ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.16 by root, Fri May 23 05:16:57 2008 UTC vs.
Revision 1.83 by root, Thu Aug 21 19:11:37 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.232;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
69 70
70=item fh => $filehandle [MANDATORY] 71=item fh => $filehandle [MANDATORY]
71 72
72The filehandle this L<AnyEvent::Handle> object will operate on. 73The filehandle this L<AnyEvent::Handle> object will operate on.
73 74
74NOTE: The filehandle will be set to non-blocking (using 75NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 76C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
77that mode.
76 78
77=item on_eof => $cb->($self) 79=item on_eof => $cb->($handle)
78 80
79Set the callback to be called on EOF. 81Set the callback to be called when an end-of-file condition is detected,
82i.e. in the case of a socket, when the other side has closed the
83connection cleanly.
80 84
85For sockets, this just means that the other side has stopped sending data,
86you can still try to write data, and, in fact, one can return from the eof
87callback and continue writing data, as only the read part has been shut
88down.
89
81While not mandatory, it is highly recommended to set an eof callback, 90While not mandatory, it is I<highly> recommended to set an eof callback,
82otherwise you might end up with a closed socket while you are still 91otherwise you might end up with a closed socket while you are still
83waiting for data. 92waiting for data.
84 93
94If an EOF condition has been detected but no C<on_eof> callback has been
95set, then a fatal error will be raised with C<$!> set to <0>.
96
85=item on_error => $cb->($self) 97=item on_error => $cb->($handle, $fatal)
86 98
87This is the fatal error callback, that is called when, well, a fatal error 99This is the error callback, which is called when, well, some error
88ocurs, such as not being able to resolve the hostname, failure to connect 100occured, such as not being able to resolve the hostname, failure to
89or a read error. 101connect or a read error.
90 102
91The object will not be in a usable state when this callback has been 103Some errors are fatal (which is indicated by C<$fatal> being true). On
92called. 104fatal errors the handle object will be shut down and will not be usable
105(but you are free to look at the current C< ->rbuf >). Examples of fatal
106errors are an EOF condition with active (but unsatisifable) read watchers
107(C<EPIPE>) or I/O errors.
108
109Non-fatal errors can be retried by simply returning, but it is recommended
110to simply ignore this parameter and instead abondon the handle object
111when this callback is invoked. Examples of non-fatal errors are timeouts
112C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
93 113
94On callback entrance, the value of C<$!> contains the operating system 114On callback entrance, the value of C<$!> contains the operating system
95error (or C<ENOSPC> or C<EPIPE>). 115error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
96 116
97While not mandatory, it is I<highly> recommended to set this callback, as 117While not mandatory, it is I<highly> recommended to set this callback, as
98you will not be notified of errors otherwise. The default simply calls 118you will not be notified of errors otherwise. The default simply calls
99die. 119C<croak>.
100 120
101=item on_read => $cb->($self) 121=item on_read => $cb->($handle)
102 122
103This sets the default read callback, which is called when data arrives 123This sets the default read callback, which is called when data arrives
104and no read request is in the queue. 124and no read request is in the queue (unlike read queue callbacks, this
125callback will only be called when at least one octet of data is in the
126read buffer).
105 127
106To access (and remove data from) the read buffer, use the C<< ->rbuf >> 128To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107method or acces sthe C<$self->{rbuf}> member directly. 129method or access the C<$handle->{rbuf}> member directly.
108 130
109When an EOF condition is detected then AnyEvent::Handle will first try to 131When an EOF condition is detected then AnyEvent::Handle will first try to
110feed all the remaining data to the queued callbacks and C<on_read> before 132feed all the remaining data to the queued callbacks and C<on_read> before
111calling the C<on_eof> callback. If no progress can be made, then a fatal 133calling the C<on_eof> callback. If no progress can be made, then a fatal
112error will be raised (with C<$!> set to C<EPIPE>). 134error will be raised (with C<$!> set to C<EPIPE>).
113 135
114=item on_drain => $cb->() 136=item on_drain => $cb->($handle)
115 137
116This sets the callback that is called when the write buffer becomes empty 138This sets the callback that is called when the write buffer becomes empty
117(or when the callback is set and the buffer is empty already). 139(or when the callback is set and the buffer is empty already).
118 140
119To append to the write buffer, use the C<< ->push_write >> method. 141To append to the write buffer, use the C<< ->push_write >> method.
142
143This callback is useful when you don't want to put all of your write data
144into the queue at once, for example, when you want to write the contents
145of some file to the socket you might not want to read the whole file into
146memory and push it into the queue, but instead only read more data from
147the file when the write queue becomes empty.
148
149=item timeout => $fractional_seconds
150
151If non-zero, then this enables an "inactivity" timeout: whenever this many
152seconds pass without a successful read or write on the underlying file
153handle, the C<on_timeout> callback will be invoked (and if that one is
154missing, an C<ETIMEDOUT> error will be raised).
155
156Note that timeout processing is also active when you currently do not have
157any outstanding read or write requests: If you plan to keep the connection
158idle then you should disable the timout temporarily or ignore the timeout
159in the C<on_timeout> callback.
160
161Zero (the default) disables this timeout.
162
163=item on_timeout => $cb->($handle)
164
165Called whenever the inactivity timeout passes. If you return from this
166callback, then the timeout will be reset as if some activity had happened,
167so this condition is not fatal in any way.
120 168
121=item rbuf_max => <bytes> 169=item rbuf_max => <bytes>
122 170
123If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 171If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124when the read buffer ever (strictly) exceeds this size. This is useful to 172when the read buffer ever (strictly) exceeds this size. This is useful to
128be configured to accept only so-and-so much data that it cannot act on 176be configured to accept only so-and-so much data that it cannot act on
129(for example, when expecting a line, an attacker could send an unlimited 177(for example, when expecting a line, an attacker could send an unlimited
130amount of data without a callback ever being called as long as the line 178amount of data without a callback ever being called as long as the line
131isn't finished). 179isn't finished).
132 180
181=item autocork => <boolean>
182
183When disabled (the default), then C<push_write> will try to immediately
184write the data to the handle if possible. This avoids having to register
185a write watcher and wait for the next event loop iteration, but can be
186inefficient if you write multiple small chunks (this disadvantage is
187usually avoided by your kernel's nagle algorithm, see C<low_delay>).
188
189When enabled, then writes will always be queued till the next event loop
190iteration. This is efficient when you do many small writes per iteration,
191but less efficient when you do a single write only.
192
193=item no_delay => <boolean>
194
195When doing small writes on sockets, your operating system kernel might
196wait a bit for more data before actually sending it out. This is called
197the Nagle algorithm, and usually it is beneficial.
198
199In some situations you want as low a delay as possible, which cna be
200accomplishd by setting this option to true.
201
202The default is your opertaing system's default behaviour, this option
203explicitly enables or disables it, if possible.
204
133=item read_size => <bytes> 205=item read_size => <bytes>
134 206
135The default read block size (the amount of bytes this module will try to read 207The default read block size (the amount of bytes this module will try to read
136on each [loop iteration). Default: C<4096>. 208during each (loop iteration). Default: C<8192>.
137 209
138=item low_water_mark => <bytes> 210=item low_water_mark => <bytes>
139 211
140Sets the amount of bytes (default: C<0>) that make up an "empty" write 212Sets the amount of bytes (default: C<0>) that make up an "empty" write
141buffer: If the write reaches this size or gets even samller it is 213buffer: If the write reaches this size or gets even samller it is
142considered empty. 214considered empty.
143 215
216=item linger => <seconds>
217
218If non-zero (default: C<3600>), then the destructor of the
219AnyEvent::Handle object will check wether there is still outstanding write
220data and will install a watcher that will write out this data. No errors
221will be reported (this mostly matches how the operating system treats
222outstanding data at socket close time).
223
224This will not work for partial TLS data that could not yet been
225encoded. This data will be lost.
226
227=item tls => "accept" | "connect" | Net::SSLeay::SSL object
228
229When this parameter is given, it enables TLS (SSL) mode, that means it
230will start making tls handshake and will transparently encrypt/decrypt
231data.
232
233TLS mode requires Net::SSLeay to be installed (it will be loaded
234automatically when you try to create a TLS handle).
235
236For the TLS server side, use C<accept>, and for the TLS client side of a
237connection, use C<connect> mode.
238
239You can also provide your own TLS connection object, but you have
240to make sure that you call either C<Net::SSLeay::set_connect_state>
241or C<Net::SSLeay::set_accept_state> on it before you pass it to
242AnyEvent::Handle.
243
244See the C<starttls> method if you need to start TLS negotiation later.
245
246=item tls_ctx => $ssl_ctx
247
248Use the given Net::SSLeay::CTX object to create the new TLS connection
249(unless a connection object was specified directly). If this parameter is
250missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
251
252=item json => JSON or JSON::XS object
253
254This is the json coder object used by the C<json> read and write types.
255
256If you don't supply it, then AnyEvent::Handle will create and use a
257suitable one, which will write and expect UTF-8 encoded JSON texts.
258
259Note that you are responsible to depend on the JSON module if you want to
260use this functionality, as AnyEvent does not have a dependency itself.
261
262=item filter_r => $cb
263
264=item filter_w => $cb
265
266These exist, but are undocumented at this time.
267
144=back 268=back
145 269
146=cut 270=cut
147 271
148sub new { 272sub new {
152 276
153 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 277 $self->{fh} or Carp::croak "mandatory argument fh is missing";
154 278
155 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 279 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
156 280
157 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; 281 if ($self->{tls}) {
158 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 282 require Net::SSLeay;
283 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
284 }
285
286 $self->{_activity} = AnyEvent->now;
287 $self->_timeout;
288
159 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 289 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
160 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 290 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
161 291
162 $self->start_read; 292 $self->start_read
293 if $self->{on_read};
163 294
164 $self 295 $self
165} 296}
166 297
167sub _shutdown { 298sub _shutdown {
168 my ($self) = @_; 299 my ($self) = @_;
169 300
301 delete $self->{_tw};
170 delete $self->{rw}; 302 delete $self->{_rw};
171 delete $self->{ww}; 303 delete $self->{_ww};
172 delete $self->{fh}; 304 delete $self->{fh};
173}
174 305
306 $self->stoptls;
307
308 delete $self->{on_read};
309 delete $self->{_queue};
310}
311
175sub error { 312sub _error {
176 my ($self) = @_; 313 my ($self, $errno, $fatal) = @_;
177 314
178 {
179 local $!;
180 $self->_shutdown; 315 $self->_shutdown
181 } 316 if $fatal;
317
318 $! = $errno;
182 319
183 if ($self->{on_error}) { 320 if ($self->{on_error}) {
184 $self->{on_error}($self); 321 $self->{on_error}($self, $fatal);
185 } else { 322 } else {
186 die "AnyEvent::Handle uncaught fatal error: $!"; 323 Carp::croak "AnyEvent::Handle uncaught error: $!";
187 } 324 }
188} 325}
189 326
190=item $fh = $handle->fh 327=item $fh = $handle->fh
191 328
192This method returns the filehandle of the L<AnyEvent::Handle> object. 329This method returns the file handle of the L<AnyEvent::Handle> object.
193 330
194=cut 331=cut
195 332
196sub fh { $_[0]->{fh} } 333sub fh { $_[0]{fh} }
197 334
198=item $handle->on_error ($cb) 335=item $handle->on_error ($cb)
199 336
200Replace the current C<on_error> callback (see the C<on_error> constructor argument). 337Replace the current C<on_error> callback (see the C<on_error> constructor argument).
201 338
213 350
214sub on_eof { 351sub on_eof {
215 $_[0]{on_eof} = $_[1]; 352 $_[0]{on_eof} = $_[1];
216} 353}
217 354
355=item $handle->on_timeout ($cb)
356
357Replace the current C<on_timeout> callback, or disables the callback
358(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
359argument.
360
361=cut
362
363sub on_timeout {
364 $_[0]{on_timeout} = $_[1];
365}
366
367=item $handle->autocork ($boolean)
368
369Enables or disables the current autocork behaviour (see C<autocork>
370constructor argument).
371
372=cut
373
374=item $handle->no_delay ($boolean)
375
376Enables or disables the C<no_delay> setting (see constructor argument of
377the same name for details).
378
379=cut
380
381sub no_delay {
382 $_[0]{no_delay} = $_[1];
383
384 eval {
385 local $SIG{__DIE__};
386 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
387 };
388}
389
390#############################################################################
391
392=item $handle->timeout ($seconds)
393
394Configures (or disables) the inactivity timeout.
395
396=cut
397
398sub timeout {
399 my ($self, $timeout) = @_;
400
401 $self->{timeout} = $timeout;
402 $self->_timeout;
403}
404
405# reset the timeout watcher, as neccessary
406# also check for time-outs
407sub _timeout {
408 my ($self) = @_;
409
410 if ($self->{timeout}) {
411 my $NOW = AnyEvent->now;
412
413 # when would the timeout trigger?
414 my $after = $self->{_activity} + $self->{timeout} - $NOW;
415
416 # now or in the past already?
417 if ($after <= 0) {
418 $self->{_activity} = $NOW;
419
420 if ($self->{on_timeout}) {
421 $self->{on_timeout}($self);
422 } else {
423 $self->_error (&Errno::ETIMEDOUT);
424 }
425
426 # callback could have changed timeout value, optimise
427 return unless $self->{timeout};
428
429 # calculate new after
430 $after = $self->{timeout};
431 }
432
433 Scalar::Util::weaken $self;
434 return unless $self; # ->error could have destroyed $self
435
436 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
437 delete $self->{_tw};
438 $self->_timeout;
439 });
440 } else {
441 delete $self->{_tw};
442 }
443}
444
218############################################################################# 445#############################################################################
219 446
220=back 447=back
221 448
222=head2 WRITE QUEUE 449=head2 WRITE QUEUE
225for reading. 452for reading.
226 453
227The write queue is very simple: you can add data to its end, and 454The write queue is very simple: you can add data to its end, and
228AnyEvent::Handle will automatically try to get rid of it for you. 455AnyEvent::Handle will automatically try to get rid of it for you.
229 456
230When data could be writtena nd the write buffer is shorter then the low 457When data could be written and the write buffer is shorter then the low
231water mark, the C<on_drain> callback will be invoked. 458water mark, the C<on_drain> callback will be invoked.
232 459
233=over 4 460=over 4
234 461
235=item $handle->on_drain ($cb) 462=item $handle->on_drain ($cb)
254want (only limited by the available memory), as C<AnyEvent::Handle> 481want (only limited by the available memory), as C<AnyEvent::Handle>
255buffers it independently of the kernel. 482buffers it independently of the kernel.
256 483
257=cut 484=cut
258 485
259sub push_write { 486sub _drain_wbuf {
260 my ($self, $data) = @_; 487 my ($self) = @_;
261 488
262 $self->{wbuf} .= $data; 489 if (!$self->{_ww} && length $self->{wbuf}) {
263 490
264 unless ($self->{ww}) {
265 Scalar::Util::weaken $self; 491 Scalar::Util::weaken $self;
492
266 my $cb = sub { 493 my $cb = sub {
267 my $len = syswrite $self->{fh}, $self->{wbuf}; 494 my $len = syswrite $self->{fh}, $self->{wbuf};
268 495
269 if ($len > 0) { 496 if ($len >= 0) {
270 substr $self->{wbuf}, 0, $len, ""; 497 substr $self->{wbuf}, 0, $len, "";
271 498
499 $self->{_activity} = AnyEvent->now;
272 500
273 $self->{on_drain}($self) 501 $self->{on_drain}($self)
274 if $self->{low_water_mark} >= length $self->{wbuf} 502 if $self->{low_water_mark} >= length $self->{wbuf}
275 && $self->{on_drain}; 503 && $self->{on_drain};
276 504
277 delete $self->{ww} unless length $self->{wbuf}; 505 delete $self->{_ww} unless length $self->{wbuf};
278 } elsif ($! != EAGAIN && $! != EINTR) { 506 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
279 $self->error; 507 $self->_error ($!, 1);
280 } 508 }
281 }; 509 };
282 510
511 # try to write data immediately
512 $cb->() unless $self->{autocork};
513
514 # if still data left in wbuf, we need to poll
283 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 515 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
284 516 if length $self->{wbuf};
285 $cb->($self);
286 }; 517 };
287} 518}
519
520our %WH;
521
522sub register_write_type($$) {
523 $WH{$_[0]} = $_[1];
524}
525
526sub push_write {
527 my $self = shift;
528
529 if (@_ > 1) {
530 my $type = shift;
531
532 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
533 ->($self, @_);
534 }
535
536 if ($self->{filter_w}) {
537 $self->{filter_w}($self, \$_[0]);
538 } else {
539 $self->{wbuf} .= $_[0];
540 $self->_drain_wbuf;
541 }
542}
543
544=item $handle->push_write (type => @args)
545
546Instead of formatting your data yourself, you can also let this module do
547the job by specifying a type and type-specific arguments.
548
549Predefined types are (if you have ideas for additional types, feel free to
550drop by and tell us):
551
552=over 4
553
554=item netstring => $string
555
556Formats the given value as netstring
557(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
558
559=cut
560
561register_write_type netstring => sub {
562 my ($self, $string) = @_;
563
564 sprintf "%d:%s,", (length $string), $string
565};
566
567=item packstring => $format, $data
568
569An octet string prefixed with an encoded length. The encoding C<$format>
570uses the same format as a Perl C<pack> format, but must specify a single
571integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
572optional C<!>, C<< < >> or C<< > >> modifier).
573
574=cut
575
576register_write_type packstring => sub {
577 my ($self, $format, $string) = @_;
578
579 pack "$format/a*", $string
580};
581
582=item json => $array_or_hashref
583
584Encodes the given hash or array reference into a JSON object. Unless you
585provide your own JSON object, this means it will be encoded to JSON text
586in UTF-8.
587
588JSON objects (and arrays) are self-delimiting, so you can write JSON at
589one end of a handle and read them at the other end without using any
590additional framing.
591
592The generated JSON text is guaranteed not to contain any newlines: While
593this module doesn't need delimiters after or between JSON texts to be
594able to read them, many other languages depend on that.
595
596A simple RPC protocol that interoperates easily with others is to send
597JSON arrays (or objects, although arrays are usually the better choice as
598they mimic how function argument passing works) and a newline after each
599JSON text:
600
601 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
602 $handle->push_write ("\012");
603
604An AnyEvent::Handle receiver would simply use the C<json> read type and
605rely on the fact that the newline will be skipped as leading whitespace:
606
607 $handle->push_read (json => sub { my $array = $_[1]; ... });
608
609Other languages could read single lines terminated by a newline and pass
610this line into their JSON decoder of choice.
611
612=cut
613
614register_write_type json => sub {
615 my ($self, $ref) = @_;
616
617 require JSON;
618
619 $self->{json} ? $self->{json}->encode ($ref)
620 : JSON::encode_json ($ref)
621};
622
623=item storable => $reference
624
625Freezes the given reference using L<Storable> and writes it to the
626handle. Uses the C<nfreeze> format.
627
628=cut
629
630register_write_type storable => sub {
631 my ($self, $ref) = @_;
632
633 require Storable;
634
635 pack "w/a*", Storable::nfreeze ($ref)
636};
637
638=back
639
640=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
641
642This function (not method) lets you add your own types to C<push_write>.
643Whenever the given C<type> is used, C<push_write> will invoke the code
644reference with the handle object and the remaining arguments.
645
646The code reference is supposed to return a single octet string that will
647be appended to the write buffer.
648
649Note that this is a function, and all types registered this way will be
650global, so try to use unique names.
651
652=cut
288 653
289############################################################################# 654#############################################################################
290 655
291=back 656=back
292 657
299ways, the "simple" way, using only C<on_read> and the "complex" way, using 664ways, the "simple" way, using only C<on_read> and the "complex" way, using
300a queue. 665a queue.
301 666
302In the simple case, you just install an C<on_read> callback and whenever 667In the simple case, you just install an C<on_read> callback and whenever
303new data arrives, it will be called. You can then remove some data (if 668new data arrives, it will be called. You can then remove some data (if
304enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 669enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
305or not. 670leave the data there if you want to accumulate more (e.g. when only a
671partial message has been received so far).
306 672
307In the more complex case, you want to queue multiple callbacks. In this 673In the more complex case, you want to queue multiple callbacks. In this
308case, AnyEvent::Handle will call the first queued callback each time new 674case, AnyEvent::Handle will call the first queued callback each time new
309data arrives and removes it when it has done its job (see C<push_read>, 675data arrives (also the first time it is queued) and removes it when it has
310below). 676done its job (see C<push_read>, below).
311 677
312This way you can, for example, push three line-reads, followed by reading 678This way you can, for example, push three line-reads, followed by reading
313a chunk of data, and AnyEvent::Handle will execute them in order. 679a chunk of data, and AnyEvent::Handle will execute them in order.
314 680
315Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 681Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
316the specified number of bytes which give an XML datagram. 682the specified number of bytes which give an XML datagram.
317 683
318 # in the default state, expect some header bytes 684 # in the default state, expect some header bytes
319 $handle->on_read (sub { 685 $handle->on_read (sub {
320 # some data is here, now queue the length-header-read (4 octets) 686 # some data is here, now queue the length-header-read (4 octets)
321 shift->unshift_read_chunk (4, sub { 687 shift->unshift_read (chunk => 4, sub {
322 # header arrived, decode 688 # header arrived, decode
323 my $len = unpack "N", $_[1]; 689 my $len = unpack "N", $_[1];
324 690
325 # now read the payload 691 # now read the payload
326 shift->unshift_read_chunk ($len, sub { 692 shift->unshift_read (chunk => $len, sub {
327 my $xml = $_[1]; 693 my $xml = $_[1];
328 # handle xml 694 # handle xml
329 }); 695 });
330 }); 696 });
331 }); 697 });
332 698
333Example 2: Implement a client for a protocol that replies either with 699Example 2: Implement a client for a protocol that replies either with "OK"
334"OK" and another line or "ERROR" for one request, and 64 bytes for the 700and another line or "ERROR" for the first request that is sent, and 64
335second request. Due tot he availability of a full queue, we can just 701bytes for the second request. Due to the availability of a queue, we can
336pipeline sending both requests and manipulate the queue as necessary in 702just pipeline sending both requests and manipulate the queue as necessary
337the callbacks: 703in the callbacks.
338 704
339 # request one 705When the first callback is called and sees an "OK" response, it will
706C<unshift> another line-read. This line-read will be queued I<before> the
70764-byte chunk callback.
708
709 # request one, returns either "OK + extra line" or "ERROR"
340 $handle->push_write ("request 1\015\012"); 710 $handle->push_write ("request 1\015\012");
341 711
342 # we expect "ERROR" or "OK" as response, so push a line read 712 # we expect "ERROR" or "OK" as response, so push a line read
343 $handle->push_read_line (sub { 713 $handle->push_read (line => sub {
344 # if we got an "OK", we have to _prepend_ another line, 714 # if we got an "OK", we have to _prepend_ another line,
345 # so it will be read before the second request reads its 64 bytes 715 # so it will be read before the second request reads its 64 bytes
346 # which are already in the queue when this callback is called 716 # which are already in the queue when this callback is called
347 # we don't do this in case we got an error 717 # we don't do this in case we got an error
348 if ($_[1] eq "OK") { 718 if ($_[1] eq "OK") {
349 $_[0]->unshift_read_line (sub { 719 $_[0]->unshift_read (line => sub {
350 my $response = $_[1]; 720 my $response = $_[1];
351 ... 721 ...
352 }); 722 });
353 } 723 }
354 }); 724 });
355 725
356 # request two 726 # request two, simply returns 64 octets
357 $handle->push_write ("request 2\015\012"); 727 $handle->push_write ("request 2\015\012");
358 728
359 # simply read 64 bytes, always 729 # simply read 64 bytes, always
360 $handle->push_read_chunk (64, sub { 730 $handle->push_read (chunk => 64, sub {
361 my $response = $_[1]; 731 my $response = $_[1];
362 ... 732 ...
363 }); 733 });
364 734
365=over 4 735=over 4
367=cut 737=cut
368 738
369sub _drain_rbuf { 739sub _drain_rbuf {
370 my ($self) = @_; 740 my ($self) = @_;
371 741
372 return if $self->{in_drain};
373 local $self->{in_drain} = 1; 742 local $self->{_in_drain} = 1;
374 743
744 if (
745 defined $self->{rbuf_max}
746 && $self->{rbuf_max} < length $self->{rbuf}
747 ) {
748 $self->_error (&Errno::ENOSPC, 1), return;
749 }
750
751 while () {
375 while (my $len = length $self->{rbuf}) { 752 my $len = length $self->{rbuf};
376 no strict 'refs'; 753
377 if (my $cb = shift @{ $self->{queue} }) { 754 if (my $cb = shift @{ $self->{_queue} }) {
378 if (!$cb->($self)) { 755 unless ($cb->($self)) {
379 if ($self->{eof}) { 756 if ($self->{_eof}) {
380 # no progress can be made (not enough data and no data forthcoming) 757 # no progress can be made (not enough data and no data forthcoming)
381 $! = &Errno::EPIPE; return $self->error; 758 $self->_error (&Errno::EPIPE, 1), return;
382 } 759 }
383 760
384 unshift @{ $self->{queue} }, $cb; 761 unshift @{ $self->{_queue} }, $cb;
385 return; 762 last;
386 } 763 }
387 } elsif ($self->{on_read}) { 764 } elsif ($self->{on_read}) {
765 last unless $len;
766
388 $self->{on_read}($self); 767 $self->{on_read}($self);
389 768
390 if ( 769 if (
391 $self->{eof} # if no further data will arrive
392 && $len == length $self->{rbuf} # and no data has been consumed 770 $len == length $self->{rbuf} # if no data has been consumed
393 && !@{ $self->{queue} } # and the queue is still empty 771 && !@{ $self->{_queue} } # and the queue is still empty
394 && $self->{on_read} # and we still want to read data 772 && $self->{on_read} # but we still have on_read
395 ) { 773 ) {
774 # no further data will arrive
396 # then no progress can be made 775 # so no progress can be made
397 $! = &Errno::EPIPE; return $self->error; 776 $self->_error (&Errno::EPIPE, 1), return
777 if $self->{_eof};
778
779 last; # more data might arrive
398 } 780 }
399 } else { 781 } else {
400 # read side becomes idle 782 # read side becomes idle
401 delete $self->{rw}; 783 delete $self->{_rw};
402 return; 784 last;
403 } 785 }
404 } 786 }
405 787
406 if ($self->{eof}) { 788 if ($self->{_eof}) {
407 $self->_shutdown; 789 if ($self->{on_eof}) {
408 $self->{on_eof}($self) 790 $self->{on_eof}($self)
409 if $self->{on_eof}; 791 } else {
792 $self->_error (0, 1);
793 }
794 }
795
796 # may need to restart read watcher
797 unless ($self->{_rw}) {
798 $self->start_read
799 if $self->{on_read} || @{ $self->{_queue} };
410 } 800 }
411} 801}
412 802
413=item $handle->on_read ($cb) 803=item $handle->on_read ($cb)
414 804
420 810
421sub on_read { 811sub on_read {
422 my ($self, $cb) = @_; 812 my ($self, $cb) = @_;
423 813
424 $self->{on_read} = $cb; 814 $self->{on_read} = $cb;
815 $self->_drain_rbuf if $cb && !$self->{_in_drain};
425} 816}
426 817
427=item $handle->rbuf 818=item $handle->rbuf
428 819
429Returns the read buffer (as a modifiable lvalue). 820Returns the read buffer (as a modifiable lvalue).
448Append the given callback to the end of the queue (C<push_read>) or 839Append the given callback to the end of the queue (C<push_read>) or
449prepend it (C<unshift_read>). 840prepend it (C<unshift_read>).
450 841
451The callback is called each time some additional read data arrives. 842The callback is called each time some additional read data arrives.
452 843
453It must check wether enough data is in the read buffer already. 844It must check whether enough data is in the read buffer already.
454 845
455If not enough data is available, it must return the empty list or a false 846If not enough data is available, it must return the empty list or a false
456value, in which case it will be called repeatedly until enough data is 847value, in which case it will be called repeatedly until enough data is
457available (or an error condition is detected). 848available (or an error condition is detected).
458 849
460interested in (which can be none at all) and return a true value. After returning 851interested in (which can be none at all) and return a true value. After returning
461true, it will be removed from the queue. 852true, it will be removed from the queue.
462 853
463=cut 854=cut
464 855
856our %RH;
857
858sub register_read_type($$) {
859 $RH{$_[0]} = $_[1];
860}
861
465sub push_read { 862sub push_read {
466 my ($self, $cb) = @_; 863 my $self = shift;
864 my $cb = pop;
467 865
866 if (@_) {
867 my $type = shift;
868
869 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
870 ->($self, $cb, @_);
871 }
872
468 push @{ $self->{queue} }, $cb; 873 push @{ $self->{_queue} }, $cb;
469 $self->_drain_rbuf; 874 $self->_drain_rbuf unless $self->{_in_drain};
470} 875}
471 876
472sub unshift_read { 877sub unshift_read {
473 my ($self, $cb) = @_; 878 my $self = shift;
879 my $cb = pop;
474 880
881 if (@_) {
882 my $type = shift;
883
884 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
885 ->($self, $cb, @_);
886 }
887
888
475 push @{ $self->{queue} }, $cb; 889 unshift @{ $self->{_queue} }, $cb;
476 $self->_drain_rbuf; 890 $self->_drain_rbuf unless $self->{_in_drain};
477} 891}
478 892
479=item $handle->push_read_chunk ($len, $cb->($self, $data)) 893=item $handle->push_read (type => @args, $cb)
480 894
481=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 895=item $handle->unshift_read (type => @args, $cb)
482 896
483Append the given callback to the end of the queue (C<push_read_chunk>) or 897Instead of providing a callback that parses the data itself you can chose
484prepend it (C<unshift_read_chunk>). 898between a number of predefined parsing formats, for chunks of data, lines
899etc.
485 900
486The callback will be called only once C<$len> bytes have been read, and 901Predefined types are (if you have ideas for additional types, feel free to
487these C<$len> bytes will be passed to the callback. 902drop by and tell us):
488 903
489=cut 904=over 4
490 905
491sub _read_chunk($$) { 906=item chunk => $octets, $cb->($handle, $data)
907
908Invoke the callback only once C<$octets> bytes have been read. Pass the
909data read to the callback. The callback will never be called with less
910data.
911
912Example: read 2 bytes.
913
914 $handle->push_read (chunk => 2, sub {
915 warn "yay ", unpack "H*", $_[1];
916 });
917
918=cut
919
920register_read_type chunk => sub {
492 my ($self, $len, $cb) = @_; 921 my ($self, $cb, $len) = @_;
493 922
494 sub { 923 sub {
495 $len <= length $_[0]{rbuf} or return; 924 $len <= length $_[0]{rbuf} or return;
496 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 925 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
497 1 926 1
498 } 927 }
499} 928};
500 929
501sub push_read_chunk { 930=item line => [$eol, ]$cb->($handle, $line, $eol)
502 $_[0]->push_read (&_read_chunk);
503}
504
505
506sub unshift_read_chunk {
507 $_[0]->unshift_read (&_read_chunk);
508}
509
510=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
511
512=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
513
514Append the given callback to the end of the queue (C<push_read_line>) or
515prepend it (C<unshift_read_line>).
516 931
517The callback will be called only once a full line (including the end of 932The callback will be called only once a full line (including the end of
518line marker, C<$eol>) has been read. This line (excluding the end of line 933line marker, C<$eol>) has been read. This line (excluding the end of line
519marker) will be passed to the callback as second argument (C<$line>), and 934marker) will be passed to the callback as second argument (C<$line>), and
520the end of line marker as the third argument (C<$eol>). 935the end of line marker as the third argument (C<$eol>).
531Partial lines at the end of the stream will never be returned, as they are 946Partial lines at the end of the stream will never be returned, as they are
532not marked by the end of line marker. 947not marked by the end of line marker.
533 948
534=cut 949=cut
535 950
536sub _read_line($$) { 951register_read_type line => sub {
537 my $self = shift; 952 my ($self, $cb, $eol) = @_;
538 my $cb = pop;
539 my $eol = @_ ? shift : qr|(\015?\012)|;
540 my $pos;
541 953
954 if (@_ < 3) {
955 # this is more than twice as fast as the generic code below
956 sub {
957 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
958
959 $cb->($_[0], $1, $2);
960 1
961 }
962 } else {
542 $eol = quotemeta $eol unless ref $eol; 963 $eol = quotemeta $eol unless ref $eol;
543 $eol = qr|^(.*?)($eol)|s; 964 $eol = qr|^(.*?)($eol)|s;
965
966 sub {
967 $_[0]{rbuf} =~ s/$eol// or return;
968
969 $cb->($_[0], $1, $2);
970 1
971 }
972 }
973};
974
975=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
976
977Makes a regex match against the regex object C<$accept> and returns
978everything up to and including the match.
979
980Example: read a single line terminated by '\n'.
981
982 $handle->push_read (regex => qr<\n>, sub { ... });
983
984If C<$reject> is given and not undef, then it determines when the data is
985to be rejected: it is matched against the data when the C<$accept> regex
986does not match and generates an C<EBADMSG> error when it matches. This is
987useful to quickly reject wrong data (to avoid waiting for a timeout or a
988receive buffer overflow).
989
990Example: expect a single decimal number followed by whitespace, reject
991anything else (not the use of an anchor).
992
993 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
994
995If C<$skip> is given and not C<undef>, then it will be matched against
996the receive buffer when neither C<$accept> nor C<$reject> match,
997and everything preceding and including the match will be accepted
998unconditionally. This is useful to skip large amounts of data that you
999know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1000have to start matching from the beginning. This is purely an optimisation
1001and is usually worth only when you expect more than a few kilobytes.
1002
1003Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1004expect the header to be very large (it isn't in practise, but...), we use
1005a skip regex to skip initial portions. The skip regex is tricky in that
1006it only accepts something not ending in either \015 or \012, as these are
1007required for the accept regex.
1008
1009 $handle->push_read (regex =>
1010 qr<\015\012\015\012>,
1011 undef, # no reject
1012 qr<^.*[^\015\012]>,
1013 sub { ... });
1014
1015=cut
1016
1017register_read_type regex => sub {
1018 my ($self, $cb, $accept, $reject, $skip) = @_;
1019
1020 my $data;
1021 my $rbuf = \$self->{rbuf};
544 1022
545 sub { 1023 sub {
546 $_[0]{rbuf} =~ s/$eol// or return; 1024 # accept
1025 if ($$rbuf =~ $accept) {
1026 $data .= substr $$rbuf, 0, $+[0], "";
1027 $cb->($self, $data);
1028 return 1;
1029 }
1030
1031 # reject
1032 if ($reject && $$rbuf =~ $reject) {
1033 $self->_error (&Errno::EBADMSG);
1034 }
547 1035
548 $cb->($_[0], $1, $2); 1036 # skip
1037 if ($skip && $$rbuf =~ $skip) {
1038 $data .= substr $$rbuf, 0, $+[0], "";
1039 }
1040
1041 ()
1042 }
1043};
1044
1045=item netstring => $cb->($handle, $string)
1046
1047A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1048
1049Throws an error with C<$!> set to EBADMSG on format violations.
1050
1051=cut
1052
1053register_read_type netstring => sub {
1054 my ($self, $cb) = @_;
1055
1056 sub {
1057 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058 if ($_[0]{rbuf} =~ /[^0-9]/) {
1059 $self->_error (&Errno::EBADMSG);
1060 }
1061 return;
1062 }
1063
1064 my $len = $1;
1065
1066 $self->unshift_read (chunk => $len, sub {
1067 my $string = $_[1];
1068 $_[0]->unshift_read (chunk => 1, sub {
1069 if ($_[1] eq ",") {
1070 $cb->($_[0], $string);
1071 } else {
1072 $self->_error (&Errno::EBADMSG);
1073 }
1074 });
1075 });
1076
549 1 1077 1
550 } 1078 }
551} 1079};
552 1080
553sub push_read_line { 1081=item packstring => $format, $cb->($handle, $string)
554 $_[0]->push_read (&_read_line);
555}
556 1082
557sub unshift_read_line { 1083An octet string prefixed with an encoded length. The encoding C<$format>
558 $_[0]->unshift_read (&_read_line); 1084uses the same format as a Perl C<pack> format, but must specify a single
559} 1085integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086optional C<!>, C<< < >> or C<< > >> modifier).
1087
1088DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1089
1090Example: read a block of data prefixed by its length in BER-encoded
1091format (very efficient).
1092
1093 $handle->push_read (packstring => "w", sub {
1094 my ($handle, $data) = @_;
1095 });
1096
1097=cut
1098
1099register_read_type packstring => sub {
1100 my ($self, $cb, $format) = @_;
1101
1102 sub {
1103 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1104 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1105 or return;
1106
1107 $format = length pack $format, $len;
1108
1109 # bypass unshift if we already have the remaining chunk
1110 if ($format + $len <= length $_[0]{rbuf}) {
1111 my $data = substr $_[0]{rbuf}, $format, $len;
1112 substr $_[0]{rbuf}, 0, $format + $len, "";
1113 $cb->($_[0], $data);
1114 } else {
1115 # remove prefix
1116 substr $_[0]{rbuf}, 0, $format, "";
1117
1118 # read remaining chunk
1119 $_[0]->unshift_read (chunk => $len, $cb);
1120 }
1121
1122 1
1123 }
1124};
1125
1126=item json => $cb->($handle, $hash_or_arrayref)
1127
1128Reads a JSON object or array, decodes it and passes it to the callback.
1129
1130If a C<json> object was passed to the constructor, then that will be used
1131for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132
1133This read type uses the incremental parser available with JSON version
11342.09 (and JSON::XS version 2.2) and above. You have to provide a
1135dependency on your own: this module will load the JSON module, but
1136AnyEvent does not depend on it itself.
1137
1138Since JSON texts are fully self-delimiting, the C<json> read and write
1139types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1140the C<json> write type description, above, for an actual example.
1141
1142=cut
1143
1144register_read_type json => sub {
1145 my ($self, $cb) = @_;
1146
1147 require JSON;
1148
1149 my $data;
1150 my $rbuf = \$self->{rbuf};
1151
1152 my $json = $self->{json} ||= JSON->new->utf8;
1153
1154 sub {
1155 my $ref = $json->incr_parse ($self->{rbuf});
1156
1157 if ($ref) {
1158 $self->{rbuf} = $json->incr_text;
1159 $json->incr_text = "";
1160 $cb->($self, $ref);
1161
1162 1
1163 } else {
1164 $self->{rbuf} = "";
1165 ()
1166 }
1167 }
1168};
1169
1170=item storable => $cb->($handle, $ref)
1171
1172Deserialises a L<Storable> frozen representation as written by the
1173C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1174data).
1175
1176Raises C<EBADMSG> error if the data could not be decoded.
1177
1178=cut
1179
1180register_read_type storable => sub {
1181 my ($self, $cb) = @_;
1182
1183 require Storable;
1184
1185 sub {
1186 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1187 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1188 or return;
1189
1190 my $format = length pack "w", $len;
1191
1192 # bypass unshift if we already have the remaining chunk
1193 if ($format + $len <= length $_[0]{rbuf}) {
1194 my $data = substr $_[0]{rbuf}, $format, $len;
1195 substr $_[0]{rbuf}, 0, $format + $len, "";
1196 $cb->($_[0], Storable::thaw ($data));
1197 } else {
1198 # remove prefix
1199 substr $_[0]{rbuf}, 0, $format, "";
1200
1201 # read remaining chunk
1202 $_[0]->unshift_read (chunk => $len, sub {
1203 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204 $cb->($_[0], $ref);
1205 } else {
1206 $self->_error (&Errno::EBADMSG);
1207 }
1208 });
1209 }
1210
1211 1
1212 }
1213};
1214
1215=back
1216
1217=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1218
1219This function (not method) lets you add your own types to C<push_read>.
1220
1221Whenever the given C<type> is used, C<push_read> will invoke the code
1222reference with the handle object, the callback and the remaining
1223arguments.
1224
1225The code reference is supposed to return a callback (usually a closure)
1226that works as a plain read callback (see C<< ->push_read ($cb) >>).
1227
1228It should invoke the passed callback when it is done reading (remember to
1229pass C<$handle> as first argument as all other callbacks do that).
1230
1231Note that this is a function, and all types registered this way will be
1232global, so try to use unique names.
1233
1234For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1235search for C<register_read_type>)).
560 1236
561=item $handle->stop_read 1237=item $handle->stop_read
562 1238
563=item $handle->start_read 1239=item $handle->start_read
564 1240
565In rare cases you actually do not want to read anything form the 1241In rare cases you actually do not want to read anything from the
566socket. In this case you can call C<stop_read>. Neither C<on_read> no 1242socket. In this case you can call C<stop_read>. Neither C<on_read> nor
567any queued callbacks will be executed then. To start readign again, call 1243any queued callbacks will be executed then. To start reading again, call
568C<start_read>. 1244C<start_read>.
1245
1246Note that AnyEvent::Handle will automatically C<start_read> for you when
1247you change the C<on_read> callback or push/unshift a read callback, and it
1248will automatically C<stop_read> for you when neither C<on_read> is set nor
1249there are any read requests in the queue.
569 1250
570=cut 1251=cut
571 1252
572sub stop_read { 1253sub stop_read {
573 my ($self) = @_; 1254 my ($self) = @_;
574 1255
575 delete $self->{rw}; 1256 delete $self->{_rw};
576} 1257}
577 1258
578sub start_read { 1259sub start_read {
579 my ($self) = @_; 1260 my ($self) = @_;
580 1261
581 unless ($self->{rw} || $self->{eof}) { 1262 unless ($self->{_rw} || $self->{_eof}) {
582 Scalar::Util::weaken $self; 1263 Scalar::Util::weaken $self;
583 1264
584 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1265 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1266 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
585 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1267 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
586 1268
587 if ($len > 0) { 1269 if ($len > 0) {
588 if (defined $self->{rbuf_max}) { 1270 $self->{_activity} = AnyEvent->now;
589 if ($self->{rbuf_max} < length $self->{rbuf}) { 1271
590 $! = &Errno::ENOSPC; return $self->error; 1272 $self->{filter_r}
591 } 1273 ? $self->{filter_r}($self, $rbuf)
592 } 1274 : $self->{_in_drain} || $self->_drain_rbuf;
593 1275
594 } elsif (defined $len) { 1276 } elsif (defined $len) {
595 $self->{eof} = 1;
596 delete $self->{rw}; 1277 delete $self->{_rw};
1278 $self->{_eof} = 1;
1279 $self->_drain_rbuf unless $self->{_in_drain};
597 1280
598 } elsif ($! != EAGAIN && $! != EINTR) { 1281 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
599 return $self->error; 1282 return $self->_error ($!, 1);
600 } 1283 }
601
602 $self->_drain_rbuf;
603 }); 1284 });
604 } 1285 }
605} 1286}
606 1287
1288sub _dotls {
1289 my ($self) = @_;
1290
1291 my $buf;
1292
1293 if (length $self->{_tls_wbuf}) {
1294 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1295 substr $self->{_tls_wbuf}, 0, $len, "";
1296 }
1297 }
1298
1299 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1300 $self->{wbuf} .= $buf;
1301 $self->_drain_wbuf;
1302 }
1303
1304 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1305 if (length $buf) {
1306 $self->{rbuf} .= $buf;
1307 $self->_drain_rbuf unless $self->{_in_drain};
1308 } else {
1309 # let's treat SSL-eof as we treat normal EOF
1310 $self->{_eof} = 1;
1311 $self->_shutdown;
1312 return;
1313 }
1314 }
1315
1316 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317
1318 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 return $self->_error ($!, 1);
1321 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 return $self->_error (&Errno::EIO, 1);
1323 }
1324
1325 # all others are fine for our purposes
1326 }
1327}
1328
1329=item $handle->starttls ($tls[, $tls_ctx])
1330
1331Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332object is created, you can also do that at a later time by calling
1333C<starttls>.
1334
1335The first argument is the same as the C<tls> constructor argument (either
1336C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337
1338The second argument is the optional C<Net::SSLeay::CTX> object that is
1339used when AnyEvent::Handle has to create its own TLS connection object.
1340
1341The TLS connection object will end up in C<< $handle->{tls} >> after this
1342call and can be used or changed to your liking. Note that the handshake
1343might have already started when this function returns.
1344
1345=cut
1346
1347sub starttls {
1348 my ($self, $ssl, $ctx) = @_;
1349
1350 $self->stoptls;
1351
1352 if ($ssl eq "accept") {
1353 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1354 Net::SSLeay::set_accept_state ($ssl);
1355 } elsif ($ssl eq "connect") {
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357 Net::SSLeay::set_connect_state ($ssl);
1358 }
1359
1360 $self->{tls} = $ssl;
1361
1362 # basically, this is deep magic (because SSL_read should have the same issues)
1363 # but the openssl maintainers basically said: "trust us, it just works".
1364 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365 # and mismaintained ssleay-module doesn't even offer them).
1366 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1367 Net::SSLeay::CTX_set_mode ($self->{tls},
1368 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1370
1371 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373
1374 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1375
1376 $self->{filter_w} = sub {
1377 $_[0]{_tls_wbuf} .= ${$_[1]};
1378 &_dotls;
1379 };
1380 $self->{filter_r} = sub {
1381 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 &_dotls;
1383 };
1384}
1385
1386=item $handle->stoptls
1387
1388Destroys the SSL connection, if any. Partial read or write data will be
1389lost.
1390
1391=cut
1392
1393sub stoptls {
1394 my ($self) = @_;
1395
1396 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1397
1398 delete $self->{_rbio};
1399 delete $self->{_wbio};
1400 delete $self->{_tls_wbuf};
1401 delete $self->{filter_r};
1402 delete $self->{filter_w};
1403}
1404
1405sub DESTROY {
1406 my $self = shift;
1407
1408 $self->stoptls;
1409
1410 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1411
1412 if ($linger && length $self->{wbuf}) {
1413 my $fh = delete $self->{fh};
1414 my $wbuf = delete $self->{wbuf};
1415
1416 my @linger;
1417
1418 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1419 my $len = syswrite $fh, $wbuf, length $wbuf;
1420
1421 if ($len > 0) {
1422 substr $wbuf, 0, $len, "";
1423 } else {
1424 @linger = (); # end
1425 }
1426 });
1427 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1428 @linger = ();
1429 });
1430 }
1431}
1432
1433=item AnyEvent::Handle::TLS_CTX
1434
1435This function creates and returns the Net::SSLeay::CTX object used by
1436default for TLS mode.
1437
1438The context is created like this:
1439
1440 Net::SSLeay::load_error_strings;
1441 Net::SSLeay::SSLeay_add_ssl_algorithms;
1442 Net::SSLeay::randomize;
1443
1444 my $CTX = Net::SSLeay::CTX_new;
1445
1446 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447
1448=cut
1449
1450our $TLS_CTX;
1451
1452sub TLS_CTX() {
1453 $TLS_CTX || do {
1454 require Net::SSLeay;
1455
1456 Net::SSLeay::load_error_strings ();
1457 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458 Net::SSLeay::randomize ();
1459
1460 $TLS_CTX = Net::SSLeay::CTX_new ();
1461
1462 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463
1464 $TLS_CTX
1465 }
1466}
1467
607=back 1468=back
608 1469
1470=head1 SUBCLASSING AnyEvent::Handle
1471
1472In many cases, you might want to subclass AnyEvent::Handle.
1473
1474To make this easier, a given version of AnyEvent::Handle uses these
1475conventions:
1476
1477=over 4
1478
1479=item * all constructor arguments become object members.
1480
1481At least initially, when you pass a C<tls>-argument to the constructor it
1482will end up in C<< $handle->{tls} >>. Those members might be changed or
1483mutated later on (for example C<tls> will hold the TLS connection object).
1484
1485=item * other object member names are prefixed with an C<_>.
1486
1487All object members not explicitly documented (internal use) are prefixed
1488with an underscore character, so the remaining non-C<_>-namespace is free
1489for use for subclasses.
1490
1491=item * all members not documented here and not prefixed with an underscore
1492are free to use in subclasses.
1493
1494Of course, new versions of AnyEvent::Handle may introduce more "public"
1495member variables, but thats just life, at least it is documented.
1496
1497=back
1498
609=head1 AUTHOR 1499=head1 AUTHOR
610 1500
611Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1501Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
612 1502
613=cut 1503=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines