ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.178 by root, Tue Aug 11 01:15:17 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
167=item autocork => <boolean> 264=item autocork => <boolean>
168 265
169When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
174 272
175When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
178 277
179=item no_delay => <boolean> 278=item no_delay => <boolean>
180 279
181When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
184 283
185In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
187 286
188The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
190 289
191=item read_size => <bytes> 290=item read_size => <bytes>
192 291
193The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
195 295
196=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
197 297
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
200considered empty. 300considered empty.
201 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
202=item linger => <seconds> 307=item linger => <seconds>
203 308
204If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 313system treats outstanding data at socket close time).
209 314
210This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
212 328
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 330
215When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
218 337
219TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
221 342
222For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
224 346
225You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
229 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
230See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 363
232=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
233 365
234Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
238=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
239 407
240This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
241 409
242If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
244 413
245Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
247 416
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 417=back
255 418
256=cut 419=cut
257 420
258sub new { 421sub new {
259 my $class = shift; 422 my $class = shift;
260
261 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
262 424
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
264 488
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 490
267 if ($self->{tls}) { 491 $self->{_activity} =
268 require Net::SSLeay; 492 $self->{_ractivity} =
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271
272 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
273 $self->_timeout;
274 494
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
278 $self->start_read 506 $self->start_read
279 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
280 508
281 $self 509 $self->_drain_wbuf;
282}
283
284sub _shutdown {
285 my ($self) = @_;
286
287 delete $self->{_tw};
288 delete $self->{_rw};
289 delete $self->{_ww};
290 delete $self->{fh};
291
292 $self->stoptls;
293} 510}
294 511
295sub _error { 512sub _error {
296 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 514
301 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
302 517
303 if ($self->{on_error}) { 518 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
305 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 524 }
308} 525}
309 526
310=item $fh = $handle->fh 527=item $fh = $handle->fh
311 528
312This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 530
314=cut 531=cut
315 532
316sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
317 534
335 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
336} 553}
337 554
338=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
339 556
340Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 558
344=cut 559=item $handle->on_wtimeout ($cb)
345 560
346sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
348} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
349 568
350=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
351 570
352Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 572constructor argument). Changes will only take effect on the next write.
354 573
355=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
356 579
357=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
358 581
359Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 583the same name for details).
364sub no_delay { 587sub no_delay {
365 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
366 589
367 eval { 590 eval {
368 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
370 }; 594 };
371} 595}
372 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
373############################################################################# 627#############################################################################
374 628
375=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
376 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
377Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
378 636
379=cut 637=item $handle->timeout_reset
380 638
381sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
382 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
383 662
384 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
385 $self->_timeout; 664 delete $self->{$tw}; &$cb;
386} 665 };
387 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
388# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
389# also check for time-outs 673 # also check for time-outs
390sub _timeout { 674 $cb = sub {
391 my ($self) = @_; 675 my ($self) = @_;
392 676
393 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
395 679
396 # when would the timeout trigger? 680 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 682
399 # now or in the past already? 683 # now or in the past already?
400 if ($after <= 0) { 684 if ($after <= 0) {
401 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
402 686
403 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
405 } else { 689 } else {
406 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
407 } 698 }
408 699
409 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
411 702
412 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
414 } 709 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 710 }
426} 711}
427 712
428############################################################################# 713#############################################################################
429 714
453 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
454 739
455 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
456 741
457 $cb->($self) 742 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 744}
460 745
461=item $handle->push_write ($data) 746=item $handle->push_write ($data)
462 747
463Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
475 760
476 my $cb = sub { 761 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
478 763
479 if ($len >= 0) { 764 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
481 766
482 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
483 768
484 $self->{on_drain}($self) 769 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 771 && $self->{on_drain};
487 772
488 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 775 $self->_error ($!, 1);
493 778
494 # try to write data immediately 779 # try to write data immediately
495 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
496 781
497 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 784 if length $self->{wbuf};
500 }; 785 };
501} 786}
502 787
503our %WH; 788our %WH;
514 799
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 801 ->($self, @_);
517 } 802 }
518 803
519 if ($self->{filter_w}) { 804 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
521 } else { 807 } else {
522 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
524 } 810 }
525} 811}
526 812
527=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
528 814
542=cut 828=cut
543 829
544register_write_type netstring => sub { 830register_write_type netstring => sub {
545 my ($self, $string) = @_; 831 my ($self, $string) = @_;
546 832
547 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
548}; 834};
549 835
550=item packstring => $format, $data 836=item packstring => $format, $data
551 837
552An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
617 903
618 pack "w/a*", Storable::nfreeze ($ref) 904 pack "w/a*", Storable::nfreeze ($ref)
619}; 905};
620 906
621=back 907=back
908
909=item $handle->push_shutdown
910
911Sometimes you know you want to close the socket after writing your data
912before it was actually written. One way to do that is to replace your
913C<on_drain> handler by a callback that shuts down the socket (and set
914C<low_water_mark> to C<0>). This method is a shorthand for just that, and
915replaces the C<on_drain> callback with:
916
917 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
918
919This simply shuts down the write side and signals an EOF condition to the
920the peer.
921
922You can rely on the normal read queue and C<on_eof> handling
923afterwards. This is the cleanest way to close a connection.
924
925=cut
926
927sub push_shutdown {
928 my ($self) = @_;
929
930 delete $self->{low_water_mark};
931 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
932}
622 933
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 934=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 935
625This function (not method) lets you add your own types to C<push_write>. 936This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 937Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1031=cut
721 1032
722sub _drain_rbuf { 1033sub _drain_rbuf {
723 my ($self) = @_; 1034 my ($self) = @_;
724 1035
1036 # avoid recursion
1037 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1038 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1039
734 while () { 1040 while () {
1041 # we need to use a separate tls read buffer, as we must not receive data while
1042 # we are draining the buffer, and this can only happen with TLS.
1043 $self->{rbuf} .= delete $self->{_tls_rbuf}
1044 if exists $self->{_tls_rbuf};
1045
735 my $len = length $self->{rbuf}; 1046 my $len = length $self->{rbuf};
736 1047
737 if (my $cb = shift @{ $self->{_queue} }) { 1048 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1049 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1050 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1051 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1052 $self->_error (Errno::EPIPE, 1), return
742 } 1053 if $self->{_eof};
743 1054
744 unshift @{ $self->{_queue} }, $cb; 1055 unshift @{ $self->{_queue} }, $cb;
745 last; 1056 last;
746 } 1057 }
747 } elsif ($self->{on_read}) { 1058 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1065 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1066 && $self->{on_read} # but we still have on_read
756 ) { 1067 ) {
757 # no further data will arrive 1068 # no further data will arrive
758 # so no progress can be made 1069 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1070 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1071 if $self->{_eof};
761 1072
762 last; # more data might arrive 1073 last; # more data might arrive
763 } 1074 }
764 } else { 1075 } else {
765 # read side becomes idle 1076 # read side becomes idle
766 delete $self->{_rw}; 1077 delete $self->{_rw} unless $self->{tls};
767 last; 1078 last;
768 } 1079 }
769 } 1080 }
770 1081
1082 if ($self->{_eof}) {
1083 $self->{on_eof}
771 $self->{on_eof}($self) 1084 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1085 : $self->_error (0, 1, "Unexpected end-of-file");
1086
1087 return;
1088 }
1089
1090 if (
1091 defined $self->{rbuf_max}
1092 && $self->{rbuf_max} < length $self->{rbuf}
1093 ) {
1094 $self->_error (Errno::ENOSPC, 1), return;
1095 }
773 1096
774 # may need to restart read watcher 1097 # may need to restart read watcher
775 unless ($self->{_rw}) { 1098 unless ($self->{_rw}) {
776 $self->start_read 1099 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1100 if $self->{on_read} || @{ $self->{_queue} };
788 1111
789sub on_read { 1112sub on_read {
790 my ($self, $cb) = @_; 1113 my ($self, $cb) = @_;
791 1114
792 $self->{on_read} = $cb; 1115 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1116 $self->_drain_rbuf if $cb;
794} 1117}
795 1118
796=item $handle->rbuf 1119=item $handle->rbuf
797 1120
798Returns the read buffer (as a modifiable lvalue). 1121Returns the read buffer (as a modifiable lvalue).
799 1122
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1123You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1124member, if you want. However, the only operation allowed on the
1125read buffer (apart from looking at it) is removing data from its
1126beginning. Otherwise modifying or appending to it is not allowed and will
1127lead to hard-to-track-down bugs.
802 1128
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1129NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1130C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1131automatically manage the read buffer.
806 1132
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1173 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1174 ->($self, $cb, @_);
849 } 1175 }
850 1176
851 push @{ $self->{_queue} }, $cb; 1177 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1178 $self->_drain_rbuf;
853} 1179}
854 1180
855sub unshift_read { 1181sub unshift_read {
856 my $self = shift; 1182 my $self = shift;
857 my $cb = pop; 1183 my $cb = pop;
863 ->($self, $cb, @_); 1189 ->($self, $cb, @_);
864 } 1190 }
865 1191
866 1192
867 unshift @{ $self->{_queue} }, $cb; 1193 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1194 $self->_drain_rbuf;
869} 1195}
870 1196
871=item $handle->push_read (type => @args, $cb) 1197=item $handle->push_read (type => @args, $cb)
872 1198
873=item $handle->unshift_read (type => @args, $cb) 1199=item $handle->unshift_read (type => @args, $cb)
1006 return 1; 1332 return 1;
1007 } 1333 }
1008 1334
1009 # reject 1335 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1336 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1337 $self->_error (Errno::EBADMSG);
1012 } 1338 }
1013 1339
1014 # skip 1340 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1341 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1342 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1358 my ($self, $cb) = @_;
1033 1359
1034 sub { 1360 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1361 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1362 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1363 $self->_error (Errno::EBADMSG);
1038 } 1364 }
1039 return; 1365 return;
1040 } 1366 }
1041 1367
1042 my $len = $1; 1368 my $len = $1;
1045 my $string = $_[1]; 1371 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1372 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1373 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1374 $cb->($_[0], $string);
1049 } else { 1375 } else {
1050 $self->_error (&Errno::EBADMSG); 1376 $self->_error (Errno::EBADMSG);
1051 } 1377 }
1052 }); 1378 });
1053 }); 1379 });
1054 1380
1055 1 1381 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1387An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1388uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1389integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1390optional C<!>, C<< < >> or C<< > >> modifier).
1065 1391
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1392For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1393EPP uses a prefix of C<N> (4 octtes).
1067 1394
1068Example: read a block of data prefixed by its length in BER-encoded 1395Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1396format (very efficient).
1070 1397
1071 $handle->push_read (packstring => "w", sub { 1398 $handle->push_read (packstring => "w", sub {
1101 } 1428 }
1102}; 1429};
1103 1430
1104=item json => $cb->($handle, $hash_or_arrayref) 1431=item json => $cb->($handle, $hash_or_arrayref)
1105 1432
1106Reads a JSON object or array, decodes it and passes it to the callback. 1433Reads a JSON object or array, decodes it and passes it to the
1434callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1435
1108If a C<json> object was passed to the constructor, then that will be used 1436If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1437for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1438
1111This read type uses the incremental parser available with JSON version 1439This read type uses the incremental parser available with JSON version
1120=cut 1448=cut
1121 1449
1122register_read_type json => sub { 1450register_read_type json => sub {
1123 my ($self, $cb) = @_; 1451 my ($self, $cb) = @_;
1124 1452
1125 require JSON; 1453 my $json = $self->{json} ||=
1454 eval { require JSON::XS; JSON::XS->new->utf8 }
1455 || do { require JSON; JSON->new->utf8 };
1126 1456
1127 my $data; 1457 my $data;
1128 my $rbuf = \$self->{rbuf}; 1458 my $rbuf = \$self->{rbuf};
1129 1459
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1460 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1461 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1462
1135 if ($ref) { 1463 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1464 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1465 $json->incr_text = "";
1138 $cb->($self, $ref); 1466 $cb->($self, $ref);
1139 1467
1140 1 1468 1
1469 } elsif ($@) {
1470 # error case
1471 $json->incr_skip;
1472
1473 $self->{rbuf} = $json->incr_text;
1474 $json->incr_text = "";
1475
1476 $self->_error (Errno::EBADMSG);
1477
1478 ()
1141 } else { 1479 } else {
1142 $self->{rbuf} = ""; 1480 $self->{rbuf} = "";
1481
1143 () 1482 ()
1144 } 1483 }
1145 } 1484 }
1146}; 1485};
1147 1486
1179 # read remaining chunk 1518 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1519 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1520 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1521 $cb->($_[0], $ref);
1183 } else { 1522 } else {
1184 $self->_error (&Errno::EBADMSG); 1523 $self->_error (Errno::EBADMSG);
1185 } 1524 }
1186 }); 1525 });
1187 } 1526 }
1188 1527
1189 1 1528 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1563Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1564you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1565will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1566there are any read requests in the queue.
1228 1567
1568These methods will have no effect when in TLS mode (as TLS doesn't support
1569half-duplex connections).
1570
1229=cut 1571=cut
1230 1572
1231sub stop_read { 1573sub stop_read {
1232 my ($self) = @_; 1574 my ($self) = @_;
1233 1575
1234 delete $self->{_rw}; 1576 delete $self->{_rw} unless $self->{tls};
1235} 1577}
1236 1578
1237sub start_read { 1579sub start_read {
1238 my ($self) = @_; 1580 my ($self) = @_;
1239 1581
1240 unless ($self->{_rw} || $self->{_eof}) { 1582 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1583 Scalar::Util::weaken $self;
1242 1584
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1585 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1586 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1587 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1588
1247 if ($len > 0) { 1589 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1590 $self->{_activity} = $self->{_ractivity} = AE::now;
1249 1591
1250 $self->{filter_r} 1592 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1593 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1594
1595 &_dotls ($self);
1596 } else {
1597 $self->_drain_rbuf;
1598 }
1253 1599
1254 } elsif (defined $len) { 1600 } elsif (defined $len) {
1255 delete $self->{_rw}; 1601 delete $self->{_rw};
1256 $self->{_eof} = 1; 1602 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1603 $self->_drain_rbuf;
1258 1604
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1605 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1606 return $self->_error ($!, 1);
1261 } 1607 }
1262 }); 1608 };
1263 } 1609 }
1264} 1610}
1265 1611
1612our $ERROR_SYSCALL;
1613our $ERROR_WANT_READ;
1614
1615sub _tls_error {
1616 my ($self, $err) = @_;
1617
1618 return $self->_error ($!, 1)
1619 if $err == Net::SSLeay::ERROR_SYSCALL ();
1620
1621 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1622
1623 # reduce error string to look less scary
1624 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1625
1626 if ($self->{_on_starttls}) {
1627 (delete $self->{_on_starttls})->($self, undef, $err);
1628 &_freetls;
1629 } else {
1630 &_freetls;
1631 $self->_error (Errno::EPROTO, 1, $err);
1632 }
1633}
1634
1635# poll the write BIO and send the data if applicable
1636# also decode read data if possible
1637# this is basiclaly our TLS state machine
1638# more efficient implementations are possible with openssl,
1639# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1640sub _dotls {
1267 my ($self) = @_; 1641 my ($self) = @_;
1268 1642
1269 my $buf; 1643 my $tmp;
1270 1644
1271 if (length $self->{_tls_wbuf}) { 1645 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1646 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1647 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1648 }
1275 }
1276 1649
1650 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1651 return $self->_tls_error ($tmp)
1652 if $tmp != $ERROR_WANT_READ
1653 && ($tmp != $ERROR_SYSCALL || $!);
1654 }
1655
1656 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1657 unless (length $tmp) {
1658 $self->{_on_starttls}
1659 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1660 &_freetls;
1661
1662 if ($self->{on_stoptls}) {
1663 $self->{on_stoptls}($self);
1664 return;
1665 } else {
1666 # let's treat SSL-eof as we treat normal EOF
1667 delete $self->{_rw};
1668 $self->{_eof} = 1;
1669 }
1670 }
1671
1672 $self->{_tls_rbuf} .= $tmp;
1673 $self->_drain_rbuf;
1674 $self->{tls} or return; # tls session might have gone away in callback
1675 }
1676
1677 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1678 return $self->_tls_error ($tmp)
1679 if $tmp != $ERROR_WANT_READ
1680 && ($tmp != $ERROR_SYSCALL || $!);
1681
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1682 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1683 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1684 $self->_drain_wbuf;
1280 } 1685 }
1281 1686
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1687 $self->{_on_starttls}
1283 if (length $buf) { 1688 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1689 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1690}
1306 1691
1307=item $handle->starttls ($tls[, $tls_ctx]) 1692=item $handle->starttls ($tls[, $tls_ctx])
1308 1693
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1694Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1695object is created, you can also do that at a later time by calling
1311C<starttls>. 1696C<starttls>.
1312 1697
1698Starting TLS is currently an asynchronous operation - when you push some
1699write data and then call C<< ->starttls >> then TLS negotiation will start
1700immediately, after which the queued write data is then sent.
1701
1313The first argument is the same as the C<tls> constructor argument (either 1702The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1703C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1704
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1705The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1706when AnyEvent::Handle has to create its own TLS connection object, or
1707a hash reference with C<< key => value >> pairs that will be used to
1708construct a new context.
1318 1709
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1710The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1711context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1712changed to your liking. Note that the handshake might have already started
1713when this function returns.
1322 1714
1715Due to bugs in OpenSSL, it might or might not be possible to do multiple
1716handshakes on the same stream. Best do not attempt to use the stream after
1717stopping TLS.
1718
1323=cut 1719=cut
1720
1721our %TLS_CACHE; #TODO not yet documented, should we?
1324 1722
1325sub starttls { 1723sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1724 my ($self, $tls, $ctx) = @_;
1327 1725
1328 $self->stoptls; 1726 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1727 if $self->{tls};
1329 1728
1330 if ($ssl eq "accept") { 1729 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1730 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1731
1333 } elsif ($ssl eq "connect") { 1732 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1733
1335 Net::SSLeay::set_connect_state ($ssl); 1734 require Net::SSLeay;
1735
1736 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1737 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1738
1739 $tls = $self->{tls};
1740 $ctx = $self->{tls_ctx};
1741
1742 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1743
1744 if ("HASH" eq ref $ctx) {
1745 require AnyEvent::TLS;
1746
1747 if ($ctx->{cache}) {
1748 my $key = $ctx+0;
1749 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1750 } else {
1751 $ctx = new AnyEvent::TLS %$ctx;
1752 }
1753 }
1336 } 1754
1337 1755 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1756 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1757
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1758 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1759 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1760 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1761 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1762 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1763 #
1764 # in short: this is a mess.
1765 #
1766 # note that we do not try to keep the length constant between writes as we are required to do.
1767 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1768 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1769 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1770# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1771# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1772# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1773 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1774
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1775 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1776 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1777
1778 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1779
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1780 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1781
1354 $self->{filter_w} = sub { 1782 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1783 if $self->{on_starttls};
1356 &_dotls; 1784
1357 }; 1785 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1786 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1787}
1363 1788
1364=item $handle->stoptls 1789=item $handle->stoptls
1365 1790
1366Destroys the SSL connection, if any. Partial read or write data will be 1791Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1792sending a close notify to the other side, but since OpenSSL doesn't
1793support non-blocking shut downs, it is not guarenteed that you can re-use
1794the stream afterwards.
1368 1795
1369=cut 1796=cut
1370 1797
1371sub stoptls { 1798sub stoptls {
1372 my ($self) = @_; 1799 my ($self) = @_;
1373 1800
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1801 if ($self->{tls}) {
1802 Net::SSLeay::shutdown ($self->{tls});
1375 1803
1376 delete $self->{_rbio}; 1804 &_dotls;
1377 delete $self->{_wbio}; 1805
1378 delete $self->{_tls_wbuf}; 1806# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1807# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1808# &_freetls;#d#
1809 }
1810}
1811
1812sub _freetls {
1813 my ($self) = @_;
1814
1815 return unless $self->{tls};
1816
1817 $self->{tls_ctx}->_put_session (delete $self->{tls})
1818 if $self->{tls} > 0;
1819
1820 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1821}
1382 1822
1383sub DESTROY { 1823sub DESTROY {
1384 my $self = shift; 1824 my ($self) = @_;
1385 1825
1386 $self->stoptls; 1826 &_freetls;
1387 1827
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1828 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1829
1390 if ($linger && length $self->{wbuf}) { 1830 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1831 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1832 my $wbuf = delete $self->{wbuf};
1393 1833
1394 my @linger; 1834 my @linger;
1395 1835
1396 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1836 push @linger, AE::io $fh, 1, sub {
1397 my $len = syswrite $fh, $wbuf, length $wbuf; 1837 my $len = syswrite $fh, $wbuf, length $wbuf;
1398 1838
1399 if ($len > 0) { 1839 if ($len > 0) {
1400 substr $wbuf, 0, $len, ""; 1840 substr $wbuf, 0, $len, "";
1401 } else { 1841 } else {
1402 @linger = (); # end 1842 @linger = (); # end
1403 } 1843 }
1404 }); 1844 };
1405 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1845 push @linger, AE::timer $linger, 0, sub {
1406 @linger = (); 1846 @linger = ();
1407 }); 1847 };
1408 } 1848 }
1849}
1850
1851=item $handle->destroy
1852
1853Shuts down the handle object as much as possible - this call ensures that
1854no further callbacks will be invoked and as many resources as possible
1855will be freed. Any method you will call on the handle object after
1856destroying it in this way will be silently ignored (and it will return the
1857empty list).
1858
1859Normally, you can just "forget" any references to an AnyEvent::Handle
1860object and it will simply shut down. This works in fatal error and EOF
1861callbacks, as well as code outside. It does I<NOT> work in a read or write
1862callback, so when you want to destroy the AnyEvent::Handle object from
1863within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1864that case.
1865
1866Destroying the handle object in this way has the advantage that callbacks
1867will be removed as well, so if those are the only reference holders (as
1868is common), then one doesn't need to do anything special to break any
1869reference cycles.
1870
1871The handle might still linger in the background and write out remaining
1872data, as specified by the C<linger> option, however.
1873
1874=cut
1875
1876sub destroy {
1877 my ($self) = @_;
1878
1879 $self->DESTROY;
1880 %$self = ();
1881 bless $self, "AnyEvent::Handle::destroyed";
1882}
1883
1884sub AnyEvent::Handle::destroyed::AUTOLOAD {
1885 #nop
1409} 1886}
1410 1887
1411=item AnyEvent::Handle::TLS_CTX 1888=item AnyEvent::Handle::TLS_CTX
1412 1889
1413This function creates and returns the Net::SSLeay::CTX object used by 1890This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1891for TLS mode.
1415 1892
1416The context is created like this: 1893The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1894
1426=cut 1895=cut
1427 1896
1428our $TLS_CTX; 1897our $TLS_CTX;
1429 1898
1430sub TLS_CTX() { 1899sub TLS_CTX() {
1431 $TLS_CTX || do { 1900 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1901 require AnyEvent::TLS;
1433 1902
1434 Net::SSLeay::load_error_strings (); 1903 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1904 }
1444} 1905}
1445 1906
1446=back 1907=back
1908
1909
1910=head1 NONFREQUENTLY ASKED QUESTIONS
1911
1912=over 4
1913
1914=item I C<undef> the AnyEvent::Handle reference inside my callback and
1915still get further invocations!
1916
1917That's because AnyEvent::Handle keeps a reference to itself when handling
1918read or write callbacks.
1919
1920It is only safe to "forget" the reference inside EOF or error callbacks,
1921from within all other callbacks, you need to explicitly call the C<<
1922->destroy >> method.
1923
1924=item I get different callback invocations in TLS mode/Why can't I pause
1925reading?
1926
1927Unlike, say, TCP, TLS connections do not consist of two independent
1928communication channels, one for each direction. Or put differently. The
1929read and write directions are not independent of each other: you cannot
1930write data unless you are also prepared to read, and vice versa.
1931
1932This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1933callback invocations when you are not expecting any read data - the reason
1934is that AnyEvent::Handle always reads in TLS mode.
1935
1936During the connection, you have to make sure that you always have a
1937non-empty read-queue, or an C<on_read> watcher. At the end of the
1938connection (or when you no longer want to use it) you can call the
1939C<destroy> method.
1940
1941=item How do I read data until the other side closes the connection?
1942
1943If you just want to read your data into a perl scalar, the easiest way
1944to achieve this is by setting an C<on_read> callback that does nothing,
1945clearing the C<on_eof> callback and in the C<on_error> callback, the data
1946will be in C<$_[0]{rbuf}>:
1947
1948 $handle->on_read (sub { });
1949 $handle->on_eof (undef);
1950 $handle->on_error (sub {
1951 my $data = delete $_[0]{rbuf};
1952 });
1953
1954The reason to use C<on_error> is that TCP connections, due to latencies
1955and packets loss, might get closed quite violently with an error, when in
1956fact, all data has been received.
1957
1958It is usually better to use acknowledgements when transferring data,
1959to make sure the other side hasn't just died and you got the data
1960intact. This is also one reason why so many internet protocols have an
1961explicit QUIT command.
1962
1963=item I don't want to destroy the handle too early - how do I wait until
1964all data has been written?
1965
1966After writing your last bits of data, set the C<on_drain> callback
1967and destroy the handle in there - with the default setting of
1968C<low_water_mark> this will be called precisely when all data has been
1969written to the socket:
1970
1971 $handle->push_write (...);
1972 $handle->on_drain (sub {
1973 warn "all data submitted to the kernel\n";
1974 undef $handle;
1975 });
1976
1977If you just want to queue some data and then signal EOF to the other side,
1978consider using C<< ->push_shutdown >> instead.
1979
1980=item I want to contact a TLS/SSL server, I don't care about security.
1981
1982If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1983simply connect to it and then create the AnyEvent::Handle with the C<tls>
1984parameter:
1985
1986 tcp_connect $host, $port, sub {
1987 my ($fh) = @_;
1988
1989 my $handle = new AnyEvent::Handle
1990 fh => $fh,
1991 tls => "connect",
1992 on_error => sub { ... };
1993
1994 $handle->push_write (...);
1995 };
1996
1997=item I want to contact a TLS/SSL server, I do care about security.
1998
1999Then you should additionally enable certificate verification, including
2000peername verification, if the protocol you use supports it (see
2001L<AnyEvent::TLS>, C<verify_peername>).
2002
2003E.g. for HTTPS:
2004
2005 tcp_connect $host, $port, sub {
2006 my ($fh) = @_;
2007
2008 my $handle = new AnyEvent::Handle
2009 fh => $fh,
2010 peername => $host,
2011 tls => "connect",
2012 tls_ctx => { verify => 1, verify_peername => "https" },
2013 ...
2014
2015Note that you must specify the hostname you connected to (or whatever
2016"peername" the protocol needs) as the C<peername> argument, otherwise no
2017peername verification will be done.
2018
2019The above will use the system-dependent default set of trusted CA
2020certificates. If you want to check against a specific CA, add the
2021C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2022
2023 tls_ctx => {
2024 verify => 1,
2025 verify_peername => "https",
2026 ca_file => "my-ca-cert.pem",
2027 },
2028
2029=item I want to create a TLS/SSL server, how do I do that?
2030
2031Well, you first need to get a server certificate and key. You have
2032three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2033self-signed certificate (cheap. check the search engine of your choice,
2034there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2035nice program for that purpose).
2036
2037Then create a file with your private key (in PEM format, see
2038L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2039file should then look like this:
2040
2041 -----BEGIN RSA PRIVATE KEY-----
2042 ...header data
2043 ... lots of base64'y-stuff
2044 -----END RSA PRIVATE KEY-----
2045
2046 -----BEGIN CERTIFICATE-----
2047 ... lots of base64'y-stuff
2048 -----END CERTIFICATE-----
2049
2050The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2051specify this file as C<cert_file>:
2052
2053 tcp_server undef, $port, sub {
2054 my ($fh) = @_;
2055
2056 my $handle = new AnyEvent::Handle
2057 fh => $fh,
2058 tls => "accept",
2059 tls_ctx => { cert_file => "my-server-keycert.pem" },
2060 ...
2061
2062When you have intermediate CA certificates that your clients might not
2063know about, just append them to the C<cert_file>.
2064
2065=back
2066
1447 2067
1448=head1 SUBCLASSING AnyEvent::Handle 2068=head1 SUBCLASSING AnyEvent::Handle
1449 2069
1450In many cases, you might want to subclass AnyEvent::Handle. 2070In many cases, you might want to subclass AnyEvent::Handle.
1451 2071

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines