ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.38
Committed: Mon May 26 21:28:33 2008 UTC (16 years ago) by root
Branch: MAIN
Changes since 1.37: +73 -33 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw/EAGAIN EINTR/;
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = '0.04';
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($self)
79
80 Set the callback to be called on EOF.
81
82 While not mandatory, it is highly recommended to set an eof callback,
83 otherwise you might end up with a closed socket while you are still
84 waiting for data.
85
86 =item on_error => $cb->($self)
87
88 This is the fatal error callback, that is called when, well, a fatal error
89 occurs, such as not being able to resolve the hostname, failure to connect
90 or a read error.
91
92 The object will not be in a usable state when this callback has been
93 called.
94
95 On callback entrance, the value of C<$!> contains the operating system
96 error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>).
97
98 The callback should throw an exception. If it returns, then
99 AnyEvent::Handle will C<croak> for you.
100
101 While not mandatory, it is I<highly> recommended to set this callback, as
102 you will not be notified of errors otherwise. The default simply calls
103 die.
104
105 =item on_read => $cb->($self)
106
107 This sets the default read callback, which is called when data arrives
108 and no read request is in the queue.
109
110 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 method or access the C<$self->{rbuf}> member directly.
112
113 When an EOF condition is detected then AnyEvent::Handle will first try to
114 feed all the remaining data to the queued callbacks and C<on_read> before
115 calling the C<on_eof> callback. If no progress can be made, then a fatal
116 error will be raised (with C<$!> set to C<EPIPE>).
117
118 =item on_drain => $cb->()
119
120 This sets the callback that is called when the write buffer becomes empty
121 (or when the callback is set and the buffer is empty already).
122
123 To append to the write buffer, use the C<< ->push_write >> method.
124
125 =item rbuf_max => <bytes>
126
127 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
128 when the read buffer ever (strictly) exceeds this size. This is useful to
129 avoid denial-of-service attacks.
130
131 For example, a server accepting connections from untrusted sources should
132 be configured to accept only so-and-so much data that it cannot act on
133 (for example, when expecting a line, an attacker could send an unlimited
134 amount of data without a callback ever being called as long as the line
135 isn't finished).
136
137 =item read_size => <bytes>
138
139 The default read block size (the amount of bytes this module will try to read
140 on each [loop iteration). Default: C<4096>.
141
142 =item low_water_mark => <bytes>
143
144 Sets the amount of bytes (default: C<0>) that make up an "empty" write
145 buffer: If the write reaches this size or gets even samller it is
146 considered empty.
147
148 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
149
150 When this parameter is given, it enables TLS (SSL) mode, that means it
151 will start making tls handshake and will transparently encrypt/decrypt
152 data.
153
154 TLS mode requires Net::SSLeay to be installed (it will be loaded
155 automatically when you try to create a TLS handle).
156
157 For the TLS server side, use C<accept>, and for the TLS client side of a
158 connection, use C<connect> mode.
159
160 You can also provide your own TLS connection object, but you have
161 to make sure that you call either C<Net::SSLeay::set_connect_state>
162 or C<Net::SSLeay::set_accept_state> on it before you pass it to
163 AnyEvent::Handle.
164
165 See the C<starttls> method if you need to start TLs negotiation later.
166
167 =item tls_ctx => $ssl_ctx
168
169 Use the given Net::SSLeay::CTX object to create the new TLS connection
170 (unless a connection object was specified directly). If this parameter is
171 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
172
173 =item filter_r => $cb
174
175 =item filter_w => $cb
176
177 These exist, but are undocumented at this time.
178
179 =back
180
181 =cut
182
183 sub new {
184 my $class = shift;
185
186 my $self = bless { @_ }, $class;
187
188 $self->{fh} or Carp::croak "mandatory argument fh is missing";
189
190 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
191
192 if ($self->{tls}) {
193 require Net::SSLeay;
194 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
195 }
196
197 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
198 $self->on_error (delete $self->{on_error}) if $self->{on_error};
199 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
200 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
201
202 $self->start_read;
203
204 $self
205 }
206
207 sub _shutdown {
208 my ($self) = @_;
209
210 delete $self->{_rw};
211 delete $self->{_ww};
212 delete $self->{fh};
213 }
214
215 sub error {
216 my ($self) = @_;
217
218 {
219 local $!;
220 $self->_shutdown;
221 }
222
223 $self->{on_error}($self)
224 if $self->{on_error};
225
226 Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
227 }
228
229 =item $fh = $handle->fh
230
231 This method returns the file handle of the L<AnyEvent::Handle> object.
232
233 =cut
234
235 sub fh { $_[0]{fh} }
236
237 =item $handle->on_error ($cb)
238
239 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
240
241 =cut
242
243 sub on_error {
244 $_[0]{on_error} = $_[1];
245 }
246
247 =item $handle->on_eof ($cb)
248
249 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
250
251 =cut
252
253 sub on_eof {
254 $_[0]{on_eof} = $_[1];
255 }
256
257 #############################################################################
258
259 =back
260
261 =head2 WRITE QUEUE
262
263 AnyEvent::Handle manages two queues per handle, one for writing and one
264 for reading.
265
266 The write queue is very simple: you can add data to its end, and
267 AnyEvent::Handle will automatically try to get rid of it for you.
268
269 When data could be written and the write buffer is shorter then the low
270 water mark, the C<on_drain> callback will be invoked.
271
272 =over 4
273
274 =item $handle->on_drain ($cb)
275
276 Sets the C<on_drain> callback or clears it (see the description of
277 C<on_drain> in the constructor).
278
279 =cut
280
281 sub on_drain {
282 my ($self, $cb) = @_;
283
284 $self->{on_drain} = $cb;
285
286 $cb->($self)
287 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
288 }
289
290 =item $handle->push_write ($data)
291
292 Queues the given scalar to be written. You can push as much data as you
293 want (only limited by the available memory), as C<AnyEvent::Handle>
294 buffers it independently of the kernel.
295
296 =cut
297
298 sub _drain_wbuf {
299 my ($self) = @_;
300
301 if (!$self->{_ww} && length $self->{wbuf}) {
302
303 Scalar::Util::weaken $self;
304
305 my $cb = sub {
306 my $len = syswrite $self->{fh}, $self->{wbuf};
307
308 if ($len >= 0) {
309 substr $self->{wbuf}, 0, $len, "";
310
311 $self->{on_drain}($self)
312 if $self->{low_water_mark} >= length $self->{wbuf}
313 && $self->{on_drain};
314
315 delete $self->{_ww} unless length $self->{wbuf};
316 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAWOULDBLOCK) {
317 $self->error;
318 }
319 };
320
321 # try to write data immediately
322 $cb->();
323
324 # if still data left in wbuf, we need to poll
325 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
326 if length $self->{wbuf};
327 };
328 }
329
330 our %WH;
331
332 sub register_write_type($$) {
333 $WH{$_[0]} = $_[1];
334 }
335
336 sub push_write {
337 my $self = shift;
338
339 if (@_ > 1) {
340 my $type = shift;
341
342 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
343 ->($self, @_);
344 }
345
346 if ($self->{filter_w}) {
347 $self->{filter_w}->($self, \$_[0]);
348 } else {
349 $self->{wbuf} .= $_[0];
350 $self->_drain_wbuf;
351 }
352 }
353
354 =item $handle->push_write (type => @args)
355
356 =item $handle->unshift_write (type => @args)
357
358 Instead of formatting your data yourself, you can also let this module do
359 the job by specifying a type and type-specific arguments.
360
361 Predefined types are (if you have ideas for additional types, feel free to
362 drop by and tell us):
363
364 =over 4
365
366 =item netstring => $string
367
368 Formats the given value as netstring
369 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
370
371 =back
372
373 =cut
374
375 register_write_type netstring => sub {
376 my ($self, $string) = @_;
377
378 sprintf "%d:%s,", (length $string), $string
379 };
380
381 =item AnyEvent::Handle::register_write_type type => $coderef->($self, @args)
382
383 This function (not method) lets you add your own types to C<push_write>.
384 Whenever the given C<type> is used, C<push_write> will invoke the code
385 reference with the handle object and the remaining arguments.
386
387 The code reference is supposed to return a single octet string that will
388 be appended to the write buffer.
389
390 Note that this is a function, and all types registered this way will be
391 global, so try to use unique names.
392
393 =cut
394
395 #############################################################################
396
397 =back
398
399 =head2 READ QUEUE
400
401 AnyEvent::Handle manages two queues per handle, one for writing and one
402 for reading.
403
404 The read queue is more complex than the write queue. It can be used in two
405 ways, the "simple" way, using only C<on_read> and the "complex" way, using
406 a queue.
407
408 In the simple case, you just install an C<on_read> callback and whenever
409 new data arrives, it will be called. You can then remove some data (if
410 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
411 or not.
412
413 In the more complex case, you want to queue multiple callbacks. In this
414 case, AnyEvent::Handle will call the first queued callback each time new
415 data arrives and removes it when it has done its job (see C<push_read>,
416 below).
417
418 This way you can, for example, push three line-reads, followed by reading
419 a chunk of data, and AnyEvent::Handle will execute them in order.
420
421 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
422 the specified number of bytes which give an XML datagram.
423
424 # in the default state, expect some header bytes
425 $handle->on_read (sub {
426 # some data is here, now queue the length-header-read (4 octets)
427 shift->unshift_read_chunk (4, sub {
428 # header arrived, decode
429 my $len = unpack "N", $_[1];
430
431 # now read the payload
432 shift->unshift_read_chunk ($len, sub {
433 my $xml = $_[1];
434 # handle xml
435 });
436 });
437 });
438
439 Example 2: Implement a client for a protocol that replies either with
440 "OK" and another line or "ERROR" for one request, and 64 bytes for the
441 second request. Due tot he availability of a full queue, we can just
442 pipeline sending both requests and manipulate the queue as necessary in
443 the callbacks:
444
445 # request one
446 $handle->push_write ("request 1\015\012");
447
448 # we expect "ERROR" or "OK" as response, so push a line read
449 $handle->push_read_line (sub {
450 # if we got an "OK", we have to _prepend_ another line,
451 # so it will be read before the second request reads its 64 bytes
452 # which are already in the queue when this callback is called
453 # we don't do this in case we got an error
454 if ($_[1] eq "OK") {
455 $_[0]->unshift_read_line (sub {
456 my $response = $_[1];
457 ...
458 });
459 }
460 });
461
462 # request two
463 $handle->push_write ("request 2\015\012");
464
465 # simply read 64 bytes, always
466 $handle->push_read_chunk (64, sub {
467 my $response = $_[1];
468 ...
469 });
470
471 =over 4
472
473 =cut
474
475 sub _drain_rbuf {
476 my ($self) = @_;
477
478 if (
479 defined $self->{rbuf_max}
480 && $self->{rbuf_max} < length $self->{rbuf}
481 ) {
482 $! = &Errno::ENOSPC;
483 $self->error;
484 }
485
486 return if $self->{in_drain};
487 local $self->{in_drain} = 1;
488
489 while (my $len = length $self->{rbuf}) {
490 no strict 'refs';
491 if (my $cb = shift @{ $self->{_queue} }) {
492 unless ($cb->($self)) {
493 if ($self->{_eof}) {
494 # no progress can be made (not enough data and no data forthcoming)
495 $! = &Errno::EPIPE;
496 $self->error;
497 }
498
499 unshift @{ $self->{_queue} }, $cb;
500 return;
501 }
502 } elsif ($self->{on_read}) {
503 $self->{on_read}($self);
504
505 if (
506 $self->{_eof} # if no further data will arrive
507 && $len == length $self->{rbuf} # and no data has been consumed
508 && !@{ $self->{_queue} } # and the queue is still empty
509 && $self->{on_read} # and we still want to read data
510 ) {
511 # then no progress can be made
512 $! = &Errno::EPIPE;
513 $self->error;
514 }
515 } else {
516 # read side becomes idle
517 delete $self->{_rw};
518 return;
519 }
520 }
521
522 if ($self->{_eof}) {
523 $self->_shutdown;
524 $self->{on_eof}($self)
525 if $self->{on_eof};
526 }
527 }
528
529 =item $handle->on_read ($cb)
530
531 This replaces the currently set C<on_read> callback, or clears it (when
532 the new callback is C<undef>). See the description of C<on_read> in the
533 constructor.
534
535 =cut
536
537 sub on_read {
538 my ($self, $cb) = @_;
539
540 $self->{on_read} = $cb;
541 }
542
543 =item $handle->rbuf
544
545 Returns the read buffer (as a modifiable lvalue).
546
547 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
548 you want.
549
550 NOTE: The read buffer should only be used or modified if the C<on_read>,
551 C<push_read> or C<unshift_read> methods are used. The other read methods
552 automatically manage the read buffer.
553
554 =cut
555
556 sub rbuf : lvalue {
557 $_[0]{rbuf}
558 }
559
560 =item $handle->push_read ($cb)
561
562 =item $handle->unshift_read ($cb)
563
564 Append the given callback to the end of the queue (C<push_read>) or
565 prepend it (C<unshift_read>).
566
567 The callback is called each time some additional read data arrives.
568
569 It must check whether enough data is in the read buffer already.
570
571 If not enough data is available, it must return the empty list or a false
572 value, in which case it will be called repeatedly until enough data is
573 available (or an error condition is detected).
574
575 If enough data was available, then the callback must remove all data it is
576 interested in (which can be none at all) and return a true value. After returning
577 true, it will be removed from the queue.
578
579 =cut
580
581 our %RH;
582
583 sub register_read_type($$) {
584 $RH{$_[0]} = $_[1];
585 }
586
587 sub push_read {
588 my $self = shift;
589 my $cb = pop;
590
591 if (@_) {
592 my $type = shift;
593
594 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
595 ->($self, $cb, @_);
596 }
597
598 push @{ $self->{_queue} }, $cb;
599 $self->_drain_rbuf;
600 }
601
602 sub unshift_read {
603 my $self = shift;
604 my $cb = pop;
605
606 if (@_) {
607 my $type = shift;
608
609 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
610 ->($self, $cb, @_);
611 }
612
613
614 unshift @{ $self->{_queue} }, $cb;
615 $self->_drain_rbuf;
616 }
617
618 =item $handle->push_read (type => @args, $cb)
619
620 =item $handle->unshift_read (type => @args, $cb)
621
622 Instead of providing a callback that parses the data itself you can chose
623 between a number of predefined parsing formats, for chunks of data, lines
624 etc.
625
626 Predefined types are (if you have ideas for additional types, feel free to
627 drop by and tell us):
628
629 =over 4
630
631 =item chunk => $octets, $cb->($self, $data)
632
633 Invoke the callback only once C<$octets> bytes have been read. Pass the
634 data read to the callback. The callback will never be called with less
635 data.
636
637 Example: read 2 bytes.
638
639 $handle->push_read (chunk => 2, sub {
640 warn "yay ", unpack "H*", $_[1];
641 });
642
643 =cut
644
645 register_read_type chunk => sub {
646 my ($self, $cb, $len) = @_;
647
648 sub {
649 $len <= length $_[0]{rbuf} or return;
650 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
651 1
652 }
653 };
654
655 # compatibility with older API
656 sub push_read_chunk {
657 $_[0]->push_read (chunk => $_[1], $_[2]);
658 }
659
660 sub unshift_read_chunk {
661 $_[0]->unshift_read (chunk => $_[1], $_[2]);
662 }
663
664 =item line => [$eol, ]$cb->($self, $line, $eol)
665
666 The callback will be called only once a full line (including the end of
667 line marker, C<$eol>) has been read. This line (excluding the end of line
668 marker) will be passed to the callback as second argument (C<$line>), and
669 the end of line marker as the third argument (C<$eol>).
670
671 The end of line marker, C<$eol>, can be either a string, in which case it
672 will be interpreted as a fixed record end marker, or it can be a regex
673 object (e.g. created by C<qr>), in which case it is interpreted as a
674 regular expression.
675
676 The end of line marker argument C<$eol> is optional, if it is missing (NOT
677 undef), then C<qr|\015?\012|> is used (which is good for most internet
678 protocols).
679
680 Partial lines at the end of the stream will never be returned, as they are
681 not marked by the end of line marker.
682
683 =cut
684
685 register_read_type line => sub {
686 my ($self, $cb, $eol) = @_;
687
688 $eol = qr|(\015?\012)| if @_ < 3;
689 $eol = quotemeta $eol unless ref $eol;
690 $eol = qr|^(.*?)($eol)|s;
691
692 sub {
693 $_[0]{rbuf} =~ s/$eol// or return;
694
695 $cb->($_[0], $1, $2);
696 1
697 }
698 };
699
700 # compatibility with older API
701 sub push_read_line {
702 my $self = shift;
703 $self->push_read (line => @_);
704 }
705
706 sub unshift_read_line {
707 my $self = shift;
708 $self->unshift_read (line => @_);
709 }
710
711 =item netstring => $cb->($string)
712
713 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
714
715 Throws an error with C<$!> set to EBADMSG on format violations.
716
717 =cut
718
719 register_read_type netstring => sub {
720 my ($self, $cb) = @_;
721
722 sub {
723 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
724 if ($_[0]{rbuf} =~ /[^0-9]/) {
725 $! = &Errno::EBADMSG;
726 $self->error;
727 }
728 return;
729 }
730
731 my $len = $1;
732
733 $self->unshift_read (chunk => $len, sub {
734 my $string = $_[1];
735 $_[0]->unshift_read (chunk => 1, sub {
736 if ($_[1] eq ",") {
737 $cb->($_[0], $string);
738 } else {
739 $! = &Errno::EBADMSG;
740 $self->error;
741 }
742 });
743 });
744
745 1
746 }
747 };
748
749 =item regex => $accept[, $reject[, $skip], $cb->($data)
750
751 Makes a regex match against the regex object C<$accept> and returns
752 everything up to and including the match.
753
754 Example: read a single line terminated by '\n'.
755
756 $handle->push_read (regex => qr<\n>, sub { ... });
757
758 If C<$reject> is given and not undef, then it determines when the data is
759 to be rejected: it is matched against the data when the C<$accept> regex
760 does not match and generates an C<EBADMSG> error when it matches. This is
761 useful to quickly reject wrong data (to avoid waiting for a timeout or a
762 receive buffer overflow).
763
764 Example: expect a single decimal number followed by whitespace, reject
765 anything else (not the use of an anchor).
766
767 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
768
769 If C<$skip> is given and not C<undef>, then it will be matched against
770 the receive buffer when neither C<$accept> nor C<$reject> match,
771 and everything preceding and including the match will be accepted
772 unconditionally. This is useful to skip large amounts of data that you
773 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
774 have to start matching from the beginning. This is purely an optimisation
775 and is usually worth only when you expect more than a few kilobytes.
776
777 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
778 expect the header to be very large (it isn't in practise, but...), we use
779 a skip regex to skip initial portions. The skip regex is tricky in that
780 it only accepts something not ending in either \015 or \012, as these are
781 required for the accept regex.
782
783 $handle->push_read (regex =>
784 qr<\015\012\015\012>,
785 undef, # no reject
786 qr<^.*[^\015\012]>,
787 sub { ... });
788
789 =cut
790
791 register_read_type regex => sub {
792 my ($self, $cb, $accept, $reject, $skip) = @_;
793
794 my $data;
795 my $rbuf = \$self->{rbuf};
796
797 sub {
798 # accept
799 if ($$rbuf =~ $accept) {
800 $data .= substr $$rbuf, 0, $+[0], "";
801 $cb->($self, $data);
802 return 1;
803 }
804
805 # reject
806 if ($reject && $$rbuf =~ $reject) {
807 $! = &Errno::EBADMSG;
808 $self->error;
809 }
810
811 # skip
812 if ($skip && $$rbuf =~ $skip) {
813 $data .= substr $$rbuf, 0, $+[0], "";
814 }
815
816 ()
817 }
818 };
819
820 =back
821
822 =item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args)
823
824 This function (not method) lets you add your own types to C<push_read>.
825
826 Whenever the given C<type> is used, C<push_read> will invoke the code
827 reference with the handle object, the callback and the remaining
828 arguments.
829
830 The code reference is supposed to return a callback (usually a closure)
831 that works as a plain read callback (see C<< ->push_read ($cb) >>).
832
833 It should invoke the passed callback when it is done reading (remember to
834 pass C<$self> as first argument as all other callbacks do that).
835
836 Note that this is a function, and all types registered this way will be
837 global, so try to use unique names.
838
839 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
840 search for C<register_read_type>)).
841
842 =item $handle->stop_read
843
844 =item $handle->start_read
845
846 In rare cases you actually do not want to read anything from the
847 socket. In this case you can call C<stop_read>. Neither C<on_read> no
848 any queued callbacks will be executed then. To start reading again, call
849 C<start_read>.
850
851 =cut
852
853 sub stop_read {
854 my ($self) = @_;
855
856 delete $self->{_rw};
857 }
858
859 sub start_read {
860 my ($self) = @_;
861
862 unless ($self->{_rw} || $self->{_eof}) {
863 Scalar::Util::weaken $self;
864
865 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
866 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
867 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
868
869 if ($len > 0) {
870 $self->{filter_r}
871 ? $self->{filter_r}->($self, $rbuf)
872 : $self->_drain_rbuf;
873
874 } elsif (defined $len) {
875 delete $self->{_rw};
876 $self->{_eof} = 1;
877 $self->_drain_rbuf;
878
879 } elsif ($! != EAGAIN && $! != EINTR && $! != &AnyEvent::Util::WSAWOULDBLOCK) {
880 return $self->error;
881 }
882 });
883 }
884 }
885
886 sub _dotls {
887 my ($self) = @_;
888
889 if (length $self->{_tls_wbuf}) {
890 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
891 substr $self->{_tls_wbuf}, 0, $len, "";
892 }
893 }
894
895 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
896 $self->{wbuf} .= $buf;
897 $self->_drain_wbuf;
898 }
899
900 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
901 $self->{rbuf} .= $buf;
902 $self->_drain_rbuf;
903 }
904
905 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
906
907 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
908 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
909 $self->error;
910 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
911 $! = &Errno::EIO;
912 $self->error;
913 }
914
915 # all others are fine for our purposes
916 }
917 }
918
919 =item $handle->starttls ($tls[, $tls_ctx])
920
921 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
922 object is created, you can also do that at a later time by calling
923 C<starttls>.
924
925 The first argument is the same as the C<tls> constructor argument (either
926 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
927
928 The second argument is the optional C<Net::SSLeay::CTX> object that is
929 used when AnyEvent::Handle has to create its own TLS connection object.
930
931 The TLS connection object will end up in C<< $handle->{tls} >> after this
932 call and can be used or changed to your liking. Note that the handshake
933 might have already started when this function returns.
934
935 =cut
936
937 # TODO: maybe document...
938 sub starttls {
939 my ($self, $ssl, $ctx) = @_;
940
941 $self->stoptls;
942
943 if ($ssl eq "accept") {
944 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
945 Net::SSLeay::set_accept_state ($ssl);
946 } elsif ($ssl eq "connect") {
947 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
948 Net::SSLeay::set_connect_state ($ssl);
949 }
950
951 $self->{tls} = $ssl;
952
953 # basically, this is deep magic (because SSL_read should have the same issues)
954 # but the openssl maintainers basically said: "trust us, it just works".
955 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
956 # and mismaintained ssleay-module doesn't even offer them).
957 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
958 Net::SSLeay::CTX_set_mode ($self->{tls},
959 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
960 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
961
962 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
963 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
964
965 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
966
967 $self->{filter_w} = sub {
968 $_[0]{_tls_wbuf} .= ${$_[1]};
969 &_dotls;
970 };
971 $self->{filter_r} = sub {
972 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
973 &_dotls;
974 };
975 }
976
977 =item $handle->stoptls
978
979 Destroys the SSL connection, if any. Partial read or write data will be
980 lost.
981
982 =cut
983
984 sub stoptls {
985 my ($self) = @_;
986
987 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
988
989 delete $self->{_rbio};
990 delete $self->{_wbio};
991 delete $self->{_tls_wbuf};
992 delete $self->{filter_r};
993 delete $self->{filter_w};
994 }
995
996 sub DESTROY {
997 my $self = shift;
998
999 $self->stoptls;
1000 }
1001
1002 =item AnyEvent::Handle::TLS_CTX
1003
1004 This function creates and returns the Net::SSLeay::CTX object used by
1005 default for TLS mode.
1006
1007 The context is created like this:
1008
1009 Net::SSLeay::load_error_strings;
1010 Net::SSLeay::SSLeay_add_ssl_algorithms;
1011 Net::SSLeay::randomize;
1012
1013 my $CTX = Net::SSLeay::CTX_new;
1014
1015 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1016
1017 =cut
1018
1019 our $TLS_CTX;
1020
1021 sub TLS_CTX() {
1022 $TLS_CTX || do {
1023 require Net::SSLeay;
1024
1025 Net::SSLeay::load_error_strings ();
1026 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1027 Net::SSLeay::randomize ();
1028
1029 $TLS_CTX = Net::SSLeay::CTX_new ();
1030
1031 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1032
1033 $TLS_CTX
1034 }
1035 }
1036
1037 =back
1038
1039 =head1 SUBCLASSING AnyEvent::Handle
1040
1041 In many cases, you might want to subclass AnyEvent::Handle.
1042
1043 To make this easier, a given version of AnyEvent::Handle uses these
1044 conventions:
1045
1046 =over 4
1047
1048 =item * all constructor arguments become object members.
1049
1050 At least initially, when you pass a C<tls>-argument to the constructor it
1051 will end up in C<< $handle->{tls} >>. Those members might be changes or
1052 mutated later on (for example C<tls> will hold the TLS connection object).
1053
1054 =item * other object member names are prefixed with an C<_>.
1055
1056 All object members not explicitly documented (internal use) are prefixed
1057 with an underscore character, so the remaining non-C<_>-namespace is free
1058 for use for subclasses.
1059
1060 =item * all members not documented here and not prefixed with an underscore
1061 are free to use in subclasses.
1062
1063 Of course, new versions of AnyEvent::Handle may introduce more "public"
1064 member variables, but thats just life, at least it is documented.
1065
1066 =back
1067
1068 =head1 AUTHOR
1069
1070 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1071
1072 =cut
1073
1074 1; # End of AnyEvent::Handle