ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.83 by root, Thu Aug 21 19:11:37 2008 UTC vs.
Revision 1.185 by root, Thu Sep 3 19:48:27 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
65sub _load_func($) {
66 my $func = $_[0];
67
68 unless (defined &$func) {
69 my $pkg = $func;
70 do {
71 $pkg =~ s/::[^:]+$//
72 or return;
73 eval "require $pkg";
74 } until defined &$func;
75 }
76
77 \&$func
78}
79
61=head1 METHODS 80=head1 METHODS
62 81
63=over 4 82=over 4
64 83
65=item B<new (%args)> 84=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 85
67The constructor supports these arguments (all as key => value pairs). 86The constructor supports these arguments (all as C<< key => value >> pairs).
68 87
69=over 4 88=over 4
70 89
71=item fh => $filehandle [MANDATORY] 90=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 91
73The filehandle this L<AnyEvent::Handle> object will operate on. 92The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking mode (using 93NOTE: The filehandle will be set to non-blocking mode (using
76C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 94C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
77that mode. 95that mode.
78 96
97=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98
99Try to connect to the specified host and service (port), using
100C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101default C<peername>.
102
103You have to specify either this parameter, or C<fh>, above.
104
105It is possible to push requests on the read and write queues, and modify
106properties of the stream, even while AnyEvent::Handle is connecting.
107
108When this parameter is specified, then the C<on_prepare>,
109C<on_connect_error> and C<on_connect> callbacks will be called under the
110appropriate circumstances:
111
112=over 4
113
79=item on_eof => $cb->($handle) 114=item on_prepare => $cb->($handle)
80 115
81Set the callback to be called when an end-of-file condition is detected, 116This (rarely used) callback is called before a new connection is
82i.e. in the case of a socket, when the other side has closed the 117attempted, but after the file handle has been created. It could be used to
83connection cleanly. 118prepare the file handle with parameters required for the actual connect
119(as opposed to settings that can be changed when the connection is already
120established).
84 121
85For sockets, this just means that the other side has stopped sending data, 122The return value of this callback should be the connect timeout value in
86you can still try to write data, and, in fact, one can return from the eof 123seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
87callback and continue writing data, as only the read part has been shut 124timeout is to be used).
88down.
89 125
90While not mandatory, it is I<highly> recommended to set an eof callback, 126=item on_connect => $cb->($handle, $host, $port, $retry->())
91otherwise you might end up with a closed socket while you are still
92waiting for data.
93 127
94If an EOF condition has been detected but no C<on_eof> callback has been 128This callback is called when a connection has been successfully established.
95set, then a fatal error will be raised with C<$!> set to <0>.
96 129
130The actual numeric host and port (the socket peername) are passed as
131parameters, together with a retry callback.
132
133When, for some reason, the handle is not acceptable, then calling
134C<$retry> will continue with the next conenction target (in case of
135multi-homed hosts or SRV records there can be multiple connection
136endpoints). When it is called then the read and write queues, eof status,
137tls status and similar properties of the handle are being reset.
138
139In most cases, ignoring the C<$retry> parameter is the way to go.
140
141=item on_connect_error => $cb->($handle, $message)
142
143This callback is called when the conenction could not be
144established. C<$!> will contain the relevant error code, and C<$message> a
145message describing it (usually the same as C<"$!">).
146
147If this callback isn't specified, then C<on_error> will be called with a
148fatal error instead.
149
150=back
151
97=item on_error => $cb->($handle, $fatal) 152=item on_error => $cb->($handle, $fatal, $message)
98 153
99This is the error callback, which is called when, well, some error 154This is the error callback, which is called when, well, some error
100occured, such as not being able to resolve the hostname, failure to 155occured, such as not being able to resolve the hostname, failure to
101connect or a read error. 156connect or a read error.
102 157
103Some errors are fatal (which is indicated by C<$fatal> being true). On 158Some errors are fatal (which is indicated by C<$fatal> being true). On
104fatal errors the handle object will be shut down and will not be usable 159fatal errors the handle object will be destroyed (by a call to C<< ->
105(but you are free to look at the current C< ->rbuf >). Examples of fatal 160destroy >>) after invoking the error callback (which means you are free to
106errors are an EOF condition with active (but unsatisifable) read watchers 161examine the handle object). Examples of fatal errors are an EOF condition
107(C<EPIPE>) or I/O errors. 162with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
163cases where the other side can close the connection at their will it is
164often easiest to not report C<EPIPE> errors in this callback.
165
166AnyEvent::Handle tries to find an appropriate error code for you to check
167against, but in some cases (TLS errors), this does not work well. It is
168recommended to always output the C<$message> argument in human-readable
169error messages (it's usually the same as C<"$!">).
108 170
109Non-fatal errors can be retried by simply returning, but it is recommended 171Non-fatal errors can be retried by simply returning, but it is recommended
110to simply ignore this parameter and instead abondon the handle object 172to simply ignore this parameter and instead abondon the handle object
111when this callback is invoked. Examples of non-fatal errors are timeouts 173when this callback is invoked. Examples of non-fatal errors are timeouts
112C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 174C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
113 175
114On callback entrance, the value of C<$!> contains the operating system 176On callback entrance, the value of C<$!> contains the operating system
115error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 177error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
178C<EPROTO>).
116 179
117While not mandatory, it is I<highly> recommended to set this callback, as 180While not mandatory, it is I<highly> recommended to set this callback, as
118you will not be notified of errors otherwise. The default simply calls 181you will not be notified of errors otherwise. The default simply calls
119C<croak>. 182C<croak>.
120 183
124and no read request is in the queue (unlike read queue callbacks, this 187and no read request is in the queue (unlike read queue callbacks, this
125callback will only be called when at least one octet of data is in the 188callback will only be called when at least one octet of data is in the
126read buffer). 189read buffer).
127 190
128To access (and remove data from) the read buffer, use the C<< ->rbuf >> 191To access (and remove data from) the read buffer, use the C<< ->rbuf >>
129method or access the C<$handle->{rbuf}> member directly. 192method or access the C<< $handle->{rbuf} >> member directly. Note that you
193must not enlarge or modify the read buffer, you can only remove data at
194the beginning from it.
130 195
131When an EOF condition is detected then AnyEvent::Handle will first try to 196When an EOF condition is detected then AnyEvent::Handle will first try to
132feed all the remaining data to the queued callbacks and C<on_read> before 197feed all the remaining data to the queued callbacks and C<on_read> before
133calling the C<on_eof> callback. If no progress can be made, then a fatal 198calling the C<on_eof> callback. If no progress can be made, then a fatal
134error will be raised (with C<$!> set to C<EPIPE>). 199error will be raised (with C<$!> set to C<EPIPE>).
200
201Note that, unlike requests in the read queue, an C<on_read> callback
202doesn't mean you I<require> some data: if there is an EOF and there
203are outstanding read requests then an error will be flagged. With an
204C<on_read> callback, the C<on_eof> callback will be invoked.
205
206=item on_eof => $cb->($handle)
207
208Set the callback to be called when an end-of-file condition is detected,
209i.e. in the case of a socket, when the other side has closed the
210connection cleanly, and there are no outstanding read requests in the
211queue (if there are read requests, then an EOF counts as an unexpected
212connection close and will be flagged as an error).
213
214For sockets, this just means that the other side has stopped sending data,
215you can still try to write data, and, in fact, one can return from the EOF
216callback and continue writing data, as only the read part has been shut
217down.
218
219If an EOF condition has been detected but no C<on_eof> callback has been
220set, then a fatal error will be raised with C<$!> set to <0>.
135 221
136=item on_drain => $cb->($handle) 222=item on_drain => $cb->($handle)
137 223
138This sets the callback that is called when the write buffer becomes empty 224This sets the callback that is called when the write buffer becomes empty
139(or when the callback is set and the buffer is empty already). 225(or when the callback is set and the buffer is empty already).
146memory and push it into the queue, but instead only read more data from 232memory and push it into the queue, but instead only read more data from
147the file when the write queue becomes empty. 233the file when the write queue becomes empty.
148 234
149=item timeout => $fractional_seconds 235=item timeout => $fractional_seconds
150 236
237=item rtimeout => $fractional_seconds
238
239=item wtimeout => $fractional_seconds
240
151If non-zero, then this enables an "inactivity" timeout: whenever this many 241If non-zero, then these enables an "inactivity" timeout: whenever this
152seconds pass without a successful read or write on the underlying file 242many seconds pass without a successful read or write on the underlying
153handle, the C<on_timeout> callback will be invoked (and if that one is 243file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
154missing, an C<ETIMEDOUT> error will be raised). 244will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
245error will be raised).
246
247There are three variants of the timeouts that work fully independent
248of each other, for both read and write, just read, and just write:
249C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
250C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
251C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
155 252
156Note that timeout processing is also active when you currently do not have 253Note that timeout processing is also active when you currently do not have
157any outstanding read or write requests: If you plan to keep the connection 254any outstanding read or write requests: If you plan to keep the connection
158idle then you should disable the timout temporarily or ignore the timeout 255idle then you should disable the timout temporarily or ignore the timeout
159in the C<on_timeout> callback. 256in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
257restart the timeout.
160 258
161Zero (the default) disables this timeout. 259Zero (the default) disables this timeout.
162 260
163=item on_timeout => $cb->($handle) 261=item on_timeout => $cb->($handle)
164 262
168 266
169=item rbuf_max => <bytes> 267=item rbuf_max => <bytes>
170 268
171If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 269If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
172when the read buffer ever (strictly) exceeds this size. This is useful to 270when the read buffer ever (strictly) exceeds this size. This is useful to
173avoid denial-of-service attacks. 271avoid some forms of denial-of-service attacks.
174 272
175For example, a server accepting connections from untrusted sources should 273For example, a server accepting connections from untrusted sources should
176be configured to accept only so-and-so much data that it cannot act on 274be configured to accept only so-and-so much data that it cannot act on
177(for example, when expecting a line, an attacker could send an unlimited 275(for example, when expecting a line, an attacker could send an unlimited
178amount of data without a callback ever being called as long as the line 276amount of data without a callback ever being called as long as the line
179isn't finished). 277isn't finished).
180 278
181=item autocork => <boolean> 279=item autocork => <boolean>
182 280
183When disabled (the default), then C<push_write> will try to immediately 281When disabled (the default), then C<push_write> will try to immediately
184write the data to the handle if possible. This avoids having to register 282write the data to the handle, if possible. This avoids having to register
185a write watcher and wait for the next event loop iteration, but can be 283a write watcher and wait for the next event loop iteration, but can
186inefficient if you write multiple small chunks (this disadvantage is 284be inefficient if you write multiple small chunks (on the wire, this
187usually avoided by your kernel's nagle algorithm, see C<low_delay>). 285disadvantage is usually avoided by your kernel's nagle algorithm, see
286C<no_delay>, but this option can save costly syscalls).
188 287
189When enabled, then writes will always be queued till the next event loop 288When enabled, then writes will always be queued till the next event loop
190iteration. This is efficient when you do many small writes per iteration, 289iteration. This is efficient when you do many small writes per iteration,
191but less efficient when you do a single write only. 290but less efficient when you do a single write only per iteration (or when
291the write buffer often is full). It also increases write latency.
192 292
193=item no_delay => <boolean> 293=item no_delay => <boolean>
194 294
195When doing small writes on sockets, your operating system kernel might 295When doing small writes on sockets, your operating system kernel might
196wait a bit for more data before actually sending it out. This is called 296wait a bit for more data before actually sending it out. This is called
197the Nagle algorithm, and usually it is beneficial. 297the Nagle algorithm, and usually it is beneficial.
198 298
199In some situations you want as low a delay as possible, which cna be 299In some situations you want as low a delay as possible, which can be
200accomplishd by setting this option to true. 300accomplishd by setting this option to a true value.
201 301
202The default is your opertaing system's default behaviour, this option 302The default is your opertaing system's default behaviour (most likely
203explicitly enables or disables it, if possible. 303enabled), this option explicitly enables or disables it, if possible.
304
305=item keepalive => <boolean>
306
307Enables (default disable) the SO_KEEPALIVE option on the stream socket:
308normally, TCP connections have no time-out once established, so TCP
309conenctions, once established, can stay alive forever even when the other
310side has long gone. TCP keepalives are a cheap way to take down long-lived
311TCP connections whent he other side becomes unreachable. While the default
312is OS-dependent, TCP keepalives usually kick in after around two hours,
313and, if the other side doesn't reply, take down the TCP connection some 10
314to 15 minutes later.
315
316It is harmless to specify this option for file handles that do not support
317keepalives, and enabling it on connections that are potentially long-lived
318is usually a good idea.
319
320=item oobinline => <boolean>
321
322BSD majorly fucked up the implementation of TCP urgent data. The result
323is that almost no OS implements TCP according to the specs, and every OS
324implements it slightly differently.
325
326If you want to handle TCP urgent data, then setting this flag (the default
327is enabled) gives you the most portable way of getting urgent data, by
328putting it into the stream.
329
330Since BSD emulation of OOB data on top of TCP's urgent data can have
331security implications, AnyEvent::Handle sets this flag automatically
332unless explicitly specified. Note that setting this flag after
333establishing a connection I<may> be a bit too late (data loss could
334already have occured on BSD systems), but at least it will protect you
335from most attacks.
204 336
205=item read_size => <bytes> 337=item read_size => <bytes>
206 338
207The default read block size (the amount of bytes this module will try to read 339The default read block size (the amount of bytes this module will
208during each (loop iteration). Default: C<8192>. 340try to read during each loop iteration, which affects memory
341requirements). Default: C<8192>.
209 342
210=item low_water_mark => <bytes> 343=item low_water_mark => <bytes>
211 344
212Sets the amount of bytes (default: C<0>) that make up an "empty" write 345Sets the amount of bytes (default: C<0>) that make up an "empty" write
213buffer: If the write reaches this size or gets even samller it is 346buffer: If the write reaches this size or gets even samller it is
214considered empty. 347considered empty.
215 348
349Sometimes it can be beneficial (for performance reasons) to add data to
350the write buffer before it is fully drained, but this is a rare case, as
351the operating system kernel usually buffers data as well, so the default
352is good in almost all cases.
353
216=item linger => <seconds> 354=item linger => <seconds>
217 355
218If non-zero (default: C<3600>), then the destructor of the 356If non-zero (default: C<3600>), then the destructor of the
219AnyEvent::Handle object will check wether there is still outstanding write 357AnyEvent::Handle object will check whether there is still outstanding
220data and will install a watcher that will write out this data. No errors 358write data and will install a watcher that will write this data to the
221will be reported (this mostly matches how the operating system treats 359socket. No errors will be reported (this mostly matches how the operating
222outstanding data at socket close time). 360system treats outstanding data at socket close time).
223 361
224This will not work for partial TLS data that could not yet been 362This will not work for partial TLS data that could not be encoded
225encoded. This data will be lost. 363yet. This data will be lost. Calling the C<stoptls> method in time might
364help.
365
366=item peername => $string
367
368A string used to identify the remote site - usually the DNS hostname
369(I<not> IDN!) used to create the connection, rarely the IP address.
370
371Apart from being useful in error messages, this string is also used in TLS
372peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
373verification will be skipped when C<peername> is not specified or
374C<undef>.
226 375
227=item tls => "accept" | "connect" | Net::SSLeay::SSL object 376=item tls => "accept" | "connect" | Net::SSLeay::SSL object
228 377
229When this parameter is given, it enables TLS (SSL) mode, that means it 378When this parameter is given, it enables TLS (SSL) mode, that means
230will start making tls handshake and will transparently encrypt/decrypt 379AnyEvent will start a TLS handshake as soon as the conenction has been
231data. 380established and will transparently encrypt/decrypt data afterwards.
381
382All TLS protocol errors will be signalled as C<EPROTO>, with an
383appropriate error message.
232 384
233TLS mode requires Net::SSLeay to be installed (it will be loaded 385TLS mode requires Net::SSLeay to be installed (it will be loaded
234automatically when you try to create a TLS handle). 386automatically when you try to create a TLS handle): this module doesn't
387have a dependency on that module, so if your module requires it, you have
388to add the dependency yourself.
235 389
236For the TLS server side, use C<accept>, and for the TLS client side of a 390Unlike TCP, TLS has a server and client side: for the TLS server side, use
237connection, use C<connect> mode. 391C<accept>, and for the TLS client side of a connection, use C<connect>
392mode.
238 393
239You can also provide your own TLS connection object, but you have 394You can also provide your own TLS connection object, but you have
240to make sure that you call either C<Net::SSLeay::set_connect_state> 395to make sure that you call either C<Net::SSLeay::set_connect_state>
241or C<Net::SSLeay::set_accept_state> on it before you pass it to 396or C<Net::SSLeay::set_accept_state> on it before you pass it to
242AnyEvent::Handle. 397AnyEvent::Handle. Also, this module will take ownership of this connection
398object.
243 399
400At some future point, AnyEvent::Handle might switch to another TLS
401implementation, then the option to use your own session object will go
402away.
403
404B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
405passing in the wrong integer will lead to certain crash. This most often
406happens when one uses a stylish C<< tls => 1 >> and is surprised about the
407segmentation fault.
408
244See the C<starttls> method if you need to start TLS negotiation later. 409See the C<< ->starttls >> method for when need to start TLS negotiation later.
245 410
246=item tls_ctx => $ssl_ctx 411=item tls_ctx => $anyevent_tls
247 412
248Use the given Net::SSLeay::CTX object to create the new TLS connection 413Use the given C<AnyEvent::TLS> object to create the new TLS connection
249(unless a connection object was specified directly). If this parameter is 414(unless a connection object was specified directly). If this parameter is
250missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 415missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
251 416
417Instead of an object, you can also specify a hash reference with C<< key
418=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
419new TLS context object.
420
421=item on_starttls => $cb->($handle, $success[, $error_message])
422
423This callback will be invoked when the TLS/SSL handshake has finished. If
424C<$success> is true, then the TLS handshake succeeded, otherwise it failed
425(C<on_stoptls> will not be called in this case).
426
427The session in C<< $handle->{tls} >> can still be examined in this
428callback, even when the handshake was not successful.
429
430TLS handshake failures will not cause C<on_error> to be invoked when this
431callback is in effect, instead, the error message will be passed to C<on_starttls>.
432
433Without this callback, handshake failures lead to C<on_error> being
434called, as normal.
435
436Note that you cannot call C<starttls> right again in this callback. If you
437need to do that, start an zero-second timer instead whose callback can
438then call C<< ->starttls >> again.
439
440=item on_stoptls => $cb->($handle)
441
442When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
443set, then it will be invoked after freeing the TLS session. If it is not,
444then a TLS shutdown condition will be treated like a normal EOF condition
445on the handle.
446
447The session in C<< $handle->{tls} >> can still be examined in this
448callback.
449
450This callback will only be called on TLS shutdowns, not when the
451underlying handle signals EOF.
452
252=item json => JSON or JSON::XS object 453=item json => JSON or JSON::XS object
253 454
254This is the json coder object used by the C<json> read and write types. 455This is the json coder object used by the C<json> read and write types.
255 456
256If you don't supply it, then AnyEvent::Handle will create and use a 457If you don't supply it, then AnyEvent::Handle will create and use a
257suitable one, which will write and expect UTF-8 encoded JSON texts. 458suitable one (on demand), which will write and expect UTF-8 encoded JSON
459texts.
258 460
259Note that you are responsible to depend on the JSON module if you want to 461Note that you are responsible to depend on the JSON module if you want to
260use this functionality, as AnyEvent does not have a dependency itself. 462use this functionality, as AnyEvent does not have a dependency itself.
261 463
262=item filter_r => $cb
263
264=item filter_w => $cb
265
266These exist, but are undocumented at this time.
267
268=back 464=back
269 465
270=cut 466=cut
271 467
272sub new { 468sub new {
273 my $class = shift; 469 my $class = shift;
274
275 my $self = bless { @_ }, $class; 470 my $self = bless { @_ }, $class;
276 471
277 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 472 if ($self->{fh}) {
473 $self->_start;
474 return unless $self->{fh}; # could be gone by now
475
476 } elsif ($self->{connect}) {
477 require AnyEvent::Socket;
478
479 $self->{peername} = $self->{connect}[0]
480 unless exists $self->{peername};
481
482 $self->{_skip_drain_rbuf} = 1;
483
484 {
485 Scalar::Util::weaken (my $self = $self);
486
487 $self->{_connect} =
488 AnyEvent::Socket::tcp_connect (
489 $self->{connect}[0],
490 $self->{connect}[1],
491 sub {
492 my ($fh, $host, $port, $retry) = @_;
493
494 if ($fh) {
495 $self->{fh} = $fh;
496
497 delete $self->{_skip_drain_rbuf};
498 $self->_start;
499
500 $self->{on_connect}
501 and $self->{on_connect}($self, $host, $port, sub {
502 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
503 $self->{_skip_drain_rbuf} = 1;
504 &$retry;
505 });
506
507 } else {
508 if ($self->{on_connect_error}) {
509 $self->{on_connect_error}($self, "$!");
510 $self->destroy;
511 } else {
512 $self->_error ($!, 1);
513 }
514 }
515 },
516 sub {
517 local $self->{fh} = $_[0];
518
519 $self->{on_prepare}
520 ? $self->{on_prepare}->($self)
521 : ()
522 }
523 );
524 }
525
526 } else {
527 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
528 }
529
530 $self
531}
532
533sub _start {
534 my ($self) = @_;
278 535
279 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 536 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
280 537
281 if ($self->{tls}) { 538 $self->{_activity} =
282 require Net::SSLeay; 539 $self->{_ractivity} =
540 $self->{_wactivity} = AE::now;
541
542 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
543 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
544 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
545
546 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
547 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
548
549 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
550
283 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 551 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
284 } 552 if $self->{tls};
285 553
286 $self->{_activity} = AnyEvent->now;
287 $self->_timeout;
288
289 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 554 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
290 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 555
292 $self->start_read 556 $self->start_read
293 if $self->{on_read}; 557 if $self->{on_read} || @{ $self->{_queue} };
294 558
295 $self 559 $self->_drain_wbuf;
296}
297
298sub _shutdown {
299 my ($self) = @_;
300
301 delete $self->{_tw};
302 delete $self->{_rw};
303 delete $self->{_ww};
304 delete $self->{fh};
305
306 $self->stoptls;
307
308 delete $self->{on_read};
309 delete $self->{_queue};
310} 560}
311 561
312sub _error { 562sub _error {
313 my ($self, $errno, $fatal) = @_; 563 my ($self, $errno, $fatal, $message) = @_;
314
315 $self->_shutdown
316 if $fatal;
317 564
318 $! = $errno; 565 $! = $errno;
566 $message ||= "$!";
319 567
320 if ($self->{on_error}) { 568 if ($self->{on_error}) {
321 $self->{on_error}($self, $fatal); 569 $self->{on_error}($self, $fatal, $message);
322 } else { 570 $self->destroy if $fatal;
571 } elsif ($self->{fh}) {
572 $self->destroy;
323 Carp::croak "AnyEvent::Handle uncaught error: $!"; 573 Carp::croak "AnyEvent::Handle uncaught error: $message";
324 } 574 }
325} 575}
326 576
327=item $fh = $handle->fh 577=item $fh = $handle->fh
328 578
329This method returns the file handle of the L<AnyEvent::Handle> object. 579This method returns the file handle used to create the L<AnyEvent::Handle> object.
330 580
331=cut 581=cut
332 582
333sub fh { $_[0]{fh} } 583sub fh { $_[0]{fh} }
334 584
352 $_[0]{on_eof} = $_[1]; 602 $_[0]{on_eof} = $_[1];
353} 603}
354 604
355=item $handle->on_timeout ($cb) 605=item $handle->on_timeout ($cb)
356 606
357Replace the current C<on_timeout> callback, or disables the callback 607=item $handle->on_rtimeout ($cb)
358(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
359argument.
360 608
361=cut 609=item $handle->on_wtimeout ($cb)
362 610
363sub on_timeout { 611Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
364 $_[0]{on_timeout} = $_[1]; 612callback, or disables the callback (but not the timeout) if C<$cb> =
365} 613C<undef>. See the C<timeout> constructor argument and method.
614
615=cut
616
617# see below
366 618
367=item $handle->autocork ($boolean) 619=item $handle->autocork ($boolean)
368 620
369Enables or disables the current autocork behaviour (see C<autocork> 621Enables or disables the current autocork behaviour (see C<autocork>
370constructor argument). 622constructor argument). Changes will only take effect on the next write.
371 623
372=cut 624=cut
625
626sub autocork {
627 $_[0]{autocork} = $_[1];
628}
373 629
374=item $handle->no_delay ($boolean) 630=item $handle->no_delay ($boolean)
375 631
376Enables or disables the C<no_delay> setting (see constructor argument of 632Enables or disables the C<no_delay> setting (see constructor argument of
377the same name for details). 633the same name for details).
381sub no_delay { 637sub no_delay {
382 $_[0]{no_delay} = $_[1]; 638 $_[0]{no_delay} = $_[1];
383 639
384 eval { 640 eval {
385 local $SIG{__DIE__}; 641 local $SIG{__DIE__};
386 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 642 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
643 if $_[0]{fh};
387 }; 644 };
388} 645}
389 646
647=item $handle->keepalive ($boolean)
648
649Enables or disables the C<keepalive> setting (see constructor argument of
650the same name for details).
651
652=cut
653
654sub keepalive {
655 $_[0]{keepalive} = $_[1];
656
657 eval {
658 local $SIG{__DIE__};
659 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
660 if $_[0]{fh};
661 };
662}
663
664=item $handle->oobinline ($boolean)
665
666Enables or disables the C<oobinline> setting (see constructor argument of
667the same name for details).
668
669=cut
670
671sub oobinline {
672 $_[0]{oobinline} = $_[1];
673
674 eval {
675 local $SIG{__DIE__};
676 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
677 if $_[0]{fh};
678 };
679}
680
681=item $handle->keepalive ($boolean)
682
683Enables or disables the C<keepalive> setting (see constructor argument of
684the same name for details).
685
686=cut
687
688sub keepalive {
689 $_[0]{keepalive} = $_[1];
690
691 eval {
692 local $SIG{__DIE__};
693 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
694 if $_[0]{fh};
695 };
696}
697
698=item $handle->on_starttls ($cb)
699
700Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
701
702=cut
703
704sub on_starttls {
705 $_[0]{on_starttls} = $_[1];
706}
707
708=item $handle->on_stoptls ($cb)
709
710Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
711
712=cut
713
714sub on_starttls {
715 $_[0]{on_stoptls} = $_[1];
716}
717
718=item $handle->rbuf_max ($max_octets)
719
720Configures the C<rbuf_max> setting (C<undef> disables it).
721
722=cut
723
724sub rbuf_max {
725 $_[0]{rbuf_max} = $_[1];
726}
727
390############################################################################# 728#############################################################################
391 729
392=item $handle->timeout ($seconds) 730=item $handle->timeout ($seconds)
393 731
732=item $handle->rtimeout ($seconds)
733
734=item $handle->wtimeout ($seconds)
735
394Configures (or disables) the inactivity timeout. 736Configures (or disables) the inactivity timeout.
395 737
396=cut 738=item $handle->timeout_reset
397 739
398sub timeout { 740=item $handle->rtimeout_reset
741
742=item $handle->wtimeout_reset
743
744Reset the activity timeout, as if data was received or sent.
745
746These methods are cheap to call.
747
748=cut
749
750for my $dir ("", "r", "w") {
751 my $timeout = "${dir}timeout";
752 my $tw = "_${dir}tw";
753 my $on_timeout = "on_${dir}timeout";
754 my $activity = "_${dir}activity";
755 my $cb;
756
757 *$on_timeout = sub {
758 $_[0]{$on_timeout} = $_[1];
759 };
760
761 *$timeout = sub {
399 my ($self, $timeout) = @_; 762 my ($self, $new_value) = @_;
400 763
401 $self->{timeout} = $timeout; 764 $self->{$timeout} = $new_value;
402 $self->_timeout; 765 delete $self->{$tw}; &$cb;
403} 766 };
404 767
768 *{"${dir}timeout_reset"} = sub {
769 $_[0]{$activity} = AE::now;
770 };
771
772 # main workhorse:
405# reset the timeout watcher, as neccessary 773 # reset the timeout watcher, as neccessary
406# also check for time-outs 774 # also check for time-outs
407sub _timeout { 775 $cb = sub {
408 my ($self) = @_; 776 my ($self) = @_;
409 777
410 if ($self->{timeout}) { 778 if ($self->{$timeout} && $self->{fh}) {
411 my $NOW = AnyEvent->now; 779 my $NOW = AE::now;
412 780
413 # when would the timeout trigger? 781 # when would the timeout trigger?
414 my $after = $self->{_activity} + $self->{timeout} - $NOW; 782 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
415 783
416 # now or in the past already? 784 # now or in the past already?
417 if ($after <= 0) { 785 if ($after <= 0) {
418 $self->{_activity} = $NOW; 786 $self->{$activity} = $NOW;
419 787
420 if ($self->{on_timeout}) { 788 if ($self->{$on_timeout}) {
421 $self->{on_timeout}($self); 789 $self->{$on_timeout}($self);
422 } else { 790 } else {
423 $self->_error (&Errno::ETIMEDOUT); 791 $self->_error (Errno::ETIMEDOUT);
792 }
793
794 # callback could have changed timeout value, optimise
795 return unless $self->{$timeout};
796
797 # calculate new after
798 $after = $self->{$timeout};
424 } 799 }
425 800
426 # callback could have changed timeout value, optimise 801 Scalar::Util::weaken $self;
427 return unless $self->{timeout}; 802 return unless $self; # ->error could have destroyed $self
428 803
429 # calculate new after 804 $self->{$tw} ||= AE::timer $after, 0, sub {
430 $after = $self->{timeout}; 805 delete $self->{$tw};
806 $cb->($self);
807 };
808 } else {
809 delete $self->{$tw};
431 } 810 }
432
433 Scalar::Util::weaken $self;
434 return unless $self; # ->error could have destroyed $self
435
436 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
437 delete $self->{_tw};
438 $self->_timeout;
439 });
440 } else {
441 delete $self->{_tw};
442 } 811 }
443} 812}
444 813
445############################################################################# 814#############################################################################
446 815
470 my ($self, $cb) = @_; 839 my ($self, $cb) = @_;
471 840
472 $self->{on_drain} = $cb; 841 $self->{on_drain} = $cb;
473 842
474 $cb->($self) 843 $cb->($self)
475 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 844 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
476} 845}
477 846
478=item $handle->push_write ($data) 847=item $handle->push_write ($data)
479 848
480Queues the given scalar to be written. You can push as much data as you 849Queues the given scalar to be written. You can push as much data as you
491 Scalar::Util::weaken $self; 860 Scalar::Util::weaken $self;
492 861
493 my $cb = sub { 862 my $cb = sub {
494 my $len = syswrite $self->{fh}, $self->{wbuf}; 863 my $len = syswrite $self->{fh}, $self->{wbuf};
495 864
496 if ($len >= 0) { 865 if (defined $len) {
497 substr $self->{wbuf}, 0, $len, ""; 866 substr $self->{wbuf}, 0, $len, "";
498 867
499 $self->{_activity} = AnyEvent->now; 868 $self->{_activity} = $self->{_wactivity} = AE::now;
500 869
501 $self->{on_drain}($self) 870 $self->{on_drain}($self)
502 if $self->{low_water_mark} >= length $self->{wbuf} 871 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
503 && $self->{on_drain}; 872 && $self->{on_drain};
504 873
505 delete $self->{_ww} unless length $self->{wbuf}; 874 delete $self->{_ww} unless length $self->{wbuf};
506 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 875 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
507 $self->_error ($!, 1); 876 $self->_error ($!, 1);
510 879
511 # try to write data immediately 880 # try to write data immediately
512 $cb->() unless $self->{autocork}; 881 $cb->() unless $self->{autocork};
513 882
514 # if still data left in wbuf, we need to poll 883 # if still data left in wbuf, we need to poll
515 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 884 $self->{_ww} = AE::io $self->{fh}, 1, $cb
516 if length $self->{wbuf}; 885 if length $self->{wbuf};
517 }; 886 };
518} 887}
519 888
520our %WH; 889our %WH;
521 890
891# deprecated
522sub register_write_type($$) { 892sub register_write_type($$) {
523 $WH{$_[0]} = $_[1]; 893 $WH{$_[0]} = $_[1];
524} 894}
525 895
526sub push_write { 896sub push_write {
527 my $self = shift; 897 my $self = shift;
528 898
529 if (@_ > 1) { 899 if (@_ > 1) {
530 my $type = shift; 900 my $type = shift;
531 901
902 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
532 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 903 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
533 ->($self, @_); 904 ->($self, @_);
534 } 905 }
535 906
536 if ($self->{filter_w}) { 907 if ($self->{tls}) {
537 $self->{filter_w}($self, \$_[0]); 908 $self->{_tls_wbuf} .= $_[0];
909 &_dotls ($self) if $self->{fh};
538 } else { 910 } else {
539 $self->{wbuf} .= $_[0]; 911 $self->{wbuf} .= $_[0];
540 $self->_drain_wbuf; 912 $self->_drain_wbuf if $self->{fh};
541 } 913 }
542} 914}
543 915
544=item $handle->push_write (type => @args) 916=item $handle->push_write (type => @args)
545 917
546Instead of formatting your data yourself, you can also let this module do 918Instead of formatting your data yourself, you can also let this module
547the job by specifying a type and type-specific arguments. 919do the job by specifying a type and type-specific arguments. You
920can also specify the (fully qualified) name of a package, in which
921case AnyEvent tries to load the package and then expects to find the
922C<anyevent_read_type> function inside (see "custom write types", below).
548 923
549Predefined types are (if you have ideas for additional types, feel free to 924Predefined types are (if you have ideas for additional types, feel free to
550drop by and tell us): 925drop by and tell us):
551 926
552=over 4 927=over 4
559=cut 934=cut
560 935
561register_write_type netstring => sub { 936register_write_type netstring => sub {
562 my ($self, $string) = @_; 937 my ($self, $string) = @_;
563 938
564 sprintf "%d:%s,", (length $string), $string 939 (length $string) . ":$string,"
565}; 940};
566 941
567=item packstring => $format, $data 942=item packstring => $format, $data
568 943
569An octet string prefixed with an encoded length. The encoding C<$format> 944An octet string prefixed with an encoded length. The encoding C<$format>
609Other languages could read single lines terminated by a newline and pass 984Other languages could read single lines terminated by a newline and pass
610this line into their JSON decoder of choice. 985this line into their JSON decoder of choice.
611 986
612=cut 987=cut
613 988
989sub json_coder() {
990 eval { require JSON::XS; JSON::XS->new->utf8 }
991 || do { require JSON; JSON->new->utf8 }
992}
993
614register_write_type json => sub { 994register_write_type json => sub {
615 my ($self, $ref) = @_; 995 my ($self, $ref) = @_;
616 996
617 require JSON; 997 my $json = $self->{json} ||= json_coder;
618 998
619 $self->{json} ? $self->{json}->encode ($ref) 999 $json->encode ($ref)
620 : JSON::encode_json ($ref)
621}; 1000};
622 1001
623=item storable => $reference 1002=item storable => $reference
624 1003
625Freezes the given reference using L<Storable> and writes it to the 1004Freezes the given reference using L<Storable> and writes it to the
635 pack "w/a*", Storable::nfreeze ($ref) 1014 pack "w/a*", Storable::nfreeze ($ref)
636}; 1015};
637 1016
638=back 1017=back
639 1018
640=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1019=item $handle->push_shutdown
641 1020
642This function (not method) lets you add your own types to C<push_write>. 1021Sometimes you know you want to close the socket after writing your data
1022before it was actually written. One way to do that is to replace your
1023C<on_drain> handler by a callback that shuts down the socket (and set
1024C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1025replaces the C<on_drain> callback with:
1026
1027 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1028
1029This simply shuts down the write side and signals an EOF condition to the
1030the peer.
1031
1032You can rely on the normal read queue and C<on_eof> handling
1033afterwards. This is the cleanest way to close a connection.
1034
1035=cut
1036
1037sub push_shutdown {
1038 my ($self) = @_;
1039
1040 delete $self->{low_water_mark};
1041 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1042}
1043
1044=item custom write types - Package::anyevent_write_type $handle, @args
1045
1046Instead of one of the predefined types, you can also specify the name of
1047a package. AnyEvent will try to load the package and then expects to find
1048a function named C<anyevent_write_type> inside. If it isn't found, it
1049progressively tries to load the parent package until it either finds the
1050function (good) or runs out of packages (bad).
1051
643Whenever the given C<type> is used, C<push_write> will invoke the code 1052Whenever the given C<type> is used, C<push_write> will the function with
644reference with the handle object and the remaining arguments. 1053the handle object and the remaining arguments.
645 1054
646The code reference is supposed to return a single octet string that will 1055The function is supposed to return a single octet string that will be
647be appended to the write buffer. 1056appended to the write buffer, so you cna mentally treat this function as a
1057"arguments to on-the-wire-format" converter.
648 1058
649Note that this is a function, and all types registered this way will be 1059Example: implement a custom write type C<join> that joins the remaining
650global, so try to use unique names. 1060arguments using the first one.
1061
1062 $handle->push_write (My::Type => " ", 1,2,3);
1063
1064 # uses the following package, which can be defined in the "My::Type" or in
1065 # the "My" modules to be auto-loaded, or just about anywhere when the
1066 # My::Type::anyevent_write_type is defined before invoking it.
1067
1068 package My::Type;
1069
1070 sub anyevent_write_type {
1071 my ($handle, $delim, @args) = @_;
1072
1073 join $delim, @args
1074 }
651 1075
652=cut 1076=cut
653 1077
654############################################################################# 1078#############################################################################
655 1079
737=cut 1161=cut
738 1162
739sub _drain_rbuf { 1163sub _drain_rbuf {
740 my ($self) = @_; 1164 my ($self) = @_;
741 1165
1166 # avoid recursion
1167 return if $self->{_skip_drain_rbuf};
742 local $self->{_in_drain} = 1; 1168 local $self->{_skip_drain_rbuf} = 1;
743
744 if (
745 defined $self->{rbuf_max}
746 && $self->{rbuf_max} < length $self->{rbuf}
747 ) {
748 $self->_error (&Errno::ENOSPC, 1), return;
749 }
750 1169
751 while () { 1170 while () {
1171 # we need to use a separate tls read buffer, as we must not receive data while
1172 # we are draining the buffer, and this can only happen with TLS.
1173 $self->{rbuf} .= delete $self->{_tls_rbuf}
1174 if exists $self->{_tls_rbuf};
1175
752 my $len = length $self->{rbuf}; 1176 my $len = length $self->{rbuf};
753 1177
754 if (my $cb = shift @{ $self->{_queue} }) { 1178 if (my $cb = shift @{ $self->{_queue} }) {
755 unless ($cb->($self)) { 1179 unless ($cb->($self)) {
756 if ($self->{_eof}) { 1180 # no progress can be made
757 # no progress can be made (not enough data and no data forthcoming) 1181 # (not enough data and no data forthcoming)
758 $self->_error (&Errno::EPIPE, 1), return; 1182 $self->_error (Errno::EPIPE, 1), return
759 } 1183 if $self->{_eof};
760 1184
761 unshift @{ $self->{_queue} }, $cb; 1185 unshift @{ $self->{_queue} }, $cb;
762 last; 1186 last;
763 } 1187 }
764 } elsif ($self->{on_read}) { 1188 } elsif ($self->{on_read}) {
771 && !@{ $self->{_queue} } # and the queue is still empty 1195 && !@{ $self->{_queue} } # and the queue is still empty
772 && $self->{on_read} # but we still have on_read 1196 && $self->{on_read} # but we still have on_read
773 ) { 1197 ) {
774 # no further data will arrive 1198 # no further data will arrive
775 # so no progress can be made 1199 # so no progress can be made
776 $self->_error (&Errno::EPIPE, 1), return 1200 $self->_error (Errno::EPIPE, 1), return
777 if $self->{_eof}; 1201 if $self->{_eof};
778 1202
779 last; # more data might arrive 1203 last; # more data might arrive
780 } 1204 }
781 } else { 1205 } else {
782 # read side becomes idle 1206 # read side becomes idle
783 delete $self->{_rw}; 1207 delete $self->{_rw} unless $self->{tls};
784 last; 1208 last;
785 } 1209 }
786 } 1210 }
787 1211
788 if ($self->{_eof}) { 1212 if ($self->{_eof}) {
789 if ($self->{on_eof}) { 1213 $self->{on_eof}
790 $self->{on_eof}($self) 1214 ? $self->{on_eof}($self)
791 } else { 1215 : $self->_error (0, 1, "Unexpected end-of-file");
792 $self->_error (0, 1); 1216
793 } 1217 return;
1218 }
1219
1220 if (
1221 defined $self->{rbuf_max}
1222 && $self->{rbuf_max} < length $self->{rbuf}
1223 ) {
1224 $self->_error (Errno::ENOSPC, 1), return;
794 } 1225 }
795 1226
796 # may need to restart read watcher 1227 # may need to restart read watcher
797 unless ($self->{_rw}) { 1228 unless ($self->{_rw}) {
798 $self->start_read 1229 $self->start_read
810 1241
811sub on_read { 1242sub on_read {
812 my ($self, $cb) = @_; 1243 my ($self, $cb) = @_;
813 1244
814 $self->{on_read} = $cb; 1245 $self->{on_read} = $cb;
815 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1246 $self->_drain_rbuf if $cb;
816} 1247}
817 1248
818=item $handle->rbuf 1249=item $handle->rbuf
819 1250
820Returns the read buffer (as a modifiable lvalue). 1251Returns the read buffer (as a modifiable lvalue).
821 1252
822You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1253You can access the read buffer directly as the C<< ->{rbuf} >>
823you want. 1254member, if you want. However, the only operation allowed on the
1255read buffer (apart from looking at it) is removing data from its
1256beginning. Otherwise modifying or appending to it is not allowed and will
1257lead to hard-to-track-down bugs.
824 1258
825NOTE: The read buffer should only be used or modified if the C<on_read>, 1259NOTE: The read buffer should only be used or modified if the C<on_read>,
826C<push_read> or C<unshift_read> methods are used. The other read methods 1260C<push_read> or C<unshift_read> methods are used. The other read methods
827automatically manage the read buffer. 1261automatically manage the read buffer.
828 1262
864 my $cb = pop; 1298 my $cb = pop;
865 1299
866 if (@_) { 1300 if (@_) {
867 my $type = shift; 1301 my $type = shift;
868 1302
1303 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
869 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1304 or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
870 ->($self, $cb, @_); 1305 ->($self, $cb, @_);
871 } 1306 }
872 1307
873 push @{ $self->{_queue} }, $cb; 1308 push @{ $self->{_queue} }, $cb;
874 $self->_drain_rbuf unless $self->{_in_drain}; 1309 $self->_drain_rbuf;
875} 1310}
876 1311
877sub unshift_read { 1312sub unshift_read {
878 my $self = shift; 1313 my $self = shift;
879 my $cb = pop; 1314 my $cb = pop;
883 1318
884 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1319 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
885 ->($self, $cb, @_); 1320 ->($self, $cb, @_);
886 } 1321 }
887 1322
888
889 unshift @{ $self->{_queue} }, $cb; 1323 unshift @{ $self->{_queue} }, $cb;
890 $self->_drain_rbuf unless $self->{_in_drain}; 1324 $self->_drain_rbuf;
891} 1325}
892 1326
893=item $handle->push_read (type => @args, $cb) 1327=item $handle->push_read (type => @args, $cb)
894 1328
895=item $handle->unshift_read (type => @args, $cb) 1329=item $handle->unshift_read (type => @args, $cb)
896 1330
897Instead of providing a callback that parses the data itself you can chose 1331Instead of providing a callback that parses the data itself you can chose
898between a number of predefined parsing formats, for chunks of data, lines 1332between a number of predefined parsing formats, for chunks of data, lines
899etc. 1333etc. You can also specify the (fully qualified) name of a package, in
1334which case AnyEvent tries to load the package and then expects to find the
1335C<anyevent_read_type> function inside (see "custom read types", below).
900 1336
901Predefined types are (if you have ideas for additional types, feel free to 1337Predefined types are (if you have ideas for additional types, feel free to
902drop by and tell us): 1338drop by and tell us):
903 1339
904=over 4 1340=over 4
1028 return 1; 1464 return 1;
1029 } 1465 }
1030 1466
1031 # reject 1467 # reject
1032 if ($reject && $$rbuf =~ $reject) { 1468 if ($reject && $$rbuf =~ $reject) {
1033 $self->_error (&Errno::EBADMSG); 1469 $self->_error (Errno::EBADMSG);
1034 } 1470 }
1035 1471
1036 # skip 1472 # skip
1037 if ($skip && $$rbuf =~ $skip) { 1473 if ($skip && $$rbuf =~ $skip) {
1038 $data .= substr $$rbuf, 0, $+[0], ""; 1474 $data .= substr $$rbuf, 0, $+[0], "";
1054 my ($self, $cb) = @_; 1490 my ($self, $cb) = @_;
1055 1491
1056 sub { 1492 sub {
1057 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1493 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058 if ($_[0]{rbuf} =~ /[^0-9]/) { 1494 if ($_[0]{rbuf} =~ /[^0-9]/) {
1059 $self->_error (&Errno::EBADMSG); 1495 $self->_error (Errno::EBADMSG);
1060 } 1496 }
1061 return; 1497 return;
1062 } 1498 }
1063 1499
1064 my $len = $1; 1500 my $len = $1;
1067 my $string = $_[1]; 1503 my $string = $_[1];
1068 $_[0]->unshift_read (chunk => 1, sub { 1504 $_[0]->unshift_read (chunk => 1, sub {
1069 if ($_[1] eq ",") { 1505 if ($_[1] eq ",") {
1070 $cb->($_[0], $string); 1506 $cb->($_[0], $string);
1071 } else { 1507 } else {
1072 $self->_error (&Errno::EBADMSG); 1508 $self->_error (Errno::EBADMSG);
1073 } 1509 }
1074 }); 1510 });
1075 }); 1511 });
1076 1512
1077 1 1513 1
1083An octet string prefixed with an encoded length. The encoding C<$format> 1519An octet string prefixed with an encoded length. The encoding C<$format>
1084uses the same format as a Perl C<pack> format, but must specify a single 1520uses the same format as a Perl C<pack> format, but must specify a single
1085integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1521integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086optional C<!>, C<< < >> or C<< > >> modifier). 1522optional C<!>, C<< < >> or C<< > >> modifier).
1087 1523
1088DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1524For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1525EPP uses a prefix of C<N> (4 octtes).
1089 1526
1090Example: read a block of data prefixed by its length in BER-encoded 1527Example: read a block of data prefixed by its length in BER-encoded
1091format (very efficient). 1528format (very efficient).
1092 1529
1093 $handle->push_read (packstring => "w", sub { 1530 $handle->push_read (packstring => "w", sub {
1123 } 1560 }
1124}; 1561};
1125 1562
1126=item json => $cb->($handle, $hash_or_arrayref) 1563=item json => $cb->($handle, $hash_or_arrayref)
1127 1564
1128Reads a JSON object or array, decodes it and passes it to the callback. 1565Reads a JSON object or array, decodes it and passes it to the
1566callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1129 1567
1130If a C<json> object was passed to the constructor, then that will be used 1568If a C<json> object was passed to the constructor, then that will be used
1131for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1569for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132 1570
1133This read type uses the incremental parser available with JSON version 1571This read type uses the incremental parser available with JSON version
1142=cut 1580=cut
1143 1581
1144register_read_type json => sub { 1582register_read_type json => sub {
1145 my ($self, $cb) = @_; 1583 my ($self, $cb) = @_;
1146 1584
1147 require JSON; 1585 my $json = $self->{json} ||= json_coder;
1148 1586
1149 my $data; 1587 my $data;
1150 my $rbuf = \$self->{rbuf}; 1588 my $rbuf = \$self->{rbuf};
1151 1589
1152 my $json = $self->{json} ||= JSON->new->utf8;
1153
1154 sub { 1590 sub {
1155 my $ref = $json->incr_parse ($self->{rbuf}); 1591 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1156 1592
1157 if ($ref) { 1593 if ($ref) {
1158 $self->{rbuf} = $json->incr_text; 1594 $self->{rbuf} = $json->incr_text;
1159 $json->incr_text = ""; 1595 $json->incr_text = "";
1160 $cb->($self, $ref); 1596 $cb->($self, $ref);
1161 1597
1162 1 1598 1
1599 } elsif ($@) {
1600 # error case
1601 $json->incr_skip;
1602
1603 $self->{rbuf} = $json->incr_text;
1604 $json->incr_text = "";
1605
1606 $self->_error (Errno::EBADMSG);
1607
1608 ()
1163 } else { 1609 } else {
1164 $self->{rbuf} = ""; 1610 $self->{rbuf} = "";
1611
1165 () 1612 ()
1166 } 1613 }
1167 } 1614 }
1168}; 1615};
1169 1616
1201 # read remaining chunk 1648 # read remaining chunk
1202 $_[0]->unshift_read (chunk => $len, sub { 1649 $_[0]->unshift_read (chunk => $len, sub {
1203 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1650 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204 $cb->($_[0], $ref); 1651 $cb->($_[0], $ref);
1205 } else { 1652 } else {
1206 $self->_error (&Errno::EBADMSG); 1653 $self->_error (Errno::EBADMSG);
1207 } 1654 }
1208 }); 1655 });
1209 } 1656 }
1210 1657
1211 1 1658 1
1212 } 1659 }
1213}; 1660};
1214 1661
1215=back 1662=back
1216 1663
1217=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args) 1664=item custom read types - Package::anyevent_read_type $handle, $cb, @args
1218 1665
1219This function (not method) lets you add your own types to C<push_read>. 1666Instead of one of the predefined types, you can also specify the name
1667of a package. AnyEvent will try to load the package and then expects to
1668find a function named C<anyevent_read_type> inside. If it isn't found, it
1669progressively tries to load the parent package until it either finds the
1670function (good) or runs out of packages (bad).
1220 1671
1221Whenever the given C<type> is used, C<push_read> will invoke the code 1672Whenever this type is used, C<push_read> will invoke the function with the
1222reference with the handle object, the callback and the remaining 1673handle object, the original callback and the remaining arguments.
1223arguments.
1224 1674
1225The code reference is supposed to return a callback (usually a closure) 1675The function is supposed to return a callback (usually a closure) that
1226that works as a plain read callback (see C<< ->push_read ($cb) >>). 1676works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1677mentally treat the function as a "configurable read type to read callback"
1678converter.
1227 1679
1228It should invoke the passed callback when it is done reading (remember to 1680It should invoke the original callback when it is done reading (remember
1229pass C<$handle> as first argument as all other callbacks do that). 1681to pass C<$handle> as first argument as all other callbacks do that,
1682although there is no strict requirement on this).
1230 1683
1231Note that this is a function, and all types registered this way will be
1232global, so try to use unique names.
1233
1234For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>, 1684For examples, see the source of this module (F<perldoc -m
1235search for C<register_read_type>)). 1685AnyEvent::Handle>, search for C<register_read_type>)).
1236 1686
1237=item $handle->stop_read 1687=item $handle->stop_read
1238 1688
1239=item $handle->start_read 1689=item $handle->start_read
1240 1690
1246Note that AnyEvent::Handle will automatically C<start_read> for you when 1696Note that AnyEvent::Handle will automatically C<start_read> for you when
1247you change the C<on_read> callback or push/unshift a read callback, and it 1697you change the C<on_read> callback or push/unshift a read callback, and it
1248will automatically C<stop_read> for you when neither C<on_read> is set nor 1698will automatically C<stop_read> for you when neither C<on_read> is set nor
1249there are any read requests in the queue. 1699there are any read requests in the queue.
1250 1700
1701These methods will have no effect when in TLS mode (as TLS doesn't support
1702half-duplex connections).
1703
1251=cut 1704=cut
1252 1705
1253sub stop_read { 1706sub stop_read {
1254 my ($self) = @_; 1707 my ($self) = @_;
1255 1708
1256 delete $self->{_rw}; 1709 delete $self->{_rw} unless $self->{tls};
1257} 1710}
1258 1711
1259sub start_read { 1712sub start_read {
1260 my ($self) = @_; 1713 my ($self) = @_;
1261 1714
1262 unless ($self->{_rw} || $self->{_eof}) { 1715 unless ($self->{_rw} || $self->{_eof}) {
1263 Scalar::Util::weaken $self; 1716 Scalar::Util::weaken $self;
1264 1717
1265 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1718 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1266 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1719 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1267 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1720 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1268 1721
1269 if ($len > 0) { 1722 if ($len > 0) {
1270 $self->{_activity} = AnyEvent->now; 1723 $self->{_activity} = $self->{_ractivity} = AE::now;
1271 1724
1272 $self->{filter_r} 1725 if ($self->{tls}) {
1273 ? $self->{filter_r}($self, $rbuf) 1726 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1274 : $self->{_in_drain} || $self->_drain_rbuf; 1727
1728 &_dotls ($self);
1729 } else {
1730 $self->_drain_rbuf;
1731 }
1275 1732
1276 } elsif (defined $len) { 1733 } elsif (defined $len) {
1277 delete $self->{_rw}; 1734 delete $self->{_rw};
1278 $self->{_eof} = 1; 1735 $self->{_eof} = 1;
1279 $self->_drain_rbuf unless $self->{_in_drain}; 1736 $self->_drain_rbuf;
1280 1737
1281 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1738 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1282 return $self->_error ($!, 1); 1739 return $self->_error ($!, 1);
1283 } 1740 }
1284 }); 1741 };
1285 } 1742 }
1286} 1743}
1287 1744
1745our $ERROR_SYSCALL;
1746our $ERROR_WANT_READ;
1747
1748sub _tls_error {
1749 my ($self, $err) = @_;
1750
1751 return $self->_error ($!, 1)
1752 if $err == Net::SSLeay::ERROR_SYSCALL ();
1753
1754 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1755
1756 # reduce error string to look less scary
1757 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1758
1759 if ($self->{_on_starttls}) {
1760 (delete $self->{_on_starttls})->($self, undef, $err);
1761 &_freetls;
1762 } else {
1763 &_freetls;
1764 $self->_error (Errno::EPROTO, 1, $err);
1765 }
1766}
1767
1768# poll the write BIO and send the data if applicable
1769# also decode read data if possible
1770# this is basiclaly our TLS state machine
1771# more efficient implementations are possible with openssl,
1772# but not with the buggy and incomplete Net::SSLeay.
1288sub _dotls { 1773sub _dotls {
1289 my ($self) = @_; 1774 my ($self) = @_;
1290 1775
1291 my $buf; 1776 my $tmp;
1292 1777
1293 if (length $self->{_tls_wbuf}) { 1778 if (length $self->{_tls_wbuf}) {
1294 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1779 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1295 substr $self->{_tls_wbuf}, 0, $len, ""; 1780 substr $self->{_tls_wbuf}, 0, $tmp, "";
1296 } 1781 }
1297 }
1298 1782
1783 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1784 return $self->_tls_error ($tmp)
1785 if $tmp != $ERROR_WANT_READ
1786 && ($tmp != $ERROR_SYSCALL || $!);
1787 }
1788
1789 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1790 unless (length $tmp) {
1791 $self->{_on_starttls}
1792 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1793 &_freetls;
1794
1795 if ($self->{on_stoptls}) {
1796 $self->{on_stoptls}($self);
1797 return;
1798 } else {
1799 # let's treat SSL-eof as we treat normal EOF
1800 delete $self->{_rw};
1801 $self->{_eof} = 1;
1802 }
1803 }
1804
1805 $self->{_tls_rbuf} .= $tmp;
1806 $self->_drain_rbuf;
1807 $self->{tls} or return; # tls session might have gone away in callback
1808 }
1809
1810 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1811 return $self->_tls_error ($tmp)
1812 if $tmp != $ERROR_WANT_READ
1813 && ($tmp != $ERROR_SYSCALL || $!);
1814
1299 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1815 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1300 $self->{wbuf} .= $buf; 1816 $self->{wbuf} .= $tmp;
1301 $self->_drain_wbuf; 1817 $self->_drain_wbuf;
1302 } 1818 }
1303 1819
1304 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1820 $self->{_on_starttls}
1305 if (length $buf) { 1821 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1306 $self->{rbuf} .= $buf; 1822 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1307 $self->_drain_rbuf unless $self->{_in_drain};
1308 } else {
1309 # let's treat SSL-eof as we treat normal EOF
1310 $self->{_eof} = 1;
1311 $self->_shutdown;
1312 return;
1313 }
1314 }
1315
1316 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317
1318 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 return $self->_error ($!, 1);
1321 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 return $self->_error (&Errno::EIO, 1);
1323 }
1324
1325 # all others are fine for our purposes
1326 }
1327} 1823}
1328 1824
1329=item $handle->starttls ($tls[, $tls_ctx]) 1825=item $handle->starttls ($tls[, $tls_ctx])
1330 1826
1331Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1827Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332object is created, you can also do that at a later time by calling 1828object is created, you can also do that at a later time by calling
1333C<starttls>. 1829C<starttls>.
1334 1830
1831Starting TLS is currently an asynchronous operation - when you push some
1832write data and then call C<< ->starttls >> then TLS negotiation will start
1833immediately, after which the queued write data is then sent.
1834
1335The first argument is the same as the C<tls> constructor argument (either 1835The first argument is the same as the C<tls> constructor argument (either
1336C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1836C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337 1837
1338The second argument is the optional C<Net::SSLeay::CTX> object that is 1838The second argument is the optional C<AnyEvent::TLS> object that is used
1339used when AnyEvent::Handle has to create its own TLS connection object. 1839when AnyEvent::Handle has to create its own TLS connection object, or
1840a hash reference with C<< key => value >> pairs that will be used to
1841construct a new context.
1340 1842
1341The TLS connection object will end up in C<< $handle->{tls} >> after this 1843The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1342call and can be used or changed to your liking. Note that the handshake 1844context in C<< $handle->{tls_ctx} >> after this call and can be used or
1343might have already started when this function returns. 1845changed to your liking. Note that the handshake might have already started
1846when this function returns.
1344 1847
1848Due to bugs in OpenSSL, it might or might not be possible to do multiple
1849handshakes on the same stream. Best do not attempt to use the stream after
1850stopping TLS.
1851
1345=cut 1852=cut
1853
1854our %TLS_CACHE; #TODO not yet documented, should we?
1346 1855
1347sub starttls { 1856sub starttls {
1348 my ($self, $ssl, $ctx) = @_; 1857 my ($self, $tls, $ctx) = @_;
1349 1858
1350 $self->stoptls; 1859 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1860 if $self->{tls};
1351 1861
1352 if ($ssl eq "accept") { 1862 $self->{tls} = $tls;
1353 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1863 $self->{tls_ctx} = $ctx if @_ > 2;
1354 Net::SSLeay::set_accept_state ($ssl); 1864
1355 } elsif ($ssl eq "connect") { 1865 return unless $self->{fh};
1356 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1866
1357 Net::SSLeay::set_connect_state ($ssl); 1867 require Net::SSLeay;
1868
1869 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1870 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1871
1872 $tls = delete $self->{tls};
1873 $ctx = $self->{tls_ctx};
1874
1875 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1876
1877 if ("HASH" eq ref $ctx) {
1878 require AnyEvent::TLS;
1879
1880 if ($ctx->{cache}) {
1881 my $key = $ctx+0;
1882 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1883 } else {
1884 $ctx = new AnyEvent::TLS %$ctx;
1885 }
1886 }
1358 } 1887
1359 1888 $self->{tls_ctx} = $ctx || TLS_CTX ();
1360 $self->{tls} = $ssl; 1889 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1361 1890
1362 # basically, this is deep magic (because SSL_read should have the same issues) 1891 # basically, this is deep magic (because SSL_read should have the same issues)
1363 # but the openssl maintainers basically said: "trust us, it just works". 1892 # but the openssl maintainers basically said: "trust us, it just works".
1364 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1893 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365 # and mismaintained ssleay-module doesn't even offer them). 1894 # and mismaintained ssleay-module doesn't even offer them).
1366 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1895 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1896 #
1897 # in short: this is a mess.
1898 #
1899 # note that we do not try to keep the length constant between writes as we are required to do.
1900 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1901 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1902 # have identity issues in that area.
1367 Net::SSLeay::CTX_set_mode ($self->{tls}, 1903# Net::SSLeay::CTX_set_mode ($ssl,
1368 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1904# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1905# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1906 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1370 1907
1371 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1908 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1909 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373 1910
1911 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1912
1374 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1913 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1375 1914
1376 $self->{filter_w} = sub { 1915 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1377 $_[0]{_tls_wbuf} .= ${$_[1]}; 1916 if $self->{on_starttls};
1378 &_dotls; 1917
1379 }; 1918 &_dotls; # need to trigger the initial handshake
1380 $self->{filter_r} = sub { 1919 $self->start_read; # make sure we actually do read
1381 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 &_dotls;
1383 };
1384} 1920}
1385 1921
1386=item $handle->stoptls 1922=item $handle->stoptls
1387 1923
1388Destroys the SSL connection, if any. Partial read or write data will be 1924Shuts down the SSL connection - this makes a proper EOF handshake by
1389lost. 1925sending a close notify to the other side, but since OpenSSL doesn't
1926support non-blocking shut downs, it is not guarenteed that you can re-use
1927the stream afterwards.
1390 1928
1391=cut 1929=cut
1392 1930
1393sub stoptls { 1931sub stoptls {
1394 my ($self) = @_; 1932 my ($self) = @_;
1395 1933
1396 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1934 if ($self->{tls}) {
1935 Net::SSLeay::shutdown ($self->{tls});
1397 1936
1398 delete $self->{_rbio}; 1937 &_dotls;
1399 delete $self->{_wbio}; 1938
1400 delete $self->{_tls_wbuf}; 1939# # we don't give a shit. no, we do, but we can't. no...#d#
1401 delete $self->{filter_r}; 1940# # we, we... have to use openssl :/#d#
1402 delete $self->{filter_w}; 1941# &_freetls;#d#
1942 }
1943}
1944
1945sub _freetls {
1946 my ($self) = @_;
1947
1948 return unless $self->{tls};
1949
1950 $self->{tls_ctx}->_put_session (delete $self->{tls})
1951 if $self->{tls} > 0;
1952
1953 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1403} 1954}
1404 1955
1405sub DESTROY { 1956sub DESTROY {
1406 my $self = shift; 1957 my ($self) = @_;
1407 1958
1408 $self->stoptls; 1959 &_freetls;
1409 1960
1410 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1961 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1411 1962
1412 if ($linger && length $self->{wbuf}) { 1963 if ($linger && length $self->{wbuf} && $self->{fh}) {
1413 my $fh = delete $self->{fh}; 1964 my $fh = delete $self->{fh};
1414 my $wbuf = delete $self->{wbuf}; 1965 my $wbuf = delete $self->{wbuf};
1415 1966
1416 my @linger; 1967 my @linger;
1417 1968
1418 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1969 push @linger, AE::io $fh, 1, sub {
1419 my $len = syswrite $fh, $wbuf, length $wbuf; 1970 my $len = syswrite $fh, $wbuf, length $wbuf;
1420 1971
1421 if ($len > 0) { 1972 if ($len > 0) {
1422 substr $wbuf, 0, $len, ""; 1973 substr $wbuf, 0, $len, "";
1423 } else { 1974 } else {
1424 @linger = (); # end 1975 @linger = (); # end
1425 } 1976 }
1426 }); 1977 };
1427 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1978 push @linger, AE::timer $linger, 0, sub {
1428 @linger = (); 1979 @linger = ();
1429 }); 1980 };
1430 } 1981 }
1982}
1983
1984=item $handle->destroy
1985
1986Shuts down the handle object as much as possible - this call ensures that
1987no further callbacks will be invoked and as many resources as possible
1988will be freed. Any method you will call on the handle object after
1989destroying it in this way will be silently ignored (and it will return the
1990empty list).
1991
1992Normally, you can just "forget" any references to an AnyEvent::Handle
1993object and it will simply shut down. This works in fatal error and EOF
1994callbacks, as well as code outside. It does I<NOT> work in a read or write
1995callback, so when you want to destroy the AnyEvent::Handle object from
1996within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1997that case.
1998
1999Destroying the handle object in this way has the advantage that callbacks
2000will be removed as well, so if those are the only reference holders (as
2001is common), then one doesn't need to do anything special to break any
2002reference cycles.
2003
2004The handle might still linger in the background and write out remaining
2005data, as specified by the C<linger> option, however.
2006
2007=cut
2008
2009sub destroy {
2010 my ($self) = @_;
2011
2012 $self->DESTROY;
2013 %$self = ();
2014 bless $self, "AnyEvent::Handle::destroyed";
2015}
2016
2017sub AnyEvent::Handle::destroyed::AUTOLOAD {
2018 #nop
1431} 2019}
1432 2020
1433=item AnyEvent::Handle::TLS_CTX 2021=item AnyEvent::Handle::TLS_CTX
1434 2022
1435This function creates and returns the Net::SSLeay::CTX object used by 2023This function creates and returns the AnyEvent::TLS object used by default
1436default for TLS mode. 2024for TLS mode.
1437 2025
1438The context is created like this: 2026The context is created by calling L<AnyEvent::TLS> without any arguments.
1439
1440 Net::SSLeay::load_error_strings;
1441 Net::SSLeay::SSLeay_add_ssl_algorithms;
1442 Net::SSLeay::randomize;
1443
1444 my $CTX = Net::SSLeay::CTX_new;
1445
1446 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447 2027
1448=cut 2028=cut
1449 2029
1450our $TLS_CTX; 2030our $TLS_CTX;
1451 2031
1452sub TLS_CTX() { 2032sub TLS_CTX() {
1453 $TLS_CTX || do { 2033 $TLS_CTX ||= do {
1454 require Net::SSLeay; 2034 require AnyEvent::TLS;
1455 2035
1456 Net::SSLeay::load_error_strings (); 2036 new AnyEvent::TLS
1457 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458 Net::SSLeay::randomize ();
1459
1460 $TLS_CTX = Net::SSLeay::CTX_new ();
1461
1462 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463
1464 $TLS_CTX
1465 } 2037 }
1466} 2038}
1467 2039
1468=back 2040=back
2041
2042
2043=head1 NONFREQUENTLY ASKED QUESTIONS
2044
2045=over 4
2046
2047=item I C<undef> the AnyEvent::Handle reference inside my callback and
2048still get further invocations!
2049
2050That's because AnyEvent::Handle keeps a reference to itself when handling
2051read or write callbacks.
2052
2053It is only safe to "forget" the reference inside EOF or error callbacks,
2054from within all other callbacks, you need to explicitly call the C<<
2055->destroy >> method.
2056
2057=item I get different callback invocations in TLS mode/Why can't I pause
2058reading?
2059
2060Unlike, say, TCP, TLS connections do not consist of two independent
2061communication channels, one for each direction. Or put differently. The
2062read and write directions are not independent of each other: you cannot
2063write data unless you are also prepared to read, and vice versa.
2064
2065This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2066callback invocations when you are not expecting any read data - the reason
2067is that AnyEvent::Handle always reads in TLS mode.
2068
2069During the connection, you have to make sure that you always have a
2070non-empty read-queue, or an C<on_read> watcher. At the end of the
2071connection (or when you no longer want to use it) you can call the
2072C<destroy> method.
2073
2074=item How do I read data until the other side closes the connection?
2075
2076If you just want to read your data into a perl scalar, the easiest way
2077to achieve this is by setting an C<on_read> callback that does nothing,
2078clearing the C<on_eof> callback and in the C<on_error> callback, the data
2079will be in C<$_[0]{rbuf}>:
2080
2081 $handle->on_read (sub { });
2082 $handle->on_eof (undef);
2083 $handle->on_error (sub {
2084 my $data = delete $_[0]{rbuf};
2085 });
2086
2087The reason to use C<on_error> is that TCP connections, due to latencies
2088and packets loss, might get closed quite violently with an error, when in
2089fact, all data has been received.
2090
2091It is usually better to use acknowledgements when transferring data,
2092to make sure the other side hasn't just died and you got the data
2093intact. This is also one reason why so many internet protocols have an
2094explicit QUIT command.
2095
2096=item I don't want to destroy the handle too early - how do I wait until
2097all data has been written?
2098
2099After writing your last bits of data, set the C<on_drain> callback
2100and destroy the handle in there - with the default setting of
2101C<low_water_mark> this will be called precisely when all data has been
2102written to the socket:
2103
2104 $handle->push_write (...);
2105 $handle->on_drain (sub {
2106 warn "all data submitted to the kernel\n";
2107 undef $handle;
2108 });
2109
2110If you just want to queue some data and then signal EOF to the other side,
2111consider using C<< ->push_shutdown >> instead.
2112
2113=item I want to contact a TLS/SSL server, I don't care about security.
2114
2115If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2116simply connect to it and then create the AnyEvent::Handle with the C<tls>
2117parameter:
2118
2119 tcp_connect $host, $port, sub {
2120 my ($fh) = @_;
2121
2122 my $handle = new AnyEvent::Handle
2123 fh => $fh,
2124 tls => "connect",
2125 on_error => sub { ... };
2126
2127 $handle->push_write (...);
2128 };
2129
2130=item I want to contact a TLS/SSL server, I do care about security.
2131
2132Then you should additionally enable certificate verification, including
2133peername verification, if the protocol you use supports it (see
2134L<AnyEvent::TLS>, C<verify_peername>).
2135
2136E.g. for HTTPS:
2137
2138 tcp_connect $host, $port, sub {
2139 my ($fh) = @_;
2140
2141 my $handle = new AnyEvent::Handle
2142 fh => $fh,
2143 peername => $host,
2144 tls => "connect",
2145 tls_ctx => { verify => 1, verify_peername => "https" },
2146 ...
2147
2148Note that you must specify the hostname you connected to (or whatever
2149"peername" the protocol needs) as the C<peername> argument, otherwise no
2150peername verification will be done.
2151
2152The above will use the system-dependent default set of trusted CA
2153certificates. If you want to check against a specific CA, add the
2154C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2155
2156 tls_ctx => {
2157 verify => 1,
2158 verify_peername => "https",
2159 ca_file => "my-ca-cert.pem",
2160 },
2161
2162=item I want to create a TLS/SSL server, how do I do that?
2163
2164Well, you first need to get a server certificate and key. You have
2165three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2166self-signed certificate (cheap. check the search engine of your choice,
2167there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2168nice program for that purpose).
2169
2170Then create a file with your private key (in PEM format, see
2171L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2172file should then look like this:
2173
2174 -----BEGIN RSA PRIVATE KEY-----
2175 ...header data
2176 ... lots of base64'y-stuff
2177 -----END RSA PRIVATE KEY-----
2178
2179 -----BEGIN CERTIFICATE-----
2180 ... lots of base64'y-stuff
2181 -----END CERTIFICATE-----
2182
2183The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2184specify this file as C<cert_file>:
2185
2186 tcp_server undef, $port, sub {
2187 my ($fh) = @_;
2188
2189 my $handle = new AnyEvent::Handle
2190 fh => $fh,
2191 tls => "accept",
2192 tls_ctx => { cert_file => "my-server-keycert.pem" },
2193 ...
2194
2195When you have intermediate CA certificates that your clients might not
2196know about, just append them to the C<cert_file>.
2197
2198=back
2199
1469 2200
1470=head1 SUBCLASSING AnyEvent::Handle 2201=head1 SUBCLASSING AnyEvent::Handle
1471 2202
1472In many cases, you might want to subclass AnyEvent::Handle. 2203In many cases, you might want to subclass AnyEvent::Handle.
1473 2204

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines