ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.79 by root, Sun Jul 27 08:37:56 2008 UTC vs.
Revision 1.184 by root, Thu Sep 3 13:14:38 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.22;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
121 206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
132memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
133the file when the write queue becomes empty. 218the file when the write queue becomes empty.
134 219
135=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
136 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
137If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
138seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
139handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
140missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
141 237
142Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
146 243
147Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
148 245
149=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
150 247
154 251
155=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
156 253
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
160 257
161For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
165isn't finished). 262isn't finished).
166 263
167=item autocork => <boolean> 264=item autocork => <boolean>
168 265
169When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
174 272
175When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
178 277
179=item no_delay => <boolean> 278=item no_delay => <boolean>
180 279
181When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
184 283
185In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
187 286
188The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified. Note that setting this flag after
318establishing a connection I<may> be a bit too late (data loss could
319already have occured on BSD systems), but at least it will protect you
320from most attacks.
190 321
191=item read_size => <bytes> 322=item read_size => <bytes>
192 323
193The default read block size (the amount of bytes this module will try to read 324The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 325try to read during each loop iteration, which affects memory
326requirements). Default: C<8192>.
195 327
196=item low_water_mark => <bytes> 328=item low_water_mark => <bytes>
197 329
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 330Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 331buffer: If the write reaches this size or gets even samller it is
200considered empty. 332considered empty.
201 333
334Sometimes it can be beneficial (for performance reasons) to add data to
335the write buffer before it is fully drained, but this is a rare case, as
336the operating system kernel usually buffers data as well, so the default
337is good in almost all cases.
338
202=item linger => <seconds> 339=item linger => <seconds>
203 340
204If non-zero (default: C<3600>), then the destructor of the 341If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 342AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 343write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 344socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 345system treats outstanding data at socket close time).
209 346
210This will not work for partial TLS data that could not yet been 347This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 348yet. This data will be lost. Calling the C<stoptls> method in time might
349help.
350
351=item peername => $string
352
353A string used to identify the remote site - usually the DNS hostname
354(I<not> IDN!) used to create the connection, rarely the IP address.
355
356Apart from being useful in error messages, this string is also used in TLS
357peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
358verification will be skipped when C<peername> is not specified or
359C<undef>.
212 360
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 361=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 362
215When this parameter is given, it enables TLS (SSL) mode, that means it 363When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 364AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 365established and will transparently encrypt/decrypt data afterwards.
366
367All TLS protocol errors will be signalled as C<EPROTO>, with an
368appropriate error message.
218 369
219TLS mode requires Net::SSLeay to be installed (it will be loaded 370TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 371automatically when you try to create a TLS handle): this module doesn't
372have a dependency on that module, so if your module requires it, you have
373to add the dependency yourself.
221 374
222For the TLS server side, use C<accept>, and for the TLS client side of a 375Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 376C<accept>, and for the TLS client side of a connection, use C<connect>
377mode.
224 378
225You can also provide your own TLS connection object, but you have 379You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 380to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 381or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 382AnyEvent::Handle. Also, this module will take ownership of this connection
383object.
229 384
385At some future point, AnyEvent::Handle might switch to another TLS
386implementation, then the option to use your own session object will go
387away.
388
389B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
390passing in the wrong integer will lead to certain crash. This most often
391happens when one uses a stylish C<< tls => 1 >> and is surprised about the
392segmentation fault.
393
230See the C<starttls> method if you need to start TLS negotiation later. 394See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 395
232=item tls_ctx => $ssl_ctx 396=item tls_ctx => $anyevent_tls
233 397
234Use the given Net::SSLeay::CTX object to create the new TLS connection 398Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 399(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 400missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 401
402Instead of an object, you can also specify a hash reference with C<< key
403=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
404new TLS context object.
405
406=item on_starttls => $cb->($handle, $success[, $error_message])
407
408This callback will be invoked when the TLS/SSL handshake has finished. If
409C<$success> is true, then the TLS handshake succeeded, otherwise it failed
410(C<on_stoptls> will not be called in this case).
411
412The session in C<< $handle->{tls} >> can still be examined in this
413callback, even when the handshake was not successful.
414
415TLS handshake failures will not cause C<on_error> to be invoked when this
416callback is in effect, instead, the error message will be passed to C<on_starttls>.
417
418Without this callback, handshake failures lead to C<on_error> being
419called, as normal.
420
421Note that you cannot call C<starttls> right again in this callback. If you
422need to do that, start an zero-second timer instead whose callback can
423then call C<< ->starttls >> again.
424
425=item on_stoptls => $cb->($handle)
426
427When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
428set, then it will be invoked after freeing the TLS session. If it is not,
429then a TLS shutdown condition will be treated like a normal EOF condition
430on the handle.
431
432The session in C<< $handle->{tls} >> can still be examined in this
433callback.
434
435This callback will only be called on TLS shutdowns, not when the
436underlying handle signals EOF.
437
238=item json => JSON or JSON::XS object 438=item json => JSON or JSON::XS object
239 439
240This is the json coder object used by the C<json> read and write types. 440This is the json coder object used by the C<json> read and write types.
241 441
242If you don't supply it, then AnyEvent::Handle will create and use a 442If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 443suitable one (on demand), which will write and expect UTF-8 encoded JSON
444texts.
244 445
245Note that you are responsible to depend on the JSON module if you want to 446Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 447use this functionality, as AnyEvent does not have a dependency itself.
247 448
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 449=back
255 450
256=cut 451=cut
257 452
258sub new { 453sub new {
259 my $class = shift; 454 my $class = shift;
260
261 my $self = bless { @_ }, $class; 455 my $self = bless { @_ }, $class;
262 456
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 457 if ($self->{fh}) {
458 $self->_start;
459 return unless $self->{fh}; # could be gone by now
460
461 } elsif ($self->{connect}) {
462 require AnyEvent::Socket;
463
464 $self->{peername} = $self->{connect}[0]
465 unless exists $self->{peername};
466
467 $self->{_skip_drain_rbuf} = 1;
468
469 {
470 Scalar::Util::weaken (my $self = $self);
471
472 $self->{_connect} =
473 AnyEvent::Socket::tcp_connect (
474 $self->{connect}[0],
475 $self->{connect}[1],
476 sub {
477 my ($fh, $host, $port, $retry) = @_;
478
479 if ($fh) {
480 $self->{fh} = $fh;
481
482 delete $self->{_skip_drain_rbuf};
483 $self->_start;
484
485 $self->{on_connect}
486 and $self->{on_connect}($self, $host, $port, sub {
487 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
488 $self->{_skip_drain_rbuf} = 1;
489 &$retry;
490 });
491
492 } else {
493 if ($self->{on_connect_error}) {
494 $self->{on_connect_error}($self, "$!");
495 $self->destroy;
496 } else {
497 $self->_error ($!, 1);
498 }
499 }
500 },
501 sub {
502 local $self->{fh} = $_[0];
503
504 $self->{on_prepare}
505 ? $self->{on_prepare}->($self)
506 : ()
507 }
508 );
509 }
510
511 } else {
512 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
513 }
514
515 $self
516}
517
518sub _start {
519 my ($self) = @_;
264 520
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 521 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 522
267 if ($self->{tls}) { 523 $self->{_activity} =
268 require Net::SSLeay; 524 $self->{_ractivity} =
525 $self->{_wactivity} = AE::now;
526
527 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
528 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
529 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
530
531 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
532 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
533
534 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
535
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 536 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
270 } 537 if $self->{tls};
271 538
272 $self->{_activity} = AnyEvent->now;
273 $self->_timeout;
274
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 539 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 540
278 $self->start_read 541 $self->start_read
279 if $self->{on_read}; 542 if $self->{on_read} || @{ $self->{_queue} };
280 543
281 $self 544 $self->_drain_wbuf;
282}
283
284sub _shutdown {
285 my ($self) = @_;
286
287 delete $self->{_tw};
288 delete $self->{_rw};
289 delete $self->{_ww};
290 delete $self->{fh};
291
292 $self->stoptls;
293} 545}
294 546
295sub _error { 547sub _error {
296 my ($self, $errno, $fatal) = @_; 548 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 549
301 $! = $errno; 550 $! = $errno;
551 $message ||= "$!";
302 552
303 if ($self->{on_error}) { 553 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 554 $self->{on_error}($self, $fatal, $message);
305 } else { 555 $self->destroy if $fatal;
556 } elsif ($self->{fh}) {
557 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 558 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 559 }
308} 560}
309 561
310=item $fh = $handle->fh 562=item $fh = $handle->fh
311 563
312This method returns the file handle of the L<AnyEvent::Handle> object. 564This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 565
314=cut 566=cut
315 567
316sub fh { $_[0]{fh} } 568sub fh { $_[0]{fh} }
317 569
335 $_[0]{on_eof} = $_[1]; 587 $_[0]{on_eof} = $_[1];
336} 588}
337 589
338=item $handle->on_timeout ($cb) 590=item $handle->on_timeout ($cb)
339 591
340Replace the current C<on_timeout> callback, or disables the callback 592=item $handle->on_rtimeout ($cb)
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342argument.
343 593
344=cut 594=item $handle->on_wtimeout ($cb)
345 595
346sub on_timeout { 596Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
347 $_[0]{on_timeout} = $_[1]; 597callback, or disables the callback (but not the timeout) if C<$cb> =
348} 598C<undef>. See the C<timeout> constructor argument and method.
599
600=cut
601
602# see below
349 603
350=item $handle->autocork ($boolean) 604=item $handle->autocork ($boolean)
351 605
352Enables or disables the current autocork behaviour (see C<autocork> 606Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 607constructor argument). Changes will only take effect on the next write.
354 608
355=cut 609=cut
610
611sub autocork {
612 $_[0]{autocork} = $_[1];
613}
356 614
357=item $handle->no_delay ($boolean) 615=item $handle->no_delay ($boolean)
358 616
359Enables or disables the C<no_delay> setting (see constructor argument of 617Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 618the same name for details).
364sub no_delay { 622sub no_delay {
365 $_[0]{no_delay} = $_[1]; 623 $_[0]{no_delay} = $_[1];
366 624
367 eval { 625 eval {
368 local $SIG{__DIE__}; 626 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 627 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
628 if $_[0]{fh};
370 }; 629 };
371} 630}
372 631
632=item $handle->keepalive ($boolean)
633
634Enables or disables the C<keepalive> setting (see constructor argument of
635the same name for details).
636
637=cut
638
639sub keepalive {
640 $_[0]{keepalive} = $_[1];
641
642 eval {
643 local $SIG{__DIE__};
644 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
645 if $_[0]{fh};
646 };
647}
648
649=item $handle->oobinline ($boolean)
650
651Enables or disables the C<oobinline> setting (see constructor argument of
652the same name for details).
653
654=cut
655
656sub oobinline {
657 $_[0]{oobinline} = $_[1];
658
659 eval {
660 local $SIG{__DIE__};
661 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
662 if $_[0]{fh};
663 };
664}
665
666=item $handle->keepalive ($boolean)
667
668Enables or disables the C<keepalive> setting (see constructor argument of
669the same name for details).
670
671=cut
672
673sub keepalive {
674 $_[0]{keepalive} = $_[1];
675
676 eval {
677 local $SIG{__DIE__};
678 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
679 if $_[0]{fh};
680 };
681}
682
683=item $handle->on_starttls ($cb)
684
685Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
686
687=cut
688
689sub on_starttls {
690 $_[0]{on_starttls} = $_[1];
691}
692
693=item $handle->on_stoptls ($cb)
694
695Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
696
697=cut
698
699sub on_starttls {
700 $_[0]{on_stoptls} = $_[1];
701}
702
703=item $handle->rbuf_max ($max_octets)
704
705Configures the C<rbuf_max> setting (C<undef> disables it).
706
707=cut
708
709sub rbuf_max {
710 $_[0]{rbuf_max} = $_[1];
711}
712
373############################################################################# 713#############################################################################
374 714
375=item $handle->timeout ($seconds) 715=item $handle->timeout ($seconds)
376 716
717=item $handle->rtimeout ($seconds)
718
719=item $handle->wtimeout ($seconds)
720
377Configures (or disables) the inactivity timeout. 721Configures (or disables) the inactivity timeout.
378 722
379=cut 723=item $handle->timeout_reset
380 724
381sub timeout { 725=item $handle->rtimeout_reset
726
727=item $handle->wtimeout_reset
728
729Reset the activity timeout, as if data was received or sent.
730
731These methods are cheap to call.
732
733=cut
734
735for my $dir ("", "r", "w") {
736 my $timeout = "${dir}timeout";
737 my $tw = "_${dir}tw";
738 my $on_timeout = "on_${dir}timeout";
739 my $activity = "_${dir}activity";
740 my $cb;
741
742 *$on_timeout = sub {
743 $_[0]{$on_timeout} = $_[1];
744 };
745
746 *$timeout = sub {
382 my ($self, $timeout) = @_; 747 my ($self, $new_value) = @_;
383 748
384 $self->{timeout} = $timeout; 749 $self->{$timeout} = $new_value;
385 $self->_timeout; 750 delete $self->{$tw}; &$cb;
386} 751 };
387 752
753 *{"${dir}timeout_reset"} = sub {
754 $_[0]{$activity} = AE::now;
755 };
756
757 # main workhorse:
388# reset the timeout watcher, as neccessary 758 # reset the timeout watcher, as neccessary
389# also check for time-outs 759 # also check for time-outs
390sub _timeout { 760 $cb = sub {
391 my ($self) = @_; 761 my ($self) = @_;
392 762
393 if ($self->{timeout}) { 763 if ($self->{$timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 764 my $NOW = AE::now;
395 765
396 # when would the timeout trigger? 766 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 767 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
398 768
399 # now or in the past already? 769 # now or in the past already?
400 if ($after <= 0) { 770 if ($after <= 0) {
401 $self->{_activity} = $NOW; 771 $self->{$activity} = $NOW;
402 772
403 if ($self->{on_timeout}) { 773 if ($self->{$on_timeout}) {
404 $self->{on_timeout}($self); 774 $self->{$on_timeout}($self);
405 } else { 775 } else {
406 $self->_error (&Errno::ETIMEDOUT); 776 $self->_error (Errno::ETIMEDOUT);
777 }
778
779 # callback could have changed timeout value, optimise
780 return unless $self->{$timeout};
781
782 # calculate new after
783 $after = $self->{$timeout};
407 } 784 }
408 785
409 # callback could have changed timeout value, optimise 786 Scalar::Util::weaken $self;
410 return unless $self->{timeout}; 787 return unless $self; # ->error could have destroyed $self
411 788
412 # calculate new after 789 $self->{$tw} ||= AE::timer $after, 0, sub {
413 $after = $self->{timeout}; 790 delete $self->{$tw};
791 $cb->($self);
792 };
793 } else {
794 delete $self->{$tw};
414 } 795 }
415
416 Scalar::Util::weaken $self;
417 return unless $self; # ->error could have destroyed $self
418
419 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420 delete $self->{_tw};
421 $self->_timeout;
422 });
423 } else {
424 delete $self->{_tw};
425 } 796 }
426} 797}
427 798
428############################################################################# 799#############################################################################
429 800
453 my ($self, $cb) = @_; 824 my ($self, $cb) = @_;
454 825
455 $self->{on_drain} = $cb; 826 $self->{on_drain} = $cb;
456 827
457 $cb->($self) 828 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 829 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 830}
460 831
461=item $handle->push_write ($data) 832=item $handle->push_write ($data)
462 833
463Queues the given scalar to be written. You can push as much data as you 834Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 845 Scalar::Util::weaken $self;
475 846
476 my $cb = sub { 847 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 848 my $len = syswrite $self->{fh}, $self->{wbuf};
478 849
479 if ($len >= 0) { 850 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 851 substr $self->{wbuf}, 0, $len, "";
481 852
482 $self->{_activity} = AnyEvent->now; 853 $self->{_activity} = $self->{_wactivity} = AE::now;
483 854
484 $self->{on_drain}($self) 855 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 856 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 857 && $self->{on_drain};
487 858
488 delete $self->{_ww} unless length $self->{wbuf}; 859 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 860 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 861 $self->_error ($!, 1);
493 864
494 # try to write data immediately 865 # try to write data immediately
495 $cb->() unless $self->{autocork}; 866 $cb->() unless $self->{autocork};
496 867
497 # if still data left in wbuf, we need to poll 868 # if still data left in wbuf, we need to poll
498 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 869 $self->{_ww} = AE::io $self->{fh}, 1, $cb
499 if length $self->{wbuf}; 870 if length $self->{wbuf};
500 }; 871 };
501} 872}
502 873
503our %WH; 874our %WH;
514 885
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 886 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 887 ->($self, @_);
517 } 888 }
518 889
519 if ($self->{filter_w}) { 890 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 891 $self->{_tls_wbuf} .= $_[0];
892 &_dotls ($self) if $self->{fh};
521 } else { 893 } else {
522 $self->{wbuf} .= $_[0]; 894 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 895 $self->_drain_wbuf if $self->{fh};
524 } 896 }
525} 897}
526 898
527=item $handle->push_write (type => @args) 899=item $handle->push_write (type => @args)
528 900
542=cut 914=cut
543 915
544register_write_type netstring => sub { 916register_write_type netstring => sub {
545 my ($self, $string) = @_; 917 my ($self, $string) = @_;
546 918
547 sprintf "%d:%s,", (length $string), $string 919 (length $string) . ":$string,"
548}; 920};
549 921
550=item packstring => $format, $data 922=item packstring => $format, $data
551 923
552An octet string prefixed with an encoded length. The encoding C<$format> 924An octet string prefixed with an encoded length. The encoding C<$format>
592Other languages could read single lines terminated by a newline and pass 964Other languages could read single lines terminated by a newline and pass
593this line into their JSON decoder of choice. 965this line into their JSON decoder of choice.
594 966
595=cut 967=cut
596 968
969sub json_coder() {
970 eval { require JSON::XS; JSON::XS->new->utf8 }
971 || do { require JSON; JSON->new->utf8 }
972}
973
597register_write_type json => sub { 974register_write_type json => sub {
598 my ($self, $ref) = @_; 975 my ($self, $ref) = @_;
599 976
600 require JSON; 977 my $json = $self->{json} ||= json_coder;
601 978
602 $self->{json} ? $self->{json}->encode ($ref) 979 $json->encode ($ref)
603 : JSON::encode_json ($ref)
604}; 980};
605 981
606=item storable => $reference 982=item storable => $reference
607 983
608Freezes the given reference using L<Storable> and writes it to the 984Freezes the given reference using L<Storable> and writes it to the
617 993
618 pack "w/a*", Storable::nfreeze ($ref) 994 pack "w/a*", Storable::nfreeze ($ref)
619}; 995};
620 996
621=back 997=back
998
999=item $handle->push_shutdown
1000
1001Sometimes you know you want to close the socket after writing your data
1002before it was actually written. One way to do that is to replace your
1003C<on_drain> handler by a callback that shuts down the socket (and set
1004C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1005replaces the C<on_drain> callback with:
1006
1007 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1008
1009This simply shuts down the write side and signals an EOF condition to the
1010the peer.
1011
1012You can rely on the normal read queue and C<on_eof> handling
1013afterwards. This is the cleanest way to close a connection.
1014
1015=cut
1016
1017sub push_shutdown {
1018 my ($self) = @_;
1019
1020 delete $self->{low_water_mark};
1021 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1022}
622 1023
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1024=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 1025
625This function (not method) lets you add your own types to C<push_write>. 1026This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 1027Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 1121=cut
721 1122
722sub _drain_rbuf { 1123sub _drain_rbuf {
723 my ($self) = @_; 1124 my ($self) = @_;
724 1125
1126 # avoid recursion
1127 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 1128 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 1129
734 while () { 1130 while () {
1131 # we need to use a separate tls read buffer, as we must not receive data while
1132 # we are draining the buffer, and this can only happen with TLS.
1133 $self->{rbuf} .= delete $self->{_tls_rbuf}
1134 if exists $self->{_tls_rbuf};
1135
735 my $len = length $self->{rbuf}; 1136 my $len = length $self->{rbuf};
736 1137
737 if (my $cb = shift @{ $self->{_queue} }) { 1138 if (my $cb = shift @{ $self->{_queue} }) {
738 unless ($cb->($self)) { 1139 unless ($cb->($self)) {
739 if ($self->{_eof}) { 1140 # no progress can be made
740 # no progress can be made (not enough data and no data forthcoming) 1141 # (not enough data and no data forthcoming)
741 $self->_error (&Errno::EPIPE, 1), last; 1142 $self->_error (Errno::EPIPE, 1), return
742 } 1143 if $self->{_eof};
743 1144
744 unshift @{ $self->{_queue} }, $cb; 1145 unshift @{ $self->{_queue} }, $cb;
745 last; 1146 last;
746 } 1147 }
747 } elsif ($self->{on_read}) { 1148 } elsif ($self->{on_read}) {
754 && !@{ $self->{_queue} } # and the queue is still empty 1155 && !@{ $self->{_queue} } # and the queue is still empty
755 && $self->{on_read} # but we still have on_read 1156 && $self->{on_read} # but we still have on_read
756 ) { 1157 ) {
757 # no further data will arrive 1158 # no further data will arrive
758 # so no progress can be made 1159 # so no progress can be made
759 $self->_error (&Errno::EPIPE, 1), last 1160 $self->_error (Errno::EPIPE, 1), return
760 if $self->{_eof}; 1161 if $self->{_eof};
761 1162
762 last; # more data might arrive 1163 last; # more data might arrive
763 } 1164 }
764 } else { 1165 } else {
765 # read side becomes idle 1166 # read side becomes idle
766 delete $self->{_rw}; 1167 delete $self->{_rw} unless $self->{tls};
767 last; 1168 last;
768 } 1169 }
769 } 1170 }
770 1171
1172 if ($self->{_eof}) {
1173 $self->{on_eof}
771 $self->{on_eof}($self) 1174 ? $self->{on_eof}($self)
772 if $self->{_eof} && $self->{on_eof}; 1175 : $self->_error (0, 1, "Unexpected end-of-file");
1176
1177 return;
1178 }
1179
1180 if (
1181 defined $self->{rbuf_max}
1182 && $self->{rbuf_max} < length $self->{rbuf}
1183 ) {
1184 $self->_error (Errno::ENOSPC, 1), return;
1185 }
773 1186
774 # may need to restart read watcher 1187 # may need to restart read watcher
775 unless ($self->{_rw}) { 1188 unless ($self->{_rw}) {
776 $self->start_read 1189 $self->start_read
777 if $self->{on_read} || @{ $self->{_queue} }; 1190 if $self->{on_read} || @{ $self->{_queue} };
788 1201
789sub on_read { 1202sub on_read {
790 my ($self, $cb) = @_; 1203 my ($self, $cb) = @_;
791 1204
792 $self->{on_read} = $cb; 1205 $self->{on_read} = $cb;
793 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1206 $self->_drain_rbuf if $cb;
794} 1207}
795 1208
796=item $handle->rbuf 1209=item $handle->rbuf
797 1210
798Returns the read buffer (as a modifiable lvalue). 1211Returns the read buffer (as a modifiable lvalue).
799 1212
800You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1213You can access the read buffer directly as the C<< ->{rbuf} >>
801you want. 1214member, if you want. However, the only operation allowed on the
1215read buffer (apart from looking at it) is removing data from its
1216beginning. Otherwise modifying or appending to it is not allowed and will
1217lead to hard-to-track-down bugs.
802 1218
803NOTE: The read buffer should only be used or modified if the C<on_read>, 1219NOTE: The read buffer should only be used or modified if the C<on_read>,
804C<push_read> or C<unshift_read> methods are used. The other read methods 1220C<push_read> or C<unshift_read> methods are used. The other read methods
805automatically manage the read buffer. 1221automatically manage the read buffer.
806 1222
847 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1263 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
848 ->($self, $cb, @_); 1264 ->($self, $cb, @_);
849 } 1265 }
850 1266
851 push @{ $self->{_queue} }, $cb; 1267 push @{ $self->{_queue} }, $cb;
852 $self->_drain_rbuf unless $self->{_in_drain}; 1268 $self->_drain_rbuf;
853} 1269}
854 1270
855sub unshift_read { 1271sub unshift_read {
856 my $self = shift; 1272 my $self = shift;
857 my $cb = pop; 1273 my $cb = pop;
861 1277
862 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1278 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
863 ->($self, $cb, @_); 1279 ->($self, $cb, @_);
864 } 1280 }
865 1281
866
867 unshift @{ $self->{_queue} }, $cb; 1282 unshift @{ $self->{_queue} }, $cb;
868 $self->_drain_rbuf unless $self->{_in_drain}; 1283 $self->_drain_rbuf;
869} 1284}
870 1285
871=item $handle->push_read (type => @args, $cb) 1286=item $handle->push_read (type => @args, $cb)
872 1287
873=item $handle->unshift_read (type => @args, $cb) 1288=item $handle->unshift_read (type => @args, $cb)
1006 return 1; 1421 return 1;
1007 } 1422 }
1008 1423
1009 # reject 1424 # reject
1010 if ($reject && $$rbuf =~ $reject) { 1425 if ($reject && $$rbuf =~ $reject) {
1011 $self->_error (&Errno::EBADMSG); 1426 $self->_error (Errno::EBADMSG);
1012 } 1427 }
1013 1428
1014 # skip 1429 # skip
1015 if ($skip && $$rbuf =~ $skip) { 1430 if ($skip && $$rbuf =~ $skip) {
1016 $data .= substr $$rbuf, 0, $+[0], ""; 1431 $data .= substr $$rbuf, 0, $+[0], "";
1032 my ($self, $cb) = @_; 1447 my ($self, $cb) = @_;
1033 1448
1034 sub { 1449 sub {
1035 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1450 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1036 if ($_[0]{rbuf} =~ /[^0-9]/) { 1451 if ($_[0]{rbuf} =~ /[^0-9]/) {
1037 $self->_error (&Errno::EBADMSG); 1452 $self->_error (Errno::EBADMSG);
1038 } 1453 }
1039 return; 1454 return;
1040 } 1455 }
1041 1456
1042 my $len = $1; 1457 my $len = $1;
1045 my $string = $_[1]; 1460 my $string = $_[1];
1046 $_[0]->unshift_read (chunk => 1, sub { 1461 $_[0]->unshift_read (chunk => 1, sub {
1047 if ($_[1] eq ",") { 1462 if ($_[1] eq ",") {
1048 $cb->($_[0], $string); 1463 $cb->($_[0], $string);
1049 } else { 1464 } else {
1050 $self->_error (&Errno::EBADMSG); 1465 $self->_error (Errno::EBADMSG);
1051 } 1466 }
1052 }); 1467 });
1053 }); 1468 });
1054 1469
1055 1 1470 1
1061An octet string prefixed with an encoded length. The encoding C<$format> 1476An octet string prefixed with an encoded length. The encoding C<$format>
1062uses the same format as a Perl C<pack> format, but must specify a single 1477uses the same format as a Perl C<pack> format, but must specify a single
1063integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1478integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1064optional C<!>, C<< < >> or C<< > >> modifier). 1479optional C<!>, C<< < >> or C<< > >> modifier).
1065 1480
1066DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1481For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1482EPP uses a prefix of C<N> (4 octtes).
1067 1483
1068Example: read a block of data prefixed by its length in BER-encoded 1484Example: read a block of data prefixed by its length in BER-encoded
1069format (very efficient). 1485format (very efficient).
1070 1486
1071 $handle->push_read (packstring => "w", sub { 1487 $handle->push_read (packstring => "w", sub {
1101 } 1517 }
1102}; 1518};
1103 1519
1104=item json => $cb->($handle, $hash_or_arrayref) 1520=item json => $cb->($handle, $hash_or_arrayref)
1105 1521
1106Reads a JSON object or array, decodes it and passes it to the callback. 1522Reads a JSON object or array, decodes it and passes it to the
1523callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1107 1524
1108If a C<json> object was passed to the constructor, then that will be used 1525If a C<json> object was passed to the constructor, then that will be used
1109for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1526for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1110 1527
1111This read type uses the incremental parser available with JSON version 1528This read type uses the incremental parser available with JSON version
1120=cut 1537=cut
1121 1538
1122register_read_type json => sub { 1539register_read_type json => sub {
1123 my ($self, $cb) = @_; 1540 my ($self, $cb) = @_;
1124 1541
1125 require JSON; 1542 my $json = $self->{json} ||= json_coder;
1126 1543
1127 my $data; 1544 my $data;
1128 my $rbuf = \$self->{rbuf}; 1545 my $rbuf = \$self->{rbuf};
1129 1546
1130 my $json = $self->{json} ||= JSON->new->utf8;
1131
1132 sub { 1547 sub {
1133 my $ref = $json->incr_parse ($self->{rbuf}); 1548 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1134 1549
1135 if ($ref) { 1550 if ($ref) {
1136 $self->{rbuf} = $json->incr_text; 1551 $self->{rbuf} = $json->incr_text;
1137 $json->incr_text = ""; 1552 $json->incr_text = "";
1138 $cb->($self, $ref); 1553 $cb->($self, $ref);
1139 1554
1140 1 1555 1
1556 } elsif ($@) {
1557 # error case
1558 $json->incr_skip;
1559
1560 $self->{rbuf} = $json->incr_text;
1561 $json->incr_text = "";
1562
1563 $self->_error (Errno::EBADMSG);
1564
1565 ()
1141 } else { 1566 } else {
1142 $self->{rbuf} = ""; 1567 $self->{rbuf} = "";
1568
1143 () 1569 ()
1144 } 1570 }
1145 } 1571 }
1146}; 1572};
1147 1573
1179 # read remaining chunk 1605 # read remaining chunk
1180 $_[0]->unshift_read (chunk => $len, sub { 1606 $_[0]->unshift_read (chunk => $len, sub {
1181 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1607 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1182 $cb->($_[0], $ref); 1608 $cb->($_[0], $ref);
1183 } else { 1609 } else {
1184 $self->_error (&Errno::EBADMSG); 1610 $self->_error (Errno::EBADMSG);
1185 } 1611 }
1186 }); 1612 });
1187 } 1613 }
1188 1614
1189 1 1615 1
1224Note that AnyEvent::Handle will automatically C<start_read> for you when 1650Note that AnyEvent::Handle will automatically C<start_read> for you when
1225you change the C<on_read> callback or push/unshift a read callback, and it 1651you change the C<on_read> callback or push/unshift a read callback, and it
1226will automatically C<stop_read> for you when neither C<on_read> is set nor 1652will automatically C<stop_read> for you when neither C<on_read> is set nor
1227there are any read requests in the queue. 1653there are any read requests in the queue.
1228 1654
1655These methods will have no effect when in TLS mode (as TLS doesn't support
1656half-duplex connections).
1657
1229=cut 1658=cut
1230 1659
1231sub stop_read { 1660sub stop_read {
1232 my ($self) = @_; 1661 my ($self) = @_;
1233 1662
1234 delete $self->{_rw}; 1663 delete $self->{_rw} unless $self->{tls};
1235} 1664}
1236 1665
1237sub start_read { 1666sub start_read {
1238 my ($self) = @_; 1667 my ($self) = @_;
1239 1668
1240 unless ($self->{_rw} || $self->{_eof}) { 1669 unless ($self->{_rw} || $self->{_eof}) {
1241 Scalar::Util::weaken $self; 1670 Scalar::Util::weaken $self;
1242 1671
1243 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1672 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1244 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1673 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1245 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1674 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1246 1675
1247 if ($len > 0) { 1676 if ($len > 0) {
1248 $self->{_activity} = AnyEvent->now; 1677 $self->{_activity} = $self->{_ractivity} = AE::now;
1249 1678
1250 $self->{filter_r} 1679 if ($self->{tls}) {
1251 ? $self->{filter_r}($self, $rbuf) 1680 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1252 : $self->{_in_drain} || $self->_drain_rbuf; 1681
1682 &_dotls ($self);
1683 } else {
1684 $self->_drain_rbuf;
1685 }
1253 1686
1254 } elsif (defined $len) { 1687 } elsif (defined $len) {
1255 delete $self->{_rw}; 1688 delete $self->{_rw};
1256 $self->{_eof} = 1; 1689 $self->{_eof} = 1;
1257 $self->_drain_rbuf unless $self->{_in_drain}; 1690 $self->_drain_rbuf;
1258 1691
1259 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1692 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1260 return $self->_error ($!, 1); 1693 return $self->_error ($!, 1);
1261 } 1694 }
1262 }); 1695 };
1263 } 1696 }
1264} 1697}
1265 1698
1699our $ERROR_SYSCALL;
1700our $ERROR_WANT_READ;
1701
1702sub _tls_error {
1703 my ($self, $err) = @_;
1704
1705 return $self->_error ($!, 1)
1706 if $err == Net::SSLeay::ERROR_SYSCALL ();
1707
1708 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1709
1710 # reduce error string to look less scary
1711 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1712
1713 if ($self->{_on_starttls}) {
1714 (delete $self->{_on_starttls})->($self, undef, $err);
1715 &_freetls;
1716 } else {
1717 &_freetls;
1718 $self->_error (Errno::EPROTO, 1, $err);
1719 }
1720}
1721
1722# poll the write BIO and send the data if applicable
1723# also decode read data if possible
1724# this is basiclaly our TLS state machine
1725# more efficient implementations are possible with openssl,
1726# but not with the buggy and incomplete Net::SSLeay.
1266sub _dotls { 1727sub _dotls {
1267 my ($self) = @_; 1728 my ($self) = @_;
1268 1729
1269 my $buf; 1730 my $tmp;
1270 1731
1271 if (length $self->{_tls_wbuf}) { 1732 if (length $self->{_tls_wbuf}) {
1272 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1733 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1273 substr $self->{_tls_wbuf}, 0, $len, ""; 1734 substr $self->{_tls_wbuf}, 0, $tmp, "";
1274 } 1735 }
1275 }
1276 1736
1737 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1738 return $self->_tls_error ($tmp)
1739 if $tmp != $ERROR_WANT_READ
1740 && ($tmp != $ERROR_SYSCALL || $!);
1741 }
1742
1743 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1744 unless (length $tmp) {
1745 $self->{_on_starttls}
1746 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1747 &_freetls;
1748
1749 if ($self->{on_stoptls}) {
1750 $self->{on_stoptls}($self);
1751 return;
1752 } else {
1753 # let's treat SSL-eof as we treat normal EOF
1754 delete $self->{_rw};
1755 $self->{_eof} = 1;
1756 }
1757 }
1758
1759 $self->{_tls_rbuf} .= $tmp;
1760 $self->_drain_rbuf;
1761 $self->{tls} or return; # tls session might have gone away in callback
1762 }
1763
1764 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1765 return $self->_tls_error ($tmp)
1766 if $tmp != $ERROR_WANT_READ
1767 && ($tmp != $ERROR_SYSCALL || $!);
1768
1277 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1769 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1278 $self->{wbuf} .= $buf; 1770 $self->{wbuf} .= $tmp;
1279 $self->_drain_wbuf; 1771 $self->_drain_wbuf;
1280 } 1772 }
1281 1773
1282 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1774 $self->{_on_starttls}
1283 if (length $buf) { 1775 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1284 $self->{rbuf} .= $buf; 1776 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1285 $self->_drain_rbuf unless $self->{_in_drain};
1286 } else {
1287 # let's treat SSL-eof as we treat normal EOF
1288 $self->{_eof} = 1;
1289 $self->_shutdown;
1290 return;
1291 }
1292 }
1293
1294 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1295
1296 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1297 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1298 return $self->_error ($!, 1);
1299 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1300 return $self->_error (&Errno::EIO, 1);
1301 }
1302
1303 # all others are fine for our purposes
1304 }
1305} 1777}
1306 1778
1307=item $handle->starttls ($tls[, $tls_ctx]) 1779=item $handle->starttls ($tls[, $tls_ctx])
1308 1780
1309Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1781Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1310object is created, you can also do that at a later time by calling 1782object is created, you can also do that at a later time by calling
1311C<starttls>. 1783C<starttls>.
1312 1784
1785Starting TLS is currently an asynchronous operation - when you push some
1786write data and then call C<< ->starttls >> then TLS negotiation will start
1787immediately, after which the queued write data is then sent.
1788
1313The first argument is the same as the C<tls> constructor argument (either 1789The first argument is the same as the C<tls> constructor argument (either
1314C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1790C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1315 1791
1316The second argument is the optional C<Net::SSLeay::CTX> object that is 1792The second argument is the optional C<AnyEvent::TLS> object that is used
1317used when AnyEvent::Handle has to create its own TLS connection object. 1793when AnyEvent::Handle has to create its own TLS connection object, or
1794a hash reference with C<< key => value >> pairs that will be used to
1795construct a new context.
1318 1796
1319The TLS connection object will end up in C<< $handle->{tls} >> after this 1797The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1320call and can be used or changed to your liking. Note that the handshake 1798context in C<< $handle->{tls_ctx} >> after this call and can be used or
1321might have already started when this function returns. 1799changed to your liking. Note that the handshake might have already started
1800when this function returns.
1322 1801
1802Due to bugs in OpenSSL, it might or might not be possible to do multiple
1803handshakes on the same stream. Best do not attempt to use the stream after
1804stopping TLS.
1805
1323=cut 1806=cut
1807
1808our %TLS_CACHE; #TODO not yet documented, should we?
1324 1809
1325sub starttls { 1810sub starttls {
1326 my ($self, $ssl, $ctx) = @_; 1811 my ($self, $tls, $ctx) = @_;
1327 1812
1328 $self->stoptls; 1813 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1814 if $self->{tls};
1329 1815
1330 if ($ssl eq "accept") { 1816 $self->{tls} = $tls;
1331 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817 $self->{tls_ctx} = $ctx if @_ > 2;
1332 Net::SSLeay::set_accept_state ($ssl); 1818
1333 } elsif ($ssl eq "connect") { 1819 return unless $self->{fh};
1334 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1820
1335 Net::SSLeay::set_connect_state ($ssl); 1821 require Net::SSLeay;
1822
1823 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1824 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1825
1826 $tls = delete $self->{tls};
1827 $ctx = $self->{tls_ctx};
1828
1829 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1830
1831 if ("HASH" eq ref $ctx) {
1832 require AnyEvent::TLS;
1833
1834 if ($ctx->{cache}) {
1835 my $key = $ctx+0;
1836 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1837 } else {
1838 $ctx = new AnyEvent::TLS %$ctx;
1839 }
1840 }
1336 } 1841
1337 1842 $self->{tls_ctx} = $ctx || TLS_CTX ();
1338 $self->{tls} = $ssl; 1843 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1339 1844
1340 # basically, this is deep magic (because SSL_read should have the same issues) 1845 # basically, this is deep magic (because SSL_read should have the same issues)
1341 # but the openssl maintainers basically said: "trust us, it just works". 1846 # but the openssl maintainers basically said: "trust us, it just works".
1342 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1847 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1343 # and mismaintained ssleay-module doesn't even offer them). 1848 # and mismaintained ssleay-module doesn't even offer them).
1344 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1849 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1850 #
1851 # in short: this is a mess.
1852 #
1853 # note that we do not try to keep the length constant between writes as we are required to do.
1854 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1855 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1856 # have identity issues in that area.
1345 Net::SSLeay::CTX_set_mode ($self->{tls}, 1857# Net::SSLeay::CTX_set_mode ($ssl,
1346 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1858# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1347 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1859# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1860 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1348 1861
1349 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1862 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1350 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1863 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1351 1864
1865 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1866
1352 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1867 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1353 1868
1354 $self->{filter_w} = sub { 1869 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1355 $_[0]{_tls_wbuf} .= ${$_[1]}; 1870 if $self->{on_starttls};
1356 &_dotls; 1871
1357 }; 1872 &_dotls; # need to trigger the initial handshake
1358 $self->{filter_r} = sub { 1873 $self->start_read; # make sure we actually do read
1359 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1360 &_dotls;
1361 };
1362} 1874}
1363 1875
1364=item $handle->stoptls 1876=item $handle->stoptls
1365 1877
1366Destroys the SSL connection, if any. Partial read or write data will be 1878Shuts down the SSL connection - this makes a proper EOF handshake by
1367lost. 1879sending a close notify to the other side, but since OpenSSL doesn't
1880support non-blocking shut downs, it is not guarenteed that you can re-use
1881the stream afterwards.
1368 1882
1369=cut 1883=cut
1370 1884
1371sub stoptls { 1885sub stoptls {
1372 my ($self) = @_; 1886 my ($self) = @_;
1373 1887
1374 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1888 if ($self->{tls}) {
1889 Net::SSLeay::shutdown ($self->{tls});
1375 1890
1376 delete $self->{_rbio}; 1891 &_dotls;
1377 delete $self->{_wbio}; 1892
1378 delete $self->{_tls_wbuf}; 1893# # we don't give a shit. no, we do, but we can't. no...#d#
1379 delete $self->{filter_r}; 1894# # we, we... have to use openssl :/#d#
1380 delete $self->{filter_w}; 1895# &_freetls;#d#
1896 }
1897}
1898
1899sub _freetls {
1900 my ($self) = @_;
1901
1902 return unless $self->{tls};
1903
1904 $self->{tls_ctx}->_put_session (delete $self->{tls})
1905 if $self->{tls} > 0;
1906
1907 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1381} 1908}
1382 1909
1383sub DESTROY { 1910sub DESTROY {
1384 my $self = shift; 1911 my ($self) = @_;
1385 1912
1386 $self->stoptls; 1913 &_freetls;
1387 1914
1388 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1915 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1389 1916
1390 if ($linger && length $self->{wbuf}) { 1917 if ($linger && length $self->{wbuf} && $self->{fh}) {
1391 my $fh = delete $self->{fh}; 1918 my $fh = delete $self->{fh};
1392 my $wbuf = delete $self->{wbuf}; 1919 my $wbuf = delete $self->{wbuf};
1393 1920
1394 my @linger; 1921 my @linger;
1395 1922
1396 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1923 push @linger, AE::io $fh, 1, sub {
1397 my $len = syswrite $fh, $wbuf, length $wbuf; 1924 my $len = syswrite $fh, $wbuf, length $wbuf;
1398 1925
1399 if ($len > 0) { 1926 if ($len > 0) {
1400 substr $wbuf, 0, $len, ""; 1927 substr $wbuf, 0, $len, "";
1401 } else { 1928 } else {
1402 @linger = (); # end 1929 @linger = (); # end
1403 } 1930 }
1404 }); 1931 };
1405 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1932 push @linger, AE::timer $linger, 0, sub {
1406 @linger = (); 1933 @linger = ();
1407 }); 1934 };
1408 } 1935 }
1936}
1937
1938=item $handle->destroy
1939
1940Shuts down the handle object as much as possible - this call ensures that
1941no further callbacks will be invoked and as many resources as possible
1942will be freed. Any method you will call on the handle object after
1943destroying it in this way will be silently ignored (and it will return the
1944empty list).
1945
1946Normally, you can just "forget" any references to an AnyEvent::Handle
1947object and it will simply shut down. This works in fatal error and EOF
1948callbacks, as well as code outside. It does I<NOT> work in a read or write
1949callback, so when you want to destroy the AnyEvent::Handle object from
1950within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1951that case.
1952
1953Destroying the handle object in this way has the advantage that callbacks
1954will be removed as well, so if those are the only reference holders (as
1955is common), then one doesn't need to do anything special to break any
1956reference cycles.
1957
1958The handle might still linger in the background and write out remaining
1959data, as specified by the C<linger> option, however.
1960
1961=cut
1962
1963sub destroy {
1964 my ($self) = @_;
1965
1966 $self->DESTROY;
1967 %$self = ();
1968 bless $self, "AnyEvent::Handle::destroyed";
1969}
1970
1971sub AnyEvent::Handle::destroyed::AUTOLOAD {
1972 #nop
1409} 1973}
1410 1974
1411=item AnyEvent::Handle::TLS_CTX 1975=item AnyEvent::Handle::TLS_CTX
1412 1976
1413This function creates and returns the Net::SSLeay::CTX object used by 1977This function creates and returns the AnyEvent::TLS object used by default
1414default for TLS mode. 1978for TLS mode.
1415 1979
1416The context is created like this: 1980The context is created by calling L<AnyEvent::TLS> without any arguments.
1417
1418 Net::SSLeay::load_error_strings;
1419 Net::SSLeay::SSLeay_add_ssl_algorithms;
1420 Net::SSLeay::randomize;
1421
1422 my $CTX = Net::SSLeay::CTX_new;
1423
1424 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1425 1981
1426=cut 1982=cut
1427 1983
1428our $TLS_CTX; 1984our $TLS_CTX;
1429 1985
1430sub TLS_CTX() { 1986sub TLS_CTX() {
1431 $TLS_CTX || do { 1987 $TLS_CTX ||= do {
1432 require Net::SSLeay; 1988 require AnyEvent::TLS;
1433 1989
1434 Net::SSLeay::load_error_strings (); 1990 new AnyEvent::TLS
1435 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1436 Net::SSLeay::randomize ();
1437
1438 $TLS_CTX = Net::SSLeay::CTX_new ();
1439
1440 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1441
1442 $TLS_CTX
1443 } 1991 }
1444} 1992}
1445 1993
1446=back 1994=back
1995
1996
1997=head1 NONFREQUENTLY ASKED QUESTIONS
1998
1999=over 4
2000
2001=item I C<undef> the AnyEvent::Handle reference inside my callback and
2002still get further invocations!
2003
2004That's because AnyEvent::Handle keeps a reference to itself when handling
2005read or write callbacks.
2006
2007It is only safe to "forget" the reference inside EOF or error callbacks,
2008from within all other callbacks, you need to explicitly call the C<<
2009->destroy >> method.
2010
2011=item I get different callback invocations in TLS mode/Why can't I pause
2012reading?
2013
2014Unlike, say, TCP, TLS connections do not consist of two independent
2015communication channels, one for each direction. Or put differently. The
2016read and write directions are not independent of each other: you cannot
2017write data unless you are also prepared to read, and vice versa.
2018
2019This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2020callback invocations when you are not expecting any read data - the reason
2021is that AnyEvent::Handle always reads in TLS mode.
2022
2023During the connection, you have to make sure that you always have a
2024non-empty read-queue, or an C<on_read> watcher. At the end of the
2025connection (or when you no longer want to use it) you can call the
2026C<destroy> method.
2027
2028=item How do I read data until the other side closes the connection?
2029
2030If you just want to read your data into a perl scalar, the easiest way
2031to achieve this is by setting an C<on_read> callback that does nothing,
2032clearing the C<on_eof> callback and in the C<on_error> callback, the data
2033will be in C<$_[0]{rbuf}>:
2034
2035 $handle->on_read (sub { });
2036 $handle->on_eof (undef);
2037 $handle->on_error (sub {
2038 my $data = delete $_[0]{rbuf};
2039 });
2040
2041The reason to use C<on_error> is that TCP connections, due to latencies
2042and packets loss, might get closed quite violently with an error, when in
2043fact, all data has been received.
2044
2045It is usually better to use acknowledgements when transferring data,
2046to make sure the other side hasn't just died and you got the data
2047intact. This is also one reason why so many internet protocols have an
2048explicit QUIT command.
2049
2050=item I don't want to destroy the handle too early - how do I wait until
2051all data has been written?
2052
2053After writing your last bits of data, set the C<on_drain> callback
2054and destroy the handle in there - with the default setting of
2055C<low_water_mark> this will be called precisely when all data has been
2056written to the socket:
2057
2058 $handle->push_write (...);
2059 $handle->on_drain (sub {
2060 warn "all data submitted to the kernel\n";
2061 undef $handle;
2062 });
2063
2064If you just want to queue some data and then signal EOF to the other side,
2065consider using C<< ->push_shutdown >> instead.
2066
2067=item I want to contact a TLS/SSL server, I don't care about security.
2068
2069If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2070simply connect to it and then create the AnyEvent::Handle with the C<tls>
2071parameter:
2072
2073 tcp_connect $host, $port, sub {
2074 my ($fh) = @_;
2075
2076 my $handle = new AnyEvent::Handle
2077 fh => $fh,
2078 tls => "connect",
2079 on_error => sub { ... };
2080
2081 $handle->push_write (...);
2082 };
2083
2084=item I want to contact a TLS/SSL server, I do care about security.
2085
2086Then you should additionally enable certificate verification, including
2087peername verification, if the protocol you use supports it (see
2088L<AnyEvent::TLS>, C<verify_peername>).
2089
2090E.g. for HTTPS:
2091
2092 tcp_connect $host, $port, sub {
2093 my ($fh) = @_;
2094
2095 my $handle = new AnyEvent::Handle
2096 fh => $fh,
2097 peername => $host,
2098 tls => "connect",
2099 tls_ctx => { verify => 1, verify_peername => "https" },
2100 ...
2101
2102Note that you must specify the hostname you connected to (or whatever
2103"peername" the protocol needs) as the C<peername> argument, otherwise no
2104peername verification will be done.
2105
2106The above will use the system-dependent default set of trusted CA
2107certificates. If you want to check against a specific CA, add the
2108C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2109
2110 tls_ctx => {
2111 verify => 1,
2112 verify_peername => "https",
2113 ca_file => "my-ca-cert.pem",
2114 },
2115
2116=item I want to create a TLS/SSL server, how do I do that?
2117
2118Well, you first need to get a server certificate and key. You have
2119three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2120self-signed certificate (cheap. check the search engine of your choice,
2121there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2122nice program for that purpose).
2123
2124Then create a file with your private key (in PEM format, see
2125L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2126file should then look like this:
2127
2128 -----BEGIN RSA PRIVATE KEY-----
2129 ...header data
2130 ... lots of base64'y-stuff
2131 -----END RSA PRIVATE KEY-----
2132
2133 -----BEGIN CERTIFICATE-----
2134 ... lots of base64'y-stuff
2135 -----END CERTIFICATE-----
2136
2137The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2138specify this file as C<cert_file>:
2139
2140 tcp_server undef, $port, sub {
2141 my ($fh) = @_;
2142
2143 my $handle = new AnyEvent::Handle
2144 fh => $fh,
2145 tls => "accept",
2146 tls_ctx => { cert_file => "my-server-keycert.pem" },
2147 ...
2148
2149When you have intermediate CA certificates that your clients might not
2150know about, just append them to the C<cert_file>.
2151
2152=back
2153
1447 2154
1448=head1 SUBCLASSING AnyEvent::Handle 2155=head1 SUBCLASSING AnyEvent::Handle
1449 2156
1450In many cases, you might want to subclass AnyEvent::Handle. 2157In many cases, you might want to subclass AnyEvent::Handle.
1451 2158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines