ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.15 by root, Sat May 17 21:34:15 2008 UTC vs.
Revision 1.87 by root, Thu Aug 21 20:52:39 2008 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util (); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw/EAGAIN EINTR/; 11use Errno qw(EAGAIN EINTR);
12 12
13=head1 NAME 13=head1 NAME
14 14
15AnyEvent::Handle - non-blocking I/O on filehandles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17This module is experimental.
18
19=cut 17=cut
20 18
21our $VERSION = '0.04'; 19our $VERSION = 4.232;
22 20
23=head1 SYNOPSIS 21=head1 SYNOPSIS
24 22
25 use AnyEvent; 23 use AnyEvent;
26 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 25
28 my $cv = AnyEvent->condvar; 26 my $cv = AnyEvent->condvar;
29 27
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN); 28 my $handle =
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
38 fh => \*STDIN, 30 fh => \*STDIN,
39 on_eof => sub { 31 on_eof => sub {
40 $cv->broadcast; 32 $cv->broadcast;
41 }, 33 },
42 #TODO
43 ); 34 );
44 35
45 $cv->wait; 36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
46 47
47=head1 DESCRIPTION 48=head1 DESCRIPTION
48 49
49This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
50filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
51on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
52 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
53In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
54means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
55treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
56 60
57All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
69 73
70=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
71 75
72The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
73 77
74NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
75AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
76 81
77=item on_eof => $cb->($self) [MANDATORY]
78
79Set the callback to be called on EOF.
80
81=item on_error => $cb->($self) 82=item on_eof => $cb->($handle)
82 83
84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the eof
90callback and continue writing data, as only the read part has been shut
91down.
92
93While not mandatory, it is I<highly> recommended to set an eof callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
83This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
84ocurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
85or a read error. 104connect or a read error.
86 105
87The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
88called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C< ->rbuf >). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
89 116
90On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
91error (or C<ENOSPC> or C<EPIPE>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
92 119
93While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
94you will not be notified of errors otherwise. The default simply calls 121you will not be notified of errors otherwise. The default simply calls
95die. 122C<croak>.
96 123
97=item on_read => $cb->($self) 124=item on_read => $cb->($handle)
98 125
99This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
100and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
101 130
102To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
103method or acces sthe C<$self->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly.
104 133
105When an EOF condition is detected then AnyEvent::Handle will first try to 134When an EOF condition is detected then AnyEvent::Handle will first try to
106feed all the remaining data to the queued callbacks and C<on_read> before 135feed all the remaining data to the queued callbacks and C<on_read> before
107calling the C<on_eof> callback. If no progress can be made, then a fatal 136calling the C<on_eof> callback. If no progress can be made, then a fatal
108error will be raised (with C<$!> set to C<EPIPE>). 137error will be raised (with C<$!> set to C<EPIPE>).
109 138
110=item on_drain => $cb->() 139=item on_drain => $cb->($handle)
111 140
112This sets the callback that is called when the write buffer becomes empty 141This sets the callback that is called when the write buffer becomes empty
113(or when the callback is set and the buffer is empty already). 142(or when the callback is set and the buffer is empty already).
114 143
115To append to the write buffer, use the C<< ->push_write >> method. 144To append to the write buffer, use the C<< ->push_write >> method.
145
146This callback is useful when you don't want to put all of your write data
147into the queue at once, for example, when you want to write the contents
148of some file to the socket you might not want to read the whole file into
149memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty.
151
152=item timeout => $fractional_seconds
153
154If non-zero, then this enables an "inactivity" timeout: whenever this many
155seconds pass without a successful read or write on the underlying file
156handle, the C<on_timeout> callback will be invoked (and if that one is
157missing, an C<ETIMEDOUT> error will be raised).
158
159Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback.
163
164Zero (the default) disables this timeout.
165
166=item on_timeout => $cb->($handle)
167
168Called whenever the inactivity timeout passes. If you return from this
169callback, then the timeout will be reset as if some activity had happened,
170so this condition is not fatal in any way.
116 171
117=item rbuf_max => <bytes> 172=item rbuf_max => <bytes>
118 173
119If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
120when the read buffer ever (strictly) exceeds this size. This is useful to 175when the read buffer ever (strictly) exceeds this size. This is useful to
124be configured to accept only so-and-so much data that it cannot act on 179be configured to accept only so-and-so much data that it cannot act on
125(for example, when expecting a line, an attacker could send an unlimited 180(for example, when expecting a line, an attacker could send an unlimited
126amount of data without a callback ever being called as long as the line 181amount of data without a callback ever being called as long as the line
127isn't finished). 182isn't finished).
128 183
184=item autocork => <boolean>
185
186When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be
189inefficient if you write multiple small chunks (this disadvantage is
190usually avoided by your kernel's nagle algorithm, see C<low_delay>).
191
192When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only.
195
196=item no_delay => <boolean>
197
198When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial.
201
202In some situations you want as low a delay as possible, which cna be
203accomplishd by setting this option to true.
204
205The default is your opertaing system's default behaviour, this option
206explicitly enables or disables it, if possible.
207
129=item read_size => <bytes> 208=item read_size => <bytes>
130 209
131The default read block size (the amount of bytes this module will try to read 210The default read block size (the amount of bytes this module will try to read
132on each [loop iteration). Default: C<4096>. 211during each (loop iteration). Default: C<8192>.
133 212
134=item low_water_mark => <bytes> 213=item low_water_mark => <bytes>
135 214
136Sets the amount of bytes (default: C<0>) that make up an "empty" write 215Sets the amount of bytes (default: C<0>) that make up an "empty" write
137buffer: If the write reaches this size or gets even samller it is 216buffer: If the write reaches this size or gets even samller it is
138considered empty. 217considered empty.
139 218
219=item linger => <seconds>
220
221If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write
223data and will install a watcher that will write out this data. No errors
224will be reported (this mostly matches how the operating system treats
225outstanding data at socket close time).
226
227This will not work for partial TLS data that could not yet been
228encoded. This data will be lost.
229
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231
232When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt
234data.
235
236TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle).
238
239Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect>
241mode.
242
243You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle.
247
248See the C<starttls> method for when need to start TLS negotiation later.
249
250=item tls_ctx => $ssl_ctx
251
252Use the given Net::SSLeay::CTX object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
255
256=item json => JSON or JSON::XS object
257
258This is the json coder object used by the C<json> read and write types.
259
260If you don't supply it, then AnyEvent::Handle will create and use a
261suitable one (on demand), which will write and expect UTF-8 encoded JSON
262texts.
263
264Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself.
266
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time. (They are used internally
272by the TLS code).
273
140=back 274=back
141 275
142=cut 276=cut
143 277
144sub new { 278sub new {
148 282
149 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 283 $self->{fh} or Carp::croak "mandatory argument fh is missing";
150 284
151 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 285 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
152 286
153 $self->on_eof ((delete $self->{on_eof} ) or Carp::croak "mandatory argument on_eof is missing"); 287 if ($self->{tls}) {
288 require Net::SSLeay;
289 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
290 }
154 291
155 $self->on_error (delete $self->{on_error}) if $self->{on_error}; 292 $self->{_activity} = AnyEvent->now;
293 $self->_timeout;
294
156 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 295 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
157 $self->on_read (delete $self->{on_read} ) if $self->{on_read}; 296 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
158 297
159 $self->start_read; 298 $self->start_read
299 if $self->{on_read};
160 300
161 $self 301 $self
162} 302}
163 303
164sub _shutdown { 304sub _shutdown {
165 my ($self) = @_; 305 my ($self) = @_;
166 306
307 delete $self->{_tw};
167 delete $self->{rw}; 308 delete $self->{_rw};
168 delete $self->{ww}; 309 delete $self->{_ww};
169 delete $self->{fh}; 310 delete $self->{fh};
170}
171 311
312 $self->stoptls;
313
314 delete $self->{on_read};
315 delete $self->{_queue};
316}
317
172sub error { 318sub _error {
173 my ($self) = @_; 319 my ($self, $errno, $fatal) = @_;
174 320
175 {
176 local $!;
177 $self->_shutdown; 321 $self->_shutdown
178 } 322 if $fatal;
323
324 $! = $errno;
179 325
180 if ($self->{on_error}) { 326 if ($self->{on_error}) {
181 $self->{on_error}($self); 327 $self->{on_error}($self, $fatal);
182 } else { 328 } else {
183 die "AnyEvent::Handle uncaught fatal error: $!"; 329 Carp::croak "AnyEvent::Handle uncaught error: $!";
184 } 330 }
185} 331}
186 332
187=item $fh = $handle->fh 333=item $fh = $handle->fh
188 334
189This method returns the filehandle of the L<AnyEvent::Handle> object. 335This method returns the file handle of the L<AnyEvent::Handle> object.
190 336
191=cut 337=cut
192 338
193sub fh { $_[0]->{fh} } 339sub fh { $_[0]{fh} }
194 340
195=item $handle->on_error ($cb) 341=item $handle->on_error ($cb)
196 342
197Replace the current C<on_error> callback (see the C<on_error> constructor argument). 343Replace the current C<on_error> callback (see the C<on_error> constructor argument).
198 344
210 356
211sub on_eof { 357sub on_eof {
212 $_[0]{on_eof} = $_[1]; 358 $_[0]{on_eof} = $_[1];
213} 359}
214 360
361=item $handle->on_timeout ($cb)
362
363Replace the current C<on_timeout> callback, or disables the callback
364(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
365argument.
366
367=cut
368
369sub on_timeout {
370 $_[0]{on_timeout} = $_[1];
371}
372
373=item $handle->autocork ($boolean)
374
375Enables or disables the current autocork behaviour (see C<autocork>
376constructor argument).
377
378=cut
379
380=item $handle->no_delay ($boolean)
381
382Enables or disables the C<no_delay> setting (see constructor argument of
383the same name for details).
384
385=cut
386
387sub no_delay {
388 $_[0]{no_delay} = $_[1];
389
390 eval {
391 local $SIG{__DIE__};
392 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
393 };
394}
395
396#############################################################################
397
398=item $handle->timeout ($seconds)
399
400Configures (or disables) the inactivity timeout.
401
402=cut
403
404sub timeout {
405 my ($self, $timeout) = @_;
406
407 $self->{timeout} = $timeout;
408 $self->_timeout;
409}
410
411# reset the timeout watcher, as neccessary
412# also check for time-outs
413sub _timeout {
414 my ($self) = @_;
415
416 if ($self->{timeout}) {
417 my $NOW = AnyEvent->now;
418
419 # when would the timeout trigger?
420 my $after = $self->{_activity} + $self->{timeout} - $NOW;
421
422 # now or in the past already?
423 if ($after <= 0) {
424 $self->{_activity} = $NOW;
425
426 if ($self->{on_timeout}) {
427 $self->{on_timeout}($self);
428 } else {
429 $self->_error (&Errno::ETIMEDOUT);
430 }
431
432 # callback could have changed timeout value, optimise
433 return unless $self->{timeout};
434
435 # calculate new after
436 $after = $self->{timeout};
437 }
438
439 Scalar::Util::weaken $self;
440 return unless $self; # ->error could have destroyed $self
441
442 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
443 delete $self->{_tw};
444 $self->_timeout;
445 });
446 } else {
447 delete $self->{_tw};
448 }
449}
450
215############################################################################# 451#############################################################################
216 452
217=back 453=back
218 454
219=head2 WRITE QUEUE 455=head2 WRITE QUEUE
222for reading. 458for reading.
223 459
224The write queue is very simple: you can add data to its end, and 460The write queue is very simple: you can add data to its end, and
225AnyEvent::Handle will automatically try to get rid of it for you. 461AnyEvent::Handle will automatically try to get rid of it for you.
226 462
227When data could be writtena nd the write buffer is shorter then the low 463When data could be written and the write buffer is shorter then the low
228water mark, the C<on_drain> callback will be invoked. 464water mark, the C<on_drain> callback will be invoked.
229 465
230=over 4 466=over 4
231 467
232=item $handle->on_drain ($cb) 468=item $handle->on_drain ($cb)
251want (only limited by the available memory), as C<AnyEvent::Handle> 487want (only limited by the available memory), as C<AnyEvent::Handle>
252buffers it independently of the kernel. 488buffers it independently of the kernel.
253 489
254=cut 490=cut
255 491
256sub push_write { 492sub _drain_wbuf {
257 my ($self, $data) = @_; 493 my ($self) = @_;
258 494
259 $self->{wbuf} .= $data; 495 if (!$self->{_ww} && length $self->{wbuf}) {
260 496
261 unless ($self->{ww}) {
262 Scalar::Util::weaken $self; 497 Scalar::Util::weaken $self;
498
263 my $cb = sub { 499 my $cb = sub {
264 my $len = syswrite $self->{fh}, $self->{wbuf}; 500 my $len = syswrite $self->{fh}, $self->{wbuf};
265 501
266 if ($len > 0) { 502 if ($len >= 0) {
267 substr $self->{wbuf}, 0, $len, ""; 503 substr $self->{wbuf}, 0, $len, "";
268 504
505 $self->{_activity} = AnyEvent->now;
269 506
270 $self->{on_drain}($self) 507 $self->{on_drain}($self)
271 if $self->{low_water_mark} >= length $self->{wbuf} 508 if $self->{low_water_mark} >= length $self->{wbuf}
272 && $self->{on_drain}; 509 && $self->{on_drain};
273 510
274 delete $self->{ww} unless length $self->{wbuf}; 511 delete $self->{_ww} unless length $self->{wbuf};
275 } elsif ($! != EAGAIN && $! != EINTR) { 512 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
276 $self->error; 513 $self->_error ($!, 1);
277 } 514 }
278 }; 515 };
279 516
517 # try to write data immediately
518 $cb->() unless $self->{autocork};
519
520 # if still data left in wbuf, we need to poll
280 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb); 521 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
281 522 if length $self->{wbuf};
282 $cb->($self);
283 }; 523 };
284} 524}
525
526our %WH;
527
528sub register_write_type($$) {
529 $WH{$_[0]} = $_[1];
530}
531
532sub push_write {
533 my $self = shift;
534
535 if (@_ > 1) {
536 my $type = shift;
537
538 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
539 ->($self, @_);
540 }
541
542 if ($self->{filter_w}) {
543 $self->{filter_w}($self, \$_[0]);
544 } else {
545 $self->{wbuf} .= $_[0];
546 $self->_drain_wbuf;
547 }
548}
549
550=item $handle->push_write (type => @args)
551
552Instead of formatting your data yourself, you can also let this module do
553the job by specifying a type and type-specific arguments.
554
555Predefined types are (if you have ideas for additional types, feel free to
556drop by and tell us):
557
558=over 4
559
560=item netstring => $string
561
562Formats the given value as netstring
563(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
564
565=cut
566
567register_write_type netstring => sub {
568 my ($self, $string) = @_;
569
570 sprintf "%d:%s,", (length $string), $string
571};
572
573=item packstring => $format, $data
574
575An octet string prefixed with an encoded length. The encoding C<$format>
576uses the same format as a Perl C<pack> format, but must specify a single
577integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
578optional C<!>, C<< < >> or C<< > >> modifier).
579
580=cut
581
582register_write_type packstring => sub {
583 my ($self, $format, $string) = @_;
584
585 pack "$format/a*", $string
586};
587
588=item json => $array_or_hashref
589
590Encodes the given hash or array reference into a JSON object. Unless you
591provide your own JSON object, this means it will be encoded to JSON text
592in UTF-8.
593
594JSON objects (and arrays) are self-delimiting, so you can write JSON at
595one end of a handle and read them at the other end without using any
596additional framing.
597
598The generated JSON text is guaranteed not to contain any newlines: While
599this module doesn't need delimiters after or between JSON texts to be
600able to read them, many other languages depend on that.
601
602A simple RPC protocol that interoperates easily with others is to send
603JSON arrays (or objects, although arrays are usually the better choice as
604they mimic how function argument passing works) and a newline after each
605JSON text:
606
607 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
608 $handle->push_write ("\012");
609
610An AnyEvent::Handle receiver would simply use the C<json> read type and
611rely on the fact that the newline will be skipped as leading whitespace:
612
613 $handle->push_read (json => sub { my $array = $_[1]; ... });
614
615Other languages could read single lines terminated by a newline and pass
616this line into their JSON decoder of choice.
617
618=cut
619
620register_write_type json => sub {
621 my ($self, $ref) = @_;
622
623 require JSON;
624
625 $self->{json} ? $self->{json}->encode ($ref)
626 : JSON::encode_json ($ref)
627};
628
629=item storable => $reference
630
631Freezes the given reference using L<Storable> and writes it to the
632handle. Uses the C<nfreeze> format.
633
634=cut
635
636register_write_type storable => sub {
637 my ($self, $ref) = @_;
638
639 require Storable;
640
641 pack "w/a*", Storable::nfreeze ($ref)
642};
643
644=back
645
646=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
647
648This function (not method) lets you add your own types to C<push_write>.
649Whenever the given C<type> is used, C<push_write> will invoke the code
650reference with the handle object and the remaining arguments.
651
652The code reference is supposed to return a single octet string that will
653be appended to the write buffer.
654
655Note that this is a function, and all types registered this way will be
656global, so try to use unique names.
657
658=cut
285 659
286############################################################################# 660#############################################################################
287 661
288=back 662=back
289 663
296ways, the "simple" way, using only C<on_read> and the "complex" way, using 670ways, the "simple" way, using only C<on_read> and the "complex" way, using
297a queue. 671a queue.
298 672
299In the simple case, you just install an C<on_read> callback and whenever 673In the simple case, you just install an C<on_read> callback and whenever
300new data arrives, it will be called. You can then remove some data (if 674new data arrives, it will be called. You can then remove some data (if
301enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 675enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
302or not. 676leave the data there if you want to accumulate more (e.g. when only a
677partial message has been received so far).
303 678
304In the more complex case, you want to queue multiple callbacks. In this 679In the more complex case, you want to queue multiple callbacks. In this
305case, AnyEvent::Handle will call the first queued callback each time new 680case, AnyEvent::Handle will call the first queued callback each time new
306data arrives and removes it when it has done its job (see C<push_read>, 681data arrives (also the first time it is queued) and removes it when it has
307below). 682done its job (see C<push_read>, below).
308 683
309This way you can, for example, push three line-reads, followed by reading 684This way you can, for example, push three line-reads, followed by reading
310a chunk of data, and AnyEvent::Handle will execute them in order. 685a chunk of data, and AnyEvent::Handle will execute them in order.
311 686
312Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 687Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
313the specified number of bytes which give an XML datagram. 688the specified number of bytes which give an XML datagram.
314 689
315 # in the default state, expect some header bytes 690 # in the default state, expect some header bytes
316 $handle->on_read (sub { 691 $handle->on_read (sub {
317 # some data is here, now queue the length-header-read (4 octets) 692 # some data is here, now queue the length-header-read (4 octets)
318 shift->unshift_read_chunk (4, sub { 693 shift->unshift_read (chunk => 4, sub {
319 # header arrived, decode 694 # header arrived, decode
320 my $len = unpack "N", $_[1]; 695 my $len = unpack "N", $_[1];
321 696
322 # now read the payload 697 # now read the payload
323 shift->unshift_read_chunk ($len, sub { 698 shift->unshift_read (chunk => $len, sub {
324 my $xml = $_[1]; 699 my $xml = $_[1];
325 # handle xml 700 # handle xml
326 }); 701 });
327 }); 702 });
328 }); 703 });
329 704
330Example 2: Implement a client for a protocol that replies either with 705Example 2: Implement a client for a protocol that replies either with "OK"
331"OK" and another line or "ERROR" for one request, and 64 bytes for the 706and another line or "ERROR" for the first request that is sent, and 64
332second request. Due tot he availability of a full queue, we can just 707bytes for the second request. Due to the availability of a queue, we can
333pipeline sending both requests and manipulate the queue as necessary in 708just pipeline sending both requests and manipulate the queue as necessary
334the callbacks: 709in the callbacks.
335 710
336 # request one 711When the first callback is called and sees an "OK" response, it will
712C<unshift> another line-read. This line-read will be queued I<before> the
71364-byte chunk callback.
714
715 # request one, returns either "OK + extra line" or "ERROR"
337 $handle->push_write ("request 1\015\012"); 716 $handle->push_write ("request 1\015\012");
338 717
339 # we expect "ERROR" or "OK" as response, so push a line read 718 # we expect "ERROR" or "OK" as response, so push a line read
340 $handle->push_read_line (sub { 719 $handle->push_read (line => sub {
341 # if we got an "OK", we have to _prepend_ another line, 720 # if we got an "OK", we have to _prepend_ another line,
342 # so it will be read before the second request reads its 64 bytes 721 # so it will be read before the second request reads its 64 bytes
343 # which are already in the queue when this callback is called 722 # which are already in the queue when this callback is called
344 # we don't do this in case we got an error 723 # we don't do this in case we got an error
345 if ($_[1] eq "OK") { 724 if ($_[1] eq "OK") {
346 $_[0]->unshift_read_line (sub { 725 $_[0]->unshift_read (line => sub {
347 my $response = $_[1]; 726 my $response = $_[1];
348 ... 727 ...
349 }); 728 });
350 } 729 }
351 }); 730 });
352 731
353 # request two 732 # request two, simply returns 64 octets
354 $handle->push_write ("request 2\015\012"); 733 $handle->push_write ("request 2\015\012");
355 734
356 # simply read 64 bytes, always 735 # simply read 64 bytes, always
357 $handle->push_read_chunk (64, sub { 736 $handle->push_read (chunk => 64, sub {
358 my $response = $_[1]; 737 my $response = $_[1];
359 ... 738 ...
360 }); 739 });
361 740
362=over 4 741=over 4
364=cut 743=cut
365 744
366sub _drain_rbuf { 745sub _drain_rbuf {
367 my ($self) = @_; 746 my ($self) = @_;
368 747
369 return if $self->{in_drain};
370 local $self->{in_drain} = 1; 748 local $self->{_in_drain} = 1;
371 749
750 if (
751 defined $self->{rbuf_max}
752 && $self->{rbuf_max} < length $self->{rbuf}
753 ) {
754 $self->_error (&Errno::ENOSPC, 1), return;
755 }
756
757 while () {
372 while (my $len = length $self->{rbuf}) { 758 my $len = length $self->{rbuf};
373 no strict 'refs'; 759
374 if (my $cb = shift @{ $self->{queue} }) { 760 if (my $cb = shift @{ $self->{_queue} }) {
375 if (!$cb->($self)) { 761 unless ($cb->($self)) {
376 if ($self->{eof}) { 762 if ($self->{_eof}) {
377 # no progress can be made (not enough data and no data forthcoming) 763 # no progress can be made (not enough data and no data forthcoming)
378 $! = &Errno::EPIPE; return $self->error; 764 $self->_error (&Errno::EPIPE, 1), return;
379 } 765 }
380 766
381 unshift @{ $self->{queue} }, $cb; 767 unshift @{ $self->{_queue} }, $cb;
382 return; 768 last;
383 } 769 }
384 } elsif ($self->{on_read}) { 770 } elsif ($self->{on_read}) {
771 last unless $len;
772
385 $self->{on_read}($self); 773 $self->{on_read}($self);
386 774
387 if ( 775 if (
388 $self->{eof} # if no further data will arrive
389 && $len == length $self->{rbuf} # and no data has been consumed 776 $len == length $self->{rbuf} # if no data has been consumed
390 && !@{ $self->{queue} } # and the queue is still empty 777 && !@{ $self->{_queue} } # and the queue is still empty
391 && $self->{on_read} # and we still want to read data 778 && $self->{on_read} # but we still have on_read
392 ) { 779 ) {
780 # no further data will arrive
393 # then no progress can be made 781 # so no progress can be made
394 $! = &Errno::EPIPE; return $self->error; 782 $self->_error (&Errno::EPIPE, 1), return
783 if $self->{_eof};
784
785 last; # more data might arrive
395 } 786 }
396 } else { 787 } else {
397 # read side becomes idle 788 # read side becomes idle
398 delete $self->{rw}; 789 delete $self->{_rw};
399 return; 790 last;
400 } 791 }
401 } 792 }
402 793
403 if ($self->{eof}) { 794 if ($self->{_eof}) {
404 $self->_shutdown; 795 if ($self->{on_eof}) {
405 $self->{on_eof}($self); 796 $self->{on_eof}($self)
797 } else {
798 $self->_error (0, 1);
799 }
800 }
801
802 # may need to restart read watcher
803 unless ($self->{_rw}) {
804 $self->start_read
805 if $self->{on_read} || @{ $self->{_queue} };
406 } 806 }
407} 807}
408 808
409=item $handle->on_read ($cb) 809=item $handle->on_read ($cb)
410 810
416 816
417sub on_read { 817sub on_read {
418 my ($self, $cb) = @_; 818 my ($self, $cb) = @_;
419 819
420 $self->{on_read} = $cb; 820 $self->{on_read} = $cb;
821 $self->_drain_rbuf if $cb && !$self->{_in_drain};
421} 822}
422 823
423=item $handle->rbuf 824=item $handle->rbuf
424 825
425Returns the read buffer (as a modifiable lvalue). 826Returns the read buffer (as a modifiable lvalue).
444Append the given callback to the end of the queue (C<push_read>) or 845Append the given callback to the end of the queue (C<push_read>) or
445prepend it (C<unshift_read>). 846prepend it (C<unshift_read>).
446 847
447The callback is called each time some additional read data arrives. 848The callback is called each time some additional read data arrives.
448 849
449It must check wether enough data is in the read buffer already. 850It must check whether enough data is in the read buffer already.
450 851
451If not enough data is available, it must return the empty list or a false 852If not enough data is available, it must return the empty list or a false
452value, in which case it will be called repeatedly until enough data is 853value, in which case it will be called repeatedly until enough data is
453available (or an error condition is detected). 854available (or an error condition is detected).
454 855
456interested in (which can be none at all) and return a true value. After returning 857interested in (which can be none at all) and return a true value. After returning
457true, it will be removed from the queue. 858true, it will be removed from the queue.
458 859
459=cut 860=cut
460 861
862our %RH;
863
864sub register_read_type($$) {
865 $RH{$_[0]} = $_[1];
866}
867
461sub push_read { 868sub push_read {
462 my ($self, $cb) = @_; 869 my $self = shift;
870 my $cb = pop;
463 871
872 if (@_) {
873 my $type = shift;
874
875 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
876 ->($self, $cb, @_);
877 }
878
464 push @{ $self->{queue} }, $cb; 879 push @{ $self->{_queue} }, $cb;
465 $self->_drain_rbuf; 880 $self->_drain_rbuf unless $self->{_in_drain};
466} 881}
467 882
468sub unshift_read { 883sub unshift_read {
469 my ($self, $cb) = @_; 884 my $self = shift;
885 my $cb = pop;
470 886
887 if (@_) {
888 my $type = shift;
889
890 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
891 ->($self, $cb, @_);
892 }
893
894
471 push @{ $self->{queue} }, $cb; 895 unshift @{ $self->{_queue} }, $cb;
472 $self->_drain_rbuf; 896 $self->_drain_rbuf unless $self->{_in_drain};
473} 897}
474 898
475=item $handle->push_read_chunk ($len, $cb->($self, $data)) 899=item $handle->push_read (type => @args, $cb)
476 900
477=item $handle->unshift_read_chunk ($len, $cb->($self, $data)) 901=item $handle->unshift_read (type => @args, $cb)
478 902
479Append the given callback to the end of the queue (C<push_read_chunk>) or 903Instead of providing a callback that parses the data itself you can chose
480prepend it (C<unshift_read_chunk>). 904between a number of predefined parsing formats, for chunks of data, lines
905etc.
481 906
482The callback will be called only once C<$len> bytes have been read, and 907Predefined types are (if you have ideas for additional types, feel free to
483these C<$len> bytes will be passed to the callback. 908drop by and tell us):
484 909
485=cut 910=over 4
486 911
487sub _read_chunk($$) { 912=item chunk => $octets, $cb->($handle, $data)
913
914Invoke the callback only once C<$octets> bytes have been read. Pass the
915data read to the callback. The callback will never be called with less
916data.
917
918Example: read 2 bytes.
919
920 $handle->push_read (chunk => 2, sub {
921 warn "yay ", unpack "H*", $_[1];
922 });
923
924=cut
925
926register_read_type chunk => sub {
488 my ($self, $len, $cb) = @_; 927 my ($self, $cb, $len) = @_;
489 928
490 sub { 929 sub {
491 $len <= length $_[0]{rbuf} or return; 930 $len <= length $_[0]{rbuf} or return;
492 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 931 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
493 1 932 1
494 } 933 }
495} 934};
496 935
497sub push_read_chunk { 936=item line => [$eol, ]$cb->($handle, $line, $eol)
498 $_[0]->push_read (&_read_chunk);
499}
500
501
502sub unshift_read_chunk {
503 $_[0]->unshift_read (&_read_chunk);
504}
505
506=item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
507
508=item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
509
510Append the given callback to the end of the queue (C<push_read_line>) or
511prepend it (C<unshift_read_line>).
512 937
513The callback will be called only once a full line (including the end of 938The callback will be called only once a full line (including the end of
514line marker, C<$eol>) has been read. This line (excluding the end of line 939line marker, C<$eol>) has been read. This line (excluding the end of line
515marker) will be passed to the callback as second argument (C<$line>), and 940marker) will be passed to the callback as second argument (C<$line>), and
516the end of line marker as the third argument (C<$eol>). 941the end of line marker as the third argument (C<$eol>).
527Partial lines at the end of the stream will never be returned, as they are 952Partial lines at the end of the stream will never be returned, as they are
528not marked by the end of line marker. 953not marked by the end of line marker.
529 954
530=cut 955=cut
531 956
532sub _read_line($$) { 957register_read_type line => sub {
533 my $self = shift; 958 my ($self, $cb, $eol) = @_;
534 my $cb = pop;
535 my $eol = @_ ? shift : qr|(\015?\012)|;
536 my $pos;
537 959
960 if (@_ < 3) {
961 # this is more than twice as fast as the generic code below
962 sub {
963 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
964
965 $cb->($_[0], $1, $2);
966 1
967 }
968 } else {
538 $eol = quotemeta $eol unless ref $eol; 969 $eol = quotemeta $eol unless ref $eol;
539 $eol = qr|^(.*?)($eol)|s; 970 $eol = qr|^(.*?)($eol)|s;
971
972 sub {
973 $_[0]{rbuf} =~ s/$eol// or return;
974
975 $cb->($_[0], $1, $2);
976 1
977 }
978 }
979};
980
981=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
982
983Makes a regex match against the regex object C<$accept> and returns
984everything up to and including the match.
985
986Example: read a single line terminated by '\n'.
987
988 $handle->push_read (regex => qr<\n>, sub { ... });
989
990If C<$reject> is given and not undef, then it determines when the data is
991to be rejected: it is matched against the data when the C<$accept> regex
992does not match and generates an C<EBADMSG> error when it matches. This is
993useful to quickly reject wrong data (to avoid waiting for a timeout or a
994receive buffer overflow).
995
996Example: expect a single decimal number followed by whitespace, reject
997anything else (not the use of an anchor).
998
999 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1000
1001If C<$skip> is given and not C<undef>, then it will be matched against
1002the receive buffer when neither C<$accept> nor C<$reject> match,
1003and everything preceding and including the match will be accepted
1004unconditionally. This is useful to skip large amounts of data that you
1005know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1006have to start matching from the beginning. This is purely an optimisation
1007and is usually worth only when you expect more than a few kilobytes.
1008
1009Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1010expect the header to be very large (it isn't in practise, but...), we use
1011a skip regex to skip initial portions. The skip regex is tricky in that
1012it only accepts something not ending in either \015 or \012, as these are
1013required for the accept regex.
1014
1015 $handle->push_read (regex =>
1016 qr<\015\012\015\012>,
1017 undef, # no reject
1018 qr<^.*[^\015\012]>,
1019 sub { ... });
1020
1021=cut
1022
1023register_read_type regex => sub {
1024 my ($self, $cb, $accept, $reject, $skip) = @_;
1025
1026 my $data;
1027 my $rbuf = \$self->{rbuf};
540 1028
541 sub { 1029 sub {
542 $_[0]{rbuf} =~ s/$eol// or return; 1030 # accept
1031 if ($$rbuf =~ $accept) {
1032 $data .= substr $$rbuf, 0, $+[0], "";
1033 $cb->($self, $data);
1034 return 1;
1035 }
1036
1037 # reject
1038 if ($reject && $$rbuf =~ $reject) {
1039 $self->_error (&Errno::EBADMSG);
1040 }
543 1041
544 $cb->($_[0], $1, $2); 1042 # skip
1043 if ($skip && $$rbuf =~ $skip) {
1044 $data .= substr $$rbuf, 0, $+[0], "";
1045 }
1046
1047 ()
1048 }
1049};
1050
1051=item netstring => $cb->($handle, $string)
1052
1053A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1054
1055Throws an error with C<$!> set to EBADMSG on format violations.
1056
1057=cut
1058
1059register_read_type netstring => sub {
1060 my ($self, $cb) = @_;
1061
1062 sub {
1063 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1064 if ($_[0]{rbuf} =~ /[^0-9]/) {
1065 $self->_error (&Errno::EBADMSG);
1066 }
1067 return;
1068 }
1069
1070 my $len = $1;
1071
1072 $self->unshift_read (chunk => $len, sub {
1073 my $string = $_[1];
1074 $_[0]->unshift_read (chunk => 1, sub {
1075 if ($_[1] eq ",") {
1076 $cb->($_[0], $string);
1077 } else {
1078 $self->_error (&Errno::EBADMSG);
1079 }
1080 });
1081 });
1082
545 1 1083 1
546 } 1084 }
547} 1085};
548 1086
549sub push_read_line { 1087=item packstring => $format, $cb->($handle, $string)
550 $_[0]->push_read (&_read_line);
551}
552 1088
553sub unshift_read_line { 1089An octet string prefixed with an encoded length. The encoding C<$format>
554 $_[0]->unshift_read (&_read_line); 1090uses the same format as a Perl C<pack> format, but must specify a single
555} 1091integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1092optional C<!>, C<< < >> or C<< > >> modifier).
1093
1094DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1095
1096Example: read a block of data prefixed by its length in BER-encoded
1097format (very efficient).
1098
1099 $handle->push_read (packstring => "w", sub {
1100 my ($handle, $data) = @_;
1101 });
1102
1103=cut
1104
1105register_read_type packstring => sub {
1106 my ($self, $cb, $format) = @_;
1107
1108 sub {
1109 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1110 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1111 or return;
1112
1113 $format = length pack $format, $len;
1114
1115 # bypass unshift if we already have the remaining chunk
1116 if ($format + $len <= length $_[0]{rbuf}) {
1117 my $data = substr $_[0]{rbuf}, $format, $len;
1118 substr $_[0]{rbuf}, 0, $format + $len, "";
1119 $cb->($_[0], $data);
1120 } else {
1121 # remove prefix
1122 substr $_[0]{rbuf}, 0, $format, "";
1123
1124 # read remaining chunk
1125 $_[0]->unshift_read (chunk => $len, $cb);
1126 }
1127
1128 1
1129 }
1130};
1131
1132=item json => $cb->($handle, $hash_or_arrayref)
1133
1134Reads a JSON object or array, decodes it and passes it to the callback.
1135
1136If a C<json> object was passed to the constructor, then that will be used
1137for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1138
1139This read type uses the incremental parser available with JSON version
11402.09 (and JSON::XS version 2.2) and above. You have to provide a
1141dependency on your own: this module will load the JSON module, but
1142AnyEvent does not depend on it itself.
1143
1144Since JSON texts are fully self-delimiting, the C<json> read and write
1145types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1146the C<json> write type description, above, for an actual example.
1147
1148=cut
1149
1150register_read_type json => sub {
1151 my ($self, $cb) = @_;
1152
1153 require JSON;
1154
1155 my $data;
1156 my $rbuf = \$self->{rbuf};
1157
1158 my $json = $self->{json} ||= JSON->new->utf8;
1159
1160 sub {
1161 my $ref = $json->incr_parse ($self->{rbuf});
1162
1163 if ($ref) {
1164 $self->{rbuf} = $json->incr_text;
1165 $json->incr_text = "";
1166 $cb->($self, $ref);
1167
1168 1
1169 } else {
1170 $self->{rbuf} = "";
1171 ()
1172 }
1173 }
1174};
1175
1176=item storable => $cb->($handle, $ref)
1177
1178Deserialises a L<Storable> frozen representation as written by the
1179C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1180data).
1181
1182Raises C<EBADMSG> error if the data could not be decoded.
1183
1184=cut
1185
1186register_read_type storable => sub {
1187 my ($self, $cb) = @_;
1188
1189 require Storable;
1190
1191 sub {
1192 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1193 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1194 or return;
1195
1196 my $format = length pack "w", $len;
1197
1198 # bypass unshift if we already have the remaining chunk
1199 if ($format + $len <= length $_[0]{rbuf}) {
1200 my $data = substr $_[0]{rbuf}, $format, $len;
1201 substr $_[0]{rbuf}, 0, $format + $len, "";
1202 $cb->($_[0], Storable::thaw ($data));
1203 } else {
1204 # remove prefix
1205 substr $_[0]{rbuf}, 0, $format, "";
1206
1207 # read remaining chunk
1208 $_[0]->unshift_read (chunk => $len, sub {
1209 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1210 $cb->($_[0], $ref);
1211 } else {
1212 $self->_error (&Errno::EBADMSG);
1213 }
1214 });
1215 }
1216
1217 1
1218 }
1219};
1220
1221=back
1222
1223=item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1224
1225This function (not method) lets you add your own types to C<push_read>.
1226
1227Whenever the given C<type> is used, C<push_read> will invoke the code
1228reference with the handle object, the callback and the remaining
1229arguments.
1230
1231The code reference is supposed to return a callback (usually a closure)
1232that works as a plain read callback (see C<< ->push_read ($cb) >>).
1233
1234It should invoke the passed callback when it is done reading (remember to
1235pass C<$handle> as first argument as all other callbacks do that).
1236
1237Note that this is a function, and all types registered this way will be
1238global, so try to use unique names.
1239
1240For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1241search for C<register_read_type>)).
556 1242
557=item $handle->stop_read 1243=item $handle->stop_read
558 1244
559=item $handle->start_read 1245=item $handle->start_read
560 1246
561In rare cases you actually do not want to read anything form the 1247In rare cases you actually do not want to read anything from the
562socket. In this case you can call C<stop_read>. Neither C<on_read> no 1248socket. In this case you can call C<stop_read>. Neither C<on_read> nor
563any queued callbacks will be executed then. To start readign again, call 1249any queued callbacks will be executed then. To start reading again, call
564C<start_read>. 1250C<start_read>.
1251
1252Note that AnyEvent::Handle will automatically C<start_read> for you when
1253you change the C<on_read> callback or push/unshift a read callback, and it
1254will automatically C<stop_read> for you when neither C<on_read> is set nor
1255there are any read requests in the queue.
565 1256
566=cut 1257=cut
567 1258
568sub stop_read { 1259sub stop_read {
569 my ($self) = @_; 1260 my ($self) = @_;
570 1261
571 delete $self->{rw}; 1262 delete $self->{_rw};
572} 1263}
573 1264
574sub start_read { 1265sub start_read {
575 my ($self) = @_; 1266 my ($self) = @_;
576 1267
577 unless ($self->{rw} || $self->{eof}) { 1268 unless ($self->{_rw} || $self->{_eof}) {
578 Scalar::Util::weaken $self; 1269 Scalar::Util::weaken $self;
579 1270
580 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1271 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1272 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
581 my $len = sysread $self->{fh}, $self->{rbuf}, $self->{read_size} || 8192, length $self->{rbuf}; 1273 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
582 1274
583 if ($len > 0) { 1275 if ($len > 0) {
584 if (defined $self->{rbuf_max}) { 1276 $self->{_activity} = AnyEvent->now;
585 if ($self->{rbuf_max} < length $self->{rbuf}) { 1277
586 $! = &Errno::ENOSPC; return $self->error; 1278 $self->{filter_r}
587 } 1279 ? $self->{filter_r}($self, $rbuf)
588 } 1280 : $self->{_in_drain} || $self->_drain_rbuf;
589 1281
590 } elsif (defined $len) { 1282 } elsif (defined $len) {
591 $self->{eof} = 1;
592 delete $self->{rw}; 1283 delete $self->{_rw};
1284 $self->{_eof} = 1;
1285 $self->_drain_rbuf unless $self->{_in_drain};
593 1286
594 } elsif ($! != EAGAIN && $! != EINTR) { 1287 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
595 return $self->error; 1288 return $self->_error ($!, 1);
596 } 1289 }
597
598 $self->_drain_rbuf;
599 }); 1290 });
600 } 1291 }
601} 1292}
602 1293
1294sub _dotls {
1295 my ($self) = @_;
1296
1297 my $buf;
1298
1299 if (length $self->{_tls_wbuf}) {
1300 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1301 substr $self->{_tls_wbuf}, 0, $len, "";
1302 }
1303 }
1304
1305 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1306 $self->{wbuf} .= $buf;
1307 $self->_drain_wbuf;
1308 }
1309
1310 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1311 if (length $buf) {
1312 $self->{rbuf} .= $buf;
1313 $self->_drain_rbuf unless $self->{_in_drain};
1314 } else {
1315 # let's treat SSL-eof as we treat normal EOF
1316 $self->{_eof} = 1;
1317 $self->_shutdown;
1318 return;
1319 }
1320 }
1321
1322 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1323
1324 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1325 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1326 return $self->_error ($!, 1);
1327 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1328 return $self->_error (&Errno::EIO, 1);
1329 }
1330
1331 # all others are fine for our purposes
1332 }
1333}
1334
1335=item $handle->starttls ($tls[, $tls_ctx])
1336
1337Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1338object is created, you can also do that at a later time by calling
1339C<starttls>.
1340
1341The first argument is the same as the C<tls> constructor argument (either
1342C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1343
1344The second argument is the optional C<Net::SSLeay::CTX> object that is
1345used when AnyEvent::Handle has to create its own TLS connection object.
1346
1347The TLS connection object will end up in C<< $handle->{tls} >> after this
1348call and can be used or changed to your liking. Note that the handshake
1349might have already started when this function returns.
1350
1351=cut
1352
1353sub starttls {
1354 my ($self, $ssl, $ctx) = @_;
1355
1356 $self->stoptls;
1357
1358 if ($ssl eq "accept") {
1359 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1360 Net::SSLeay::set_accept_state ($ssl);
1361 } elsif ($ssl eq "connect") {
1362 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1363 Net::SSLeay::set_connect_state ($ssl);
1364 }
1365
1366 $self->{tls} = $ssl;
1367
1368 # basically, this is deep magic (because SSL_read should have the same issues)
1369 # but the openssl maintainers basically said: "trust us, it just works".
1370 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1371 # and mismaintained ssleay-module doesn't even offer them).
1372 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1373 #
1374 # in short: this is a mess.
1375 #
1376 # note that we do not try to kepe the length constant between writes as we are required to do.
1377 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1378 # and we drive openssl fully in blocking mode here.
1379 Net::SSLeay::CTX_set_mode ($self->{tls},
1380 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1381 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1382
1383 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1384 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1385
1386 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1387
1388 $self->{filter_w} = sub {
1389 $_[0]{_tls_wbuf} .= ${$_[1]};
1390 &_dotls;
1391 };
1392 $self->{filter_r} = sub {
1393 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1394 &_dotls;
1395 };
1396}
1397
1398=item $handle->stoptls
1399
1400Destroys the SSL connection, if any. Partial read or write data will be
1401lost.
1402
1403=cut
1404
1405sub stoptls {
1406 my ($self) = @_;
1407
1408 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1409
1410 delete $self->{_rbio};
1411 delete $self->{_wbio};
1412 delete $self->{_tls_wbuf};
1413 delete $self->{filter_r};
1414 delete $self->{filter_w};
1415}
1416
1417sub DESTROY {
1418 my $self = shift;
1419
1420 $self->stoptls;
1421
1422 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1423
1424 if ($linger && length $self->{wbuf}) {
1425 my $fh = delete $self->{fh};
1426 my $wbuf = delete $self->{wbuf};
1427
1428 my @linger;
1429
1430 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1431 my $len = syswrite $fh, $wbuf, length $wbuf;
1432
1433 if ($len > 0) {
1434 substr $wbuf, 0, $len, "";
1435 } else {
1436 @linger = (); # end
1437 }
1438 });
1439 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1440 @linger = ();
1441 });
1442 }
1443}
1444
1445=item AnyEvent::Handle::TLS_CTX
1446
1447This function creates and returns the Net::SSLeay::CTX object used by
1448default for TLS mode.
1449
1450The context is created like this:
1451
1452 Net::SSLeay::load_error_strings;
1453 Net::SSLeay::SSLeay_add_ssl_algorithms;
1454 Net::SSLeay::randomize;
1455
1456 my $CTX = Net::SSLeay::CTX_new;
1457
1458 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1459
1460=cut
1461
1462our $TLS_CTX;
1463
1464sub TLS_CTX() {
1465 $TLS_CTX || do {
1466 require Net::SSLeay;
1467
1468 Net::SSLeay::load_error_strings ();
1469 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1470 Net::SSLeay::randomize ();
1471
1472 $TLS_CTX = Net::SSLeay::CTX_new ();
1473
1474 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1475
1476 $TLS_CTX
1477 }
1478}
1479
603=back 1480=back
604 1481
1482=head1 SUBCLASSING AnyEvent::Handle
1483
1484In many cases, you might want to subclass AnyEvent::Handle.
1485
1486To make this easier, a given version of AnyEvent::Handle uses these
1487conventions:
1488
1489=over 4
1490
1491=item * all constructor arguments become object members.
1492
1493At least initially, when you pass a C<tls>-argument to the constructor it
1494will end up in C<< $handle->{tls} >>. Those members might be changed or
1495mutated later on (for example C<tls> will hold the TLS connection object).
1496
1497=item * other object member names are prefixed with an C<_>.
1498
1499All object members not explicitly documented (internal use) are prefixed
1500with an underscore character, so the remaining non-C<_>-namespace is free
1501for use for subclasses.
1502
1503=item * all members not documented here and not prefixed with an underscore
1504are free to use in subclasses.
1505
1506Of course, new versions of AnyEvent::Handle may introduce more "public"
1507member variables, but thats just life, at least it is documented.
1508
1509=back
1510
605=head1 AUTHOR 1511=head1 AUTHOR
606 1512
607Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>. 1513Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
608 1514
609=cut 1515=cut

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines