ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.83 by root, Thu Aug 21 19:11:37 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
76C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
77that mode. 80that mode.
78 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
79=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
80 100
81Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
82i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
83connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
84 106
85For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
86you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
87callback and continue writing data, as only the read part has been shut 109timeout is to be used).
88down.
89 110
90While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
91otherwise you might end up with a closed socket while you are still
92waiting for data.
93 112
94If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
95set, then a fatal error will be raised with C<$!> set to <0>.
96 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
97=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
98 138
99This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
100occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
101connect or a read error. 141connect or a read error.
102 142
103Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
104fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
105(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
106errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
107(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
108 155
109Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
110to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
111when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
112C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
113 160
114On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
115error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
116 164
117While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
118you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
119C<croak>. 167C<croak>.
120 168
124and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
125callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
126read buffer). 174read buffer).
127 175
128To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
129method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
130 180
131When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
132feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
133calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
134error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
135 206
136=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
137 208
138This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
139(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
146memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
147the file when the write queue becomes empty. 218the file when the write queue becomes empty.
148 219
149=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
150 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
151If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
152seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
153handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
154missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
155 237
156Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
157any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
158idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
159in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
160 243
161Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
162 245
163=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
164 247
168 251
169=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
170 253
171If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
172when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
173avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
174 257
175For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
176be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
177(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
178amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
179isn't finished). 262isn't finished).
180 263
181=item autocork => <boolean> 264=item autocork => <boolean>
182 265
183When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
184write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
185a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
186inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
187usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
188 272
189When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
190iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
191but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
192 277
193=item no_delay => <boolean> 278=item no_delay => <boolean>
194 279
195When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
196wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
197the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
198 283
199In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
200accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
201 286
202The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
203explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
204 289
205=item read_size => <bytes> 290=item read_size => <bytes>
206 291
207The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
208during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
209 295
210=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
211 297
212Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
213buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
214considered empty. 300considered empty.
215 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
216=item linger => <seconds> 307=item linger => <seconds>
217 308
218If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
219AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
220data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
221will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
222outstanding data at socket close time). 313system treats outstanding data at socket close time).
223 314
224This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
225encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
226 328
227=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
228 330
229When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
230will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
231data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
232 337
233TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
234automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
235 342
236For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
237connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
238 346
239You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
240to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
241or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
242AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
243 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
244See the C<starttls> method if you need to start TLS negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
245 363
246=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
247 365
248Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
249(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
250missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
251 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
252=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
253 407
254This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
255 409
256If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
257suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
258 413
259Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
260use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
261 416
262=item filter_r => $cb
263
264=item filter_w => $cb
265
266These exist, but are undocumented at this time.
267
268=back 417=back
269 418
270=cut 419=cut
271 420
272sub new { 421sub new {
273 my $class = shift; 422 my $class = shift;
274
275 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
276 424
277 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
278 488
279 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
280 490
281 if ($self->{tls}) { 491 $self->{_activity} =
282 require Net::SSLeay; 492 $self->{_ractivity} =
283 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
284 }
285
286 $self->{_activity} = AnyEvent->now; 493 $self->{_wactivity} = AE::now;
287 $self->_timeout;
288 494
289 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
290 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 500
501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
502 if $self->{tls};
503
504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
505
292 $self->start_read 506 $self->start_read
293 if $self->{on_read}; 507 if $self->{on_read} || @{ $self->{_queue} };
294 508
295 $self 509 $self->_drain_wbuf;
296}
297
298sub _shutdown {
299 my ($self) = @_;
300
301 delete $self->{_tw};
302 delete $self->{_rw};
303 delete $self->{_ww};
304 delete $self->{fh};
305
306 $self->stoptls;
307
308 delete $self->{on_read};
309 delete $self->{_queue};
310} 510}
311 511
312sub _error { 512sub _error {
313 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
314
315 $self->_shutdown
316 if $fatal;
317 514
318 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
319 517
320 if ($self->{on_error}) { 518 if ($self->{on_error}) {
321 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
322 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
323 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
324 } 524 }
325} 525}
326 526
327=item $fh = $handle->fh 527=item $fh = $handle->fh
328 528
329This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
330 530
331=cut 531=cut
332 532
333sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
334 534
352 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
353} 553}
354 554
355=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
356 556
357Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
358(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
359argument.
360 558
361=cut 559=item $handle->on_wtimeout ($cb)
362 560
363sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
364 $_[0]{on_timeout} = $_[1]; 562callback, or disables the callback (but not the timeout) if C<$cb> =
365} 563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
366 568
367=item $handle->autocork ($boolean) 569=item $handle->autocork ($boolean)
368 570
369Enables or disables the current autocork behaviour (see C<autocork> 571Enables or disables the current autocork behaviour (see C<autocork>
370constructor argument). 572constructor argument). Changes will only take effect on the next write.
371 573
372=cut 574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
373 579
374=item $handle->no_delay ($boolean) 580=item $handle->no_delay ($boolean)
375 581
376Enables or disables the C<no_delay> setting (see constructor argument of 582Enables or disables the C<no_delay> setting (see constructor argument of
377the same name for details). 583the same name for details).
381sub no_delay { 587sub no_delay {
382 $_[0]{no_delay} = $_[1]; 588 $_[0]{no_delay} = $_[1];
383 589
384 eval { 590 eval {
385 local $SIG{__DIE__}; 591 local $SIG{__DIE__};
386 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
387 }; 594 };
388} 595}
389 596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
625}
626
390############################################################################# 627#############################################################################
391 628
392=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
393 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
394Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
395 636
396=cut 637=item $handle->timeout_reset
397 638
398sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
399 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
400 662
401 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
402 $self->_timeout; 664 delete $self->{$tw}; &$cb;
403} 665 };
404 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
405# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
406# also check for time-outs 673 # also check for time-outs
407sub _timeout { 674 $cb = sub {
408 my ($self) = @_; 675 my ($self) = @_;
409 676
410 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
411 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
412 679
413 # when would the timeout trigger? 680 # when would the timeout trigger?
414 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
415 682
416 # now or in the past already? 683 # now or in the past already?
417 if ($after <= 0) { 684 if ($after <= 0) {
418 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
419 686
420 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
421 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
422 } else { 689 } else {
423 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
424 } 698 }
425 699
426 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
427 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
428 702
429 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
430 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
431 } 709 }
432
433 Scalar::Util::weaken $self;
434 return unless $self; # ->error could have destroyed $self
435
436 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
437 delete $self->{_tw};
438 $self->_timeout;
439 });
440 } else {
441 delete $self->{_tw};
442 } 710 }
443} 711}
444 712
445############################################################################# 713#############################################################################
446 714
470 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
471 739
472 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
473 741
474 $cb->($self) 742 $cb->($self)
475 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
476} 744}
477 745
478=item $handle->push_write ($data) 746=item $handle->push_write ($data)
479 747
480Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
491 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
492 760
493 my $cb = sub { 761 my $cb = sub {
494 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
495 763
496 if ($len >= 0) { 764 if (defined $len) {
497 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
498 766
499 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
500 768
501 $self->{on_drain}($self) 769 $self->{on_drain}($self)
502 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
503 && $self->{on_drain}; 771 && $self->{on_drain};
504 772
505 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
506 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
507 $self->_error ($!, 1); 775 $self->_error ($!, 1);
510 778
511 # try to write data immediately 779 # try to write data immediately
512 $cb->() unless $self->{autocork}; 780 $cb->() unless $self->{autocork};
513 781
514 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
515 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
516 if length $self->{wbuf}; 784 if length $self->{wbuf};
517 }; 785 };
518} 786}
519 787
520our %WH; 788our %WH;
531 799
532 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
533 ->($self, @_); 801 ->($self, @_);
534 } 802 }
535 803
536 if ($self->{filter_w}) { 804 if ($self->{tls}) {
537 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
538 } else { 807 } else {
539 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
540 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
541 } 810 }
542} 811}
543 812
544=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
545 814
559=cut 828=cut
560 829
561register_write_type netstring => sub { 830register_write_type netstring => sub {
562 my ($self, $string) = @_; 831 my ($self, $string) = @_;
563 832
564 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
565}; 834};
566 835
567=item packstring => $format, $data 836=item packstring => $format, $data
568 837
569An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
609Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
610this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
611 880
612=cut 881=cut
613 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
614register_write_type json => sub { 888register_write_type json => sub {
615 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
616 890
617 require JSON; 891 my $json = $self->{json} ||= json_coder;
618 892
619 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
620 : JSON::encode_json ($ref)
621}; 894};
622 895
623=item storable => $reference 896=item storable => $reference
624 897
625Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
634 907
635 pack "w/a*", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
636}; 909};
637 910
638=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
639 937
640=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
641 939
642This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
643Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
737=cut 1035=cut
738 1036
739sub _drain_rbuf { 1037sub _drain_rbuf {
740 my ($self) = @_; 1038 my ($self) = @_;
741 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
742 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
743
744 if (
745 defined $self->{rbuf_max}
746 && $self->{rbuf_max} < length $self->{rbuf}
747 ) {
748 $self->_error (&Errno::ENOSPC, 1), return;
749 }
750 1043
751 while () { 1044 while () {
1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
1049
752 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
753 1051
754 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
755 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
756 if ($self->{_eof}) { 1054 # no progress can be made
757 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
758 $self->_error (&Errno::EPIPE, 1), return; 1056 $self->_error (Errno::EPIPE, 1), return
759 } 1057 if $self->{_eof};
760 1058
761 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
762 last; 1060 last;
763 } 1061 }
764 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
771 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
772 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
773 ) { 1071 ) {
774 # no further data will arrive 1072 # no further data will arrive
775 # so no progress can be made 1073 # so no progress can be made
776 $self->_error (&Errno::EPIPE, 1), return 1074 $self->_error (Errno::EPIPE, 1), return
777 if $self->{_eof}; 1075 if $self->{_eof};
778 1076
779 last; # more data might arrive 1077 last; # more data might arrive
780 } 1078 }
781 } else { 1079 } else {
782 # read side becomes idle 1080 # read side becomes idle
783 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
784 last; 1082 last;
785 } 1083 }
786 } 1084 }
787 1085
788 if ($self->{_eof}) { 1086 if ($self->{_eof}) {
789 if ($self->{on_eof}) { 1087 $self->{on_eof}
790 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
791 } else { 1089 : $self->_error (0, 1, "Unexpected end-of-file");
792 $self->_error (0, 1); 1090
793 } 1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
794 } 1099 }
795 1100
796 # may need to restart read watcher 1101 # may need to restart read watcher
797 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
798 $self->start_read 1103 $self->start_read
810 1115
811sub on_read { 1116sub on_read {
812 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
813 1118
814 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
815 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
816} 1121}
817 1122
818=item $handle->rbuf 1123=item $handle->rbuf
819 1124
820Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
821 1126
822You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
823you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
824 1132
825NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
826C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
827automatically manage the read buffer. 1135automatically manage the read buffer.
828 1136
869 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
870 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
871 } 1179 }
872 1180
873 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
874 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
875} 1183}
876 1184
877sub unshift_read { 1185sub unshift_read {
878 my $self = shift; 1186 my $self = shift;
879 my $cb = pop; 1187 my $cb = pop;
885 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
886 } 1194 }
887 1195
888 1196
889 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
890 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
891} 1199}
892 1200
893=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
894 1202
895=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
1028 return 1; 1336 return 1;
1029 } 1337 }
1030 1338
1031 # reject 1339 # reject
1032 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
1033 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
1034 } 1342 }
1035 1343
1036 # skip 1344 # skip
1037 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
1038 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
1054 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
1055 1363
1056 sub { 1364 sub {
1057 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
1059 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
1060 } 1368 }
1061 return; 1369 return;
1062 } 1370 }
1063 1371
1064 my $len = $1; 1372 my $len = $1;
1067 my $string = $_[1]; 1375 my $string = $_[1];
1068 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
1069 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
1070 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1071 } else { 1379 } else {
1072 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1073 } 1381 }
1074 }); 1382 });
1075 }); 1383 });
1076 1384
1077 1 1385 1
1083An octet string prefixed with an encoded length. The encoding C<$format> 1391An octet string prefixed with an encoded length. The encoding C<$format>
1084uses the same format as a Perl C<pack> format, but must specify a single 1392uses the same format as a Perl C<pack> format, but must specify a single
1085integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086optional C<!>, C<< < >> or C<< > >> modifier). 1394optional C<!>, C<< < >> or C<< > >> modifier).
1087 1395
1088DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1089 1398
1090Example: read a block of data prefixed by its length in BER-encoded 1399Example: read a block of data prefixed by its length in BER-encoded
1091format (very efficient). 1400format (very efficient).
1092 1401
1093 $handle->push_read (packstring => "w", sub { 1402 $handle->push_read (packstring => "w", sub {
1123 } 1432 }
1124}; 1433};
1125 1434
1126=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1127 1436
1128Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1129 1439
1130If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1131for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132 1442
1133This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1142=cut 1452=cut
1143 1453
1144register_read_type json => sub { 1454register_read_type json => sub {
1145 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1146 1456
1147 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1148 1458
1149 my $data; 1459 my $data;
1150 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1151 1461
1152 my $json = $self->{json} ||= JSON->new->utf8;
1153
1154 sub { 1462 sub {
1155 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1156 1464
1157 if ($ref) { 1465 if ($ref) {
1158 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1159 $json->incr_text = ""; 1467 $json->incr_text = "";
1160 $cb->($self, $ref); 1468 $cb->($self, $ref);
1161 1469
1162 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1163 } else { 1481 } else {
1164 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1165 () 1484 ()
1166 } 1485 }
1167 } 1486 }
1168}; 1487};
1169 1488
1201 # read remaining chunk 1520 # read remaining chunk
1202 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1203 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1205 } else { 1524 } else {
1206 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1207 } 1526 }
1208 }); 1527 });
1209 } 1528 }
1210 1529
1211 1 1530 1
1246Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1247you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1248will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1249there are any read requests in the queue. 1568there are any read requests in the queue.
1250 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1251=cut 1573=cut
1252 1574
1253sub stop_read { 1575sub stop_read {
1254 my ($self) = @_; 1576 my ($self) = @_;
1255 1577
1256 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1257} 1579}
1258 1580
1259sub start_read { 1581sub start_read {
1260 my ($self) = @_; 1582 my ($self) = @_;
1261 1583
1262 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1263 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1264 1586
1265 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1266 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1267 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1268 1590
1269 if ($len > 0) { 1591 if ($len > 0) {
1270 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1271 1593
1272 $self->{filter_r} 1594 if ($self->{tls}) {
1273 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1274 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1275 1601
1276 } elsif (defined $len) { 1602 } elsif (defined $len) {
1277 delete $self->{_rw}; 1603 delete $self->{_rw};
1278 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1279 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1280 1606
1281 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1282 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1283 } 1609 }
1284 }); 1610 };
1285 } 1611 }
1286} 1612}
1287 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1288sub _dotls { 1642sub _dotls {
1289 my ($self) = @_; 1643 my ($self) = @_;
1290 1644
1291 my $buf; 1645 my $tmp;
1292 1646
1293 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1294 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1295 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1296 } 1650 }
1297 }
1298 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1299 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1300 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1301 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1302 } 1687 }
1303 1688
1304 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1305 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1306 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1307 $self->_drain_rbuf unless $self->{_in_drain};
1308 } else {
1309 # let's treat SSL-eof as we treat normal EOF
1310 $self->{_eof} = 1;
1311 $self->_shutdown;
1312 return;
1313 }
1314 }
1315
1316 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317
1318 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 return $self->_error ($!, 1);
1321 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 return $self->_error (&Errno::EIO, 1);
1323 }
1324
1325 # all others are fine for our purposes
1326 }
1327} 1692}
1328 1693
1329=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1330 1695
1331Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1333C<starttls>. 1698C<starttls>.
1334 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1335The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1336C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337 1706
1338The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1339used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1340 1711
1341The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1342call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1343might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1344 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1345=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1346 1724
1347sub starttls { 1725sub starttls {
1348 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1349 1727
1350 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1351 1730
1352 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1353 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1354 Net::SSLeay::set_accept_state ($ssl); 1733
1355 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1357 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1358 } 1756
1359 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1360 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1361 1759
1362 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1363 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1364 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1366 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1367 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1368 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1370 1776
1371 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1374 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1375 1783
1376 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1377 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1378 &_dotls; 1786
1379 }; 1787 &_dotls; # need to trigger the initial handshake
1380 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1381 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 &_dotls;
1383 };
1384} 1789}
1385 1790
1386=item $handle->stoptls 1791=item $handle->stoptls
1387 1792
1388Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1389lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1390 1797
1391=cut 1798=cut
1392 1799
1393sub stoptls { 1800sub stoptls {
1394 my ($self) = @_; 1801 my ($self) = @_;
1395 1802
1396 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1397 1805
1398 delete $self->{_rbio}; 1806 &_dotls;
1399 delete $self->{_wbio}; 1807
1400 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1401 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1402 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1403} 1823}
1404 1824
1405sub DESTROY { 1825sub DESTROY {
1406 my $self = shift; 1826 my ($self) = @_;
1407 1827
1408 $self->stoptls; 1828 &_freetls;
1409 1829
1410 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1411 1831
1412 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1413 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1414 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1415 1835
1416 my @linger; 1836 my @linger;
1417 1837
1418 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1419 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1420 1840
1421 if ($len > 0) { 1841 if ($len > 0) {
1422 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1423 } else { 1843 } else {
1424 @linger = (); # end 1844 @linger = (); # end
1425 } 1845 }
1426 }); 1846 };
1427 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1428 @linger = (); 1848 @linger = ();
1429 }); 1849 };
1430 } 1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1431} 1888}
1432 1889
1433=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1434 1891
1435This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1436default for TLS mode. 1893for TLS mode.
1437 1894
1438The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1439
1440 Net::SSLeay::load_error_strings;
1441 Net::SSLeay::SSLeay_add_ssl_algorithms;
1442 Net::SSLeay::randomize;
1443
1444 my $CTX = Net::SSLeay::CTX_new;
1445
1446 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447 1896
1448=cut 1897=cut
1449 1898
1450our $TLS_CTX; 1899our $TLS_CTX;
1451 1900
1452sub TLS_CTX() { 1901sub TLS_CTX() {
1453 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1454 require Net::SSLeay; 1903 require AnyEvent::TLS;
1455 1904
1456 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1457 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458 Net::SSLeay::randomize ();
1459
1460 $TLS_CTX = Net::SSLeay::CTX_new ();
1461
1462 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463
1464 $TLS_CTX
1465 } 1906 }
1466} 1907}
1467 1908
1468=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1469 2069
1470=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1471 2071
1472In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1473 2073

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines