESTROY { 1834sub DESTROY {
1384 my $self = shift; 1835 my ($self) = @_;
1385 1836
1386 $self->stoptls; 1837 &_freetls;
1387 1838
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1839 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1840
1390 if ($linger && length $self->{wbuf}) { 1841 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1842 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1843 my $wbuf = delete $self->{wbuf};
1393 1844
1394 my @linger; 1845 my @linger;
1395 1846
1396 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1847 push @linger, AE::io $fh, 1, sub {
1397 my $len = syswrite $fh, $wbuf, length $wbuf; 1848 my $len = syswrite $fh, $wbuf, length $wbuf;
1398 1849
1399 if ($len > 0) { 1850 if ($len > 0) {
1400 substr $wbuf, 0, $len, ""; 1851 substr $wbuf, 0, $len, "";
1401 } else { 1852 } else {
1402 @linger = (); # end 1853 @linger = (); # end
1403 } 1854 }
1404 }); 1855 };
1405 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1856 push @linger, AE::timer $linger, 0, sub {
1406 @linger = (); 1857 @linger = ();
1407 }); 1858 };
1408 } 1859 }
1860}
1861
1862=item $handle->destroy
1863
1864Shuts down the handle object as much as possible - this call ensures that
1865no further callbacks will be invoked and as many resources as possible
1866will be freed. Any method you will call on the handle object after
1867destroying it in this way will be silently ignored (and it will return the
1868empty list).
1869
1870Normally, you can just "forget" any references to an AnyEvent::Handle
1871object and it will simply shut down. This works in fatal error and EOF
1872callbacks, as well as code outside. It does I<NOT> work in a read or write
1873callback, so when you want to destroy the AnyEvent::Handle object from
1874within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875that case.
1876
1877Destroying the handle object in this way has the advantage that callbacks
1878will be removed as well, so if those are the only reference holders (as
1879is common), then one doesn't need to do anything special to break any
1880reference cycles.
1881
1882The handle might still linger in the background and write out remaining
1883data, as specified by the C<linger> option, however.
1884
1885=cut
1886
1887sub destroy {
1888 my ($self) = @_;
1889
1890 $self->DESTROY;
1891 %$self = ();
1892 bless $self, "AnyEvent::Handle::destroyed";
1893}
1894
1895sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896 #nop
1409} 1897}
1410 1898
1411=item AnyEvent::Handle::TLS_CTX 1899=item AnyEvent::Handle::TLS_CTX
1412 1900
1413This function creates and returns the Net::SSLeay::CTX object used by 1901This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1902for TLS mode.
1415 1903
1416The context is created like this: 1904The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1905
1426=cut 1906=cut
1427 1907
1428our $TLS_CTX; 1908our $TLS_CTX;
1429 1909
1430sub TLS_CTX() { 1910sub TLS_CTX() {
1431 $TLS_CTX || do { 1911 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1912 require AnyEvent::TLS;
1433 1913
1434 Net::SSLeay::load_error_strings (); 1914 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1915 }
1444} 1916}
1445 1917
1446=back 1918=back
1919
1920
1921=head1 NONFREQUENTLY ASKED QUESTIONS
1922
1923=over 4
1924
1925=item I C<undef> the AnyEvent::Handle reference inside my callback and
1926still get further invocations!
1927
1928That's because AnyEvent::Handle keeps a reference to itself when handling
1929read or write callbacks.
1930
1931It is only safe to "forget" the reference inside EOF or error callbacks,
1932from within all other callbacks, you need to explicitly call the C<<
1933->destroy >> method.
1934
1935=item I get different callback invocations in TLS mode/Why can't I pause
1936reading?
1937
1938Unlike, say, TCP, TLS connections do not consist of two independent
1939communication channels, one for each direction. Or put differently. The
1940read and write directions are not independent of each other: you cannot
1941write data unless you are also prepared to read, and vice versa.
1942
1943This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944callback invocations when you are not expecting any read data - the reason
1945is that AnyEvent::Handle always reads in TLS mode.
1946
1947During the connection, you have to make sure that you always have a
1948non-empty read-queue, or an C<on_read> watcher. At the end of the
1949connection (or when you no longer want to use it) you can call the
1950C<destroy> method.
1951
1952=item How do I read data until the other side closes the connection?
1953
1954If you just want to read your data into a perl scalar, the easiest way
1955to achieve this is by setting an C<on_read> callback that does nothing,
1956clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957will be in C<$_[0]{rbuf}>:
1958
1959 $handle->on_read (sub { });
1960 $handle->on_eof (undef);
1961 $handle->on_error (sub {
1962 my $data = delete $_[0]{rbuf};
1963 });
1964
1965The reason to use C<on_error> is that TCP connections, due to latencies
1966and packets loss, might get closed quite violently with an error, when in
1967fact, all data has been received.
1968
1969It is usually better to use acknowledgements when transferring data,
1970to make sure the other side hasn't just died and you got the data
1971intact. This is also one reason why so many internet protocols have an
1972explicit QUIT command.
1973
1974=item I don't want to destroy the handle too early - how do I wait until
1975all data has been written?
1976
1977After writing your last bits of data, set the C<on_drain> callback
1978and destroy the handle in there - with the default setting of
1979C<low_water_mark> this will be called precisely when all data has been
1980written to the socket:
1981
1982 $handle->push_write (...);
1983 $handle->on_drain (sub {
1984 warn "all data submitted to the kernel\n";
1985 undef $handle;
1986 });
1987
1988If you just want to queue some data and then signal EOF to the other side,
1989consider using C<< ->push_shutdown >> instead.
1990
1991=item I want to contact a TLS/SSL server, I don't care about security.
1992
1993If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995parameter:
1996
1997 tcp_connect $host, $port, sub {
1998 my ($fh) = @_;
1999
2000 my $handle = new AnyEvent::Handle
2001 fh => $fh,
2002 tls => "connect",
2003 on_error => sub { ... };
2004
2005 $handle->push_write (...);
2006 };
2007
2008=item I want to contact a TLS/SSL server, I do care about security.
2009
2010Then you should additionally enable certificate verification, including
2011peername verification, if the protocol you use supports it (see
2012L<AnyEvent::TLS>, C<verify_peername>).
2013
2014E.g. for HTTPS:
2015
2016 tcp_connect $host, $port, sub {
2017 my ($fh) = @_;
2018
2019 my $handle = new AnyEvent::Handle
2020 fh => $fh,
2021 peername => $host,
2022 tls => "connect",
2023 tls_ctx => { verify => 1, verify_peername => "https" },
2024 ...
2025
2026Note that you must specify the hostname you connected to (or whatever
2027"peername" the protocol needs) as the C<peername> argument, otherwise no
2028peername verification will be done.
2029
2030The above will use the system-dependent default set of trusted CA
2031certificates. If you want to check against a specific CA, add the
2032C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033
2034 tls_ctx => {
2035 verify => 1,
2036 verify_peername => "https",
2037 ca_file => "my-ca-cert.pem",
2038 },
2039
2040=item I want to create a TLS/SSL server, how do I do that?
2041
2042Well, you first need to get a server certificate and key. You have
2043three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044self-signed certificate (cheap. check the search engine of your choice,
2045there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046nice program for that purpose).
2047
2048Then create a file with your private key (in PEM format, see
2049L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050file should then look like this:
2051
2052 -----BEGIN RSA PRIVATE KEY-----
2053 ...header data
2054 ... lots of base64'y-stuff
2055 -----END RSA PRIVATE KEY-----
2056
2057 -----BEGIN CERTIFICATE-----
2058 ... lots of base64'y-stuff
2059 -----END CERTIFICATE-----
2060
2061The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062specify this file as C<cert_file>:
2063
2064 tcp_server undef, $port, sub {
2065 my ($fh) = @_;
2066
2067 my $handle = new AnyEvent::Handle
2068 fh => $fh,
2069 tls => "accept",
2070 tls_ctx => { cert_file => "my-server-keycert.pem" },
2071 ...
2072
2073When you have intermediate CA certificates that your clients might not
2074know about, just append them to the C<cert_file>.
2075
2076=back
2077
1447 2078
1448=head1 SUBCLASSING AnyEvent::Handle 2079=head1 SUBCLASSING AnyEvent::Handle
1449 2080
1450In many cases, you might want to subclass AnyEvent::Handle. 2081In many cases, you might want to subclass AnyEvent::Handle.
1451 2082

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines