ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.69
Committed: Sun Jun 15 21:44:56 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
CVS Tags: rel-4_152
Changes since 1.68: +20 -9 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = 4.151;
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called when an end-of-file condition is detcted,
81 i.e. in the case of a socket, when the other side has closed the
82 connection cleanly.
83
84 While not mandatory, it is highly recommended to set an eof callback,
85 otherwise you might end up with a closed socket while you are still
86 waiting for data.
87
88 =item on_error => $cb->($handle, $fatal)
89
90 This is the error callback, which is called when, well, some error
91 occured, such as not being able to resolve the hostname, failure to
92 connect or a read error.
93
94 Some errors are fatal (which is indicated by C<$fatal> being true). On
95 fatal errors the handle object will be shut down and will not be
96 usable. Non-fatal errors can be retried by simply returning, but it is
97 recommended to simply ignore this parameter and instead abondon the handle
98 object when this callback is invoked.
99
100 On callback entrance, the value of C<$!> contains the operating system
101 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103 While not mandatory, it is I<highly> recommended to set this callback, as
104 you will not be notified of errors otherwise. The default simply calls
105 C<croak>.
106
107 =item on_read => $cb->($handle)
108
109 This sets the default read callback, which is called when data arrives
110 and no read request is in the queue (unlike read queue callbacks, this
111 callback will only be called when at least one octet of data is in the
112 read buffer).
113
114 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 method or access the C<$handle->{rbuf}> member directly.
116
117 When an EOF condition is detected then AnyEvent::Handle will first try to
118 feed all the remaining data to the queued callbacks and C<on_read> before
119 calling the C<on_eof> callback. If no progress can be made, then a fatal
120 error will be raised (with C<$!> set to C<EPIPE>).
121
122 =item on_drain => $cb->($handle)
123
124 This sets the callback that is called when the write buffer becomes empty
125 (or when the callback is set and the buffer is empty already).
126
127 To append to the write buffer, use the C<< ->push_write >> method.
128
129 This callback is useful when you don't want to put all of your write data
130 into the queue at once, for example, when you want to write the contents
131 of some file to the socket you might not want to read the whole file into
132 memory and push it into the queue, but instead only read more data from
133 the file when the write queue becomes empty.
134
135 =item timeout => $fractional_seconds
136
137 If non-zero, then this enables an "inactivity" timeout: whenever this many
138 seconds pass without a successful read or write on the underlying file
139 handle, the C<on_timeout> callback will be invoked (and if that one is
140 missing, an C<ETIMEDOUT> error will be raised).
141
142 Note that timeout processing is also active when you currently do not have
143 any outstanding read or write requests: If you plan to keep the connection
144 idle then you should disable the timout temporarily or ignore the timeout
145 in the C<on_timeout> callback.
146
147 Zero (the default) disables this timeout.
148
149 =item on_timeout => $cb->($handle)
150
151 Called whenever the inactivity timeout passes. If you return from this
152 callback, then the timeout will be reset as if some activity had happened,
153 so this condition is not fatal in any way.
154
155 =item rbuf_max => <bytes>
156
157 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158 when the read buffer ever (strictly) exceeds this size. This is useful to
159 avoid denial-of-service attacks.
160
161 For example, a server accepting connections from untrusted sources should
162 be configured to accept only so-and-so much data that it cannot act on
163 (for example, when expecting a line, an attacker could send an unlimited
164 amount of data without a callback ever being called as long as the line
165 isn't finished).
166
167 =item read_size => <bytes>
168
169 The default read block size (the amount of bytes this module will try to read
170 during each (loop iteration). Default: C<8192>.
171
172 =item low_water_mark => <bytes>
173
174 Sets the amount of bytes (default: C<0>) that make up an "empty" write
175 buffer: If the write reaches this size or gets even samller it is
176 considered empty.
177
178 =item linger => <seconds>
179
180 If non-zero (default: C<3600>), then the destructor of the
181 AnyEvent::Handle object will check wether there is still outstanding write
182 data and will install a watcher that will write out this data. No errors
183 will be reported (this mostly matches how the operating system treats
184 outstanding data at socket close time).
185
186 This will not work for partial TLS data that could not yet been
187 encoded. This data will be lost.
188
189 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
190
191 When this parameter is given, it enables TLS (SSL) mode, that means it
192 will start making tls handshake and will transparently encrypt/decrypt
193 data.
194
195 TLS mode requires Net::SSLeay to be installed (it will be loaded
196 automatically when you try to create a TLS handle).
197
198 For the TLS server side, use C<accept>, and for the TLS client side of a
199 connection, use C<connect> mode.
200
201 You can also provide your own TLS connection object, but you have
202 to make sure that you call either C<Net::SSLeay::set_connect_state>
203 or C<Net::SSLeay::set_accept_state> on it before you pass it to
204 AnyEvent::Handle.
205
206 See the C<starttls> method if you need to start TLs negotiation later.
207
208 =item tls_ctx => $ssl_ctx
209
210 Use the given Net::SSLeay::CTX object to create the new TLS connection
211 (unless a connection object was specified directly). If this parameter is
212 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213
214 =item json => JSON or JSON::XS object
215
216 This is the json coder object used by the C<json> read and write types.
217
218 If you don't supply it, then AnyEvent::Handle will create and use a
219 suitable one, which will write and expect UTF-8 encoded JSON texts.
220
221 Note that you are responsible to depend on the JSON module if you want to
222 use this functionality, as AnyEvent does not have a dependency itself.
223
224 =item filter_r => $cb
225
226 =item filter_w => $cb
227
228 These exist, but are undocumented at this time.
229
230 =back
231
232 =cut
233
234 sub new {
235 my $class = shift;
236
237 my $self = bless { @_ }, $class;
238
239 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247
248 $self->{_activity} = AnyEvent->now;
249 $self->_timeout;
250
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252
253 $self->start_read
254 if $self->{on_read};
255
256 $self
257 }
258
259 sub _shutdown {
260 my ($self) = @_;
261
262 delete $self->{_tw};
263 delete $self->{_rw};
264 delete $self->{_ww};
265 delete $self->{fh};
266
267 $self->stoptls;
268 }
269
270 sub _error {
271 my ($self, $errno, $fatal) = @_;
272
273 $self->_shutdown
274 if $fatal;
275
276 $! = $errno;
277
278 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal);
280 } else {
281 Carp::croak "AnyEvent::Handle uncaught error: $!";
282 }
283 }
284
285 =item $fh = $handle->fh
286
287 This method returns the file handle of the L<AnyEvent::Handle> object.
288
289 =cut
290
291 sub fh { $_[0]{fh} }
292
293 =item $handle->on_error ($cb)
294
295 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
296
297 =cut
298
299 sub on_error {
300 $_[0]{on_error} = $_[1];
301 }
302
303 =item $handle->on_eof ($cb)
304
305 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
306
307 =cut
308
309 sub on_eof {
310 $_[0]{on_eof} = $_[1];
311 }
312
313 =item $handle->on_timeout ($cb)
314
315 Replace the current C<on_timeout> callback, or disables the callback
316 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
317 argument.
318
319 =cut
320
321 sub on_timeout {
322 $_[0]{on_timeout} = $_[1];
323 }
324
325 #############################################################################
326
327 =item $handle->timeout ($seconds)
328
329 Configures (or disables) the inactivity timeout.
330
331 =cut
332
333 sub timeout {
334 my ($self, $timeout) = @_;
335
336 $self->{timeout} = $timeout;
337 $self->_timeout;
338 }
339
340 # reset the timeout watcher, as neccessary
341 # also check for time-outs
342 sub _timeout {
343 my ($self) = @_;
344
345 if ($self->{timeout}) {
346 my $NOW = AnyEvent->now;
347
348 # when would the timeout trigger?
349 my $after = $self->{_activity} + $self->{timeout} - $NOW;
350
351 # now or in the past already?
352 if ($after <= 0) {
353 $self->{_activity} = $NOW;
354
355 if ($self->{on_timeout}) {
356 $self->{on_timeout}($self);
357 } else {
358 $self->_error (&Errno::ETIMEDOUT);
359 }
360
361 # callback could have changed timeout value, optimise
362 return unless $self->{timeout};
363
364 # calculate new after
365 $after = $self->{timeout};
366 }
367
368 Scalar::Util::weaken $self;
369 return unless $self; # ->error could have destroyed $self
370
371 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
372 delete $self->{_tw};
373 $self->_timeout;
374 });
375 } else {
376 delete $self->{_tw};
377 }
378 }
379
380 #############################################################################
381
382 =back
383
384 =head2 WRITE QUEUE
385
386 AnyEvent::Handle manages two queues per handle, one for writing and one
387 for reading.
388
389 The write queue is very simple: you can add data to its end, and
390 AnyEvent::Handle will automatically try to get rid of it for you.
391
392 When data could be written and the write buffer is shorter then the low
393 water mark, the C<on_drain> callback will be invoked.
394
395 =over 4
396
397 =item $handle->on_drain ($cb)
398
399 Sets the C<on_drain> callback or clears it (see the description of
400 C<on_drain> in the constructor).
401
402 =cut
403
404 sub on_drain {
405 my ($self, $cb) = @_;
406
407 $self->{on_drain} = $cb;
408
409 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
411 }
412
413 =item $handle->push_write ($data)
414
415 Queues the given scalar to be written. You can push as much data as you
416 want (only limited by the available memory), as C<AnyEvent::Handle>
417 buffers it independently of the kernel.
418
419 =cut
420
421 sub _drain_wbuf {
422 my ($self) = @_;
423
424 if (!$self->{_ww} && length $self->{wbuf}) {
425
426 Scalar::Util::weaken $self;
427
428 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf};
430
431 if ($len >= 0) {
432 substr $self->{wbuf}, 0, $len, "";
433
434 $self->{_activity} = AnyEvent->now;
435
436 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf}
438 && $self->{on_drain};
439
440 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1);
443 }
444 };
445
446 # try to write data immediately
447 $cb->();
448
449 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf};
452 };
453 }
454
455 our %WH;
456
457 sub register_write_type($$) {
458 $WH{$_[0]} = $_[1];
459 }
460
461 sub push_write {
462 my $self = shift;
463
464 if (@_ > 1) {
465 my $type = shift;
466
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_);
469 }
470
471 if ($self->{filter_w}) {
472 $self->{filter_w}($self, \$_[0]);
473 } else {
474 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf;
476 }
477 }
478
479 =item $handle->push_write (type => @args)
480
481 Instead of formatting your data yourself, you can also let this module do
482 the job by specifying a type and type-specific arguments.
483
484 Predefined types are (if you have ideas for additional types, feel free to
485 drop by and tell us):
486
487 =over 4
488
489 =item netstring => $string
490
491 Formats the given value as netstring
492 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
493
494 =cut
495
496 register_write_type netstring => sub {
497 my ($self, $string) = @_;
498
499 sprintf "%d:%s,", (length $string), $string
500 };
501
502 =item packstring => $format, $data
503
504 An octet string prefixed with an encoded length. The encoding C<$format>
505 uses the same format as a Perl C<pack> format, but must specify a single
506 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
507 optional C<!>, C<< < >> or C<< > >> modifier).
508
509 =cut
510
511 register_write_type packstring => sub {
512 my ($self, $format, $string) = @_;
513
514 pack "$format/a*", $string
515 };
516
517 =item json => $array_or_hashref
518
519 Encodes the given hash or array reference into a JSON object. Unless you
520 provide your own JSON object, this means it will be encoded to JSON text
521 in UTF-8.
522
523 JSON objects (and arrays) are self-delimiting, so you can write JSON at
524 one end of a handle and read them at the other end without using any
525 additional framing.
526
527 The generated JSON text is guaranteed not to contain any newlines: While
528 this module doesn't need delimiters after or between JSON texts to be
529 able to read them, many other languages depend on that.
530
531 A simple RPC protocol that interoperates easily with others is to send
532 JSON arrays (or objects, although arrays are usually the better choice as
533 they mimic how function argument passing works) and a newline after each
534 JSON text:
535
536 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
537 $handle->push_write ("\012");
538
539 An AnyEvent::Handle receiver would simply use the C<json> read type and
540 rely on the fact that the newline will be skipped as leading whitespace:
541
542 $handle->push_read (json => sub { my $array = $_[1]; ... });
543
544 Other languages could read single lines terminated by a newline and pass
545 this line into their JSON decoder of choice.
546
547 =cut
548
549 register_write_type json => sub {
550 my ($self, $ref) = @_;
551
552 require JSON;
553
554 $self->{json} ? $self->{json}->encode ($ref)
555 : JSON::encode_json ($ref)
556 };
557
558 =item storable => $reference
559
560 Freezes the given reference using L<Storable> and writes it to the
561 handle. Uses the C<nfreeze> format.
562
563 =cut
564
565 register_write_type storable => sub {
566 my ($self, $ref) = @_;
567
568 require Storable;
569
570 pack "w/a*", Storable::nfreeze ($ref)
571 };
572
573 =back
574
575 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576
577 This function (not method) lets you add your own types to C<push_write>.
578 Whenever the given C<type> is used, C<push_write> will invoke the code
579 reference with the handle object and the remaining arguments.
580
581 The code reference is supposed to return a single octet string that will
582 be appended to the write buffer.
583
584 Note that this is a function, and all types registered this way will be
585 global, so try to use unique names.
586
587 =cut
588
589 #############################################################################
590
591 =back
592
593 =head2 READ QUEUE
594
595 AnyEvent::Handle manages two queues per handle, one for writing and one
596 for reading.
597
598 The read queue is more complex than the write queue. It can be used in two
599 ways, the "simple" way, using only C<on_read> and the "complex" way, using
600 a queue.
601
602 In the simple case, you just install an C<on_read> callback and whenever
603 new data arrives, it will be called. You can then remove some data (if
604 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
605 leave the data there if you want to accumulate more (e.g. when only a
606 partial message has been received so far).
607
608 In the more complex case, you want to queue multiple callbacks. In this
609 case, AnyEvent::Handle will call the first queued callback each time new
610 data arrives (also the first time it is queued) and removes it when it has
611 done its job (see C<push_read>, below).
612
613 This way you can, for example, push three line-reads, followed by reading
614 a chunk of data, and AnyEvent::Handle will execute them in order.
615
616 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
617 the specified number of bytes which give an XML datagram.
618
619 # in the default state, expect some header bytes
620 $handle->on_read (sub {
621 # some data is here, now queue the length-header-read (4 octets)
622 shift->unshift_read (chunk => 4, sub {
623 # header arrived, decode
624 my $len = unpack "N", $_[1];
625
626 # now read the payload
627 shift->unshift_read (chunk => $len, sub {
628 my $xml = $_[1];
629 # handle xml
630 });
631 });
632 });
633
634 Example 2: Implement a client for a protocol that replies either with "OK"
635 and another line or "ERROR" for the first request that is sent, and 64
636 bytes for the second request. Due to the availability of a queue, we can
637 just pipeline sending both requests and manipulate the queue as necessary
638 in the callbacks.
639
640 When the first callback is called and sees an "OK" response, it will
641 C<unshift> another line-read. This line-read will be queued I<before> the
642 64-byte chunk callback.
643
644 # request one, returns either "OK + extra line" or "ERROR"
645 $handle->push_write ("request 1\015\012");
646
647 # we expect "ERROR" or "OK" as response, so push a line read
648 $handle->push_read (line => sub {
649 # if we got an "OK", we have to _prepend_ another line,
650 # so it will be read before the second request reads its 64 bytes
651 # which are already in the queue when this callback is called
652 # we don't do this in case we got an error
653 if ($_[1] eq "OK") {
654 $_[0]->unshift_read (line => sub {
655 my $response = $_[1];
656 ...
657 });
658 }
659 });
660
661 # request two, simply returns 64 octets
662 $handle->push_write ("request 2\015\012");
663
664 # simply read 64 bytes, always
665 $handle->push_read (chunk => 64, sub {
666 my $response = $_[1];
667 ...
668 });
669
670 =over 4
671
672 =cut
673
674 sub _drain_rbuf {
675 my ($self) = @_;
676
677 local $self->{_in_drain} = 1;
678
679 if (
680 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf}
682 ) {
683 return $self->_error (&Errno::ENOSPC, 1);
684 }
685
686 while () {
687 no strict 'refs';
688
689 my $len = length $self->{rbuf};
690
691 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) {
693 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last;
696 }
697
698 unshift @{ $self->{_queue} }, $cb;
699 last;
700 }
701 } elsif ($self->{on_read}) {
702 last unless $len;
703
704 $self->{on_read}($self);
705
706 if (
707 $len == length $self->{rbuf} # if no data has been consumed
708 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read
710 ) {
711 # no further data will arrive
712 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last
714 if $self->{_eof};
715
716 last; # more data might arrive
717 }
718 } else {
719 # read side becomes idle
720 delete $self->{_rw};
721 last;
722 }
723 }
724
725 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof};
727
728 # may need to restart read watcher
729 unless ($self->{_rw}) {
730 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} };
732 }
733 }
734
735 =item $handle->on_read ($cb)
736
737 This replaces the currently set C<on_read> callback, or clears it (when
738 the new callback is C<undef>). See the description of C<on_read> in the
739 constructor.
740
741 =cut
742
743 sub on_read {
744 my ($self, $cb) = @_;
745
746 $self->{on_read} = $cb;
747 $self->_drain_rbuf if $cb && !$self->{_in_drain};
748 }
749
750 =item $handle->rbuf
751
752 Returns the read buffer (as a modifiable lvalue).
753
754 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
755 you want.
756
757 NOTE: The read buffer should only be used or modified if the C<on_read>,
758 C<push_read> or C<unshift_read> methods are used. The other read methods
759 automatically manage the read buffer.
760
761 =cut
762
763 sub rbuf : lvalue {
764 $_[0]{rbuf}
765 }
766
767 =item $handle->push_read ($cb)
768
769 =item $handle->unshift_read ($cb)
770
771 Append the given callback to the end of the queue (C<push_read>) or
772 prepend it (C<unshift_read>).
773
774 The callback is called each time some additional read data arrives.
775
776 It must check whether enough data is in the read buffer already.
777
778 If not enough data is available, it must return the empty list or a false
779 value, in which case it will be called repeatedly until enough data is
780 available (or an error condition is detected).
781
782 If enough data was available, then the callback must remove all data it is
783 interested in (which can be none at all) and return a true value. After returning
784 true, it will be removed from the queue.
785
786 =cut
787
788 our %RH;
789
790 sub register_read_type($$) {
791 $RH{$_[0]} = $_[1];
792 }
793
794 sub push_read {
795 my $self = shift;
796 my $cb = pop;
797
798 if (@_) {
799 my $type = shift;
800
801 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
802 ->($self, $cb, @_);
803 }
804
805 push @{ $self->{_queue} }, $cb;
806 $self->_drain_rbuf unless $self->{_in_drain};
807 }
808
809 sub unshift_read {
810 my $self = shift;
811 my $cb = pop;
812
813 if (@_) {
814 my $type = shift;
815
816 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
817 ->($self, $cb, @_);
818 }
819
820
821 unshift @{ $self->{_queue} }, $cb;
822 $self->_drain_rbuf unless $self->{_in_drain};
823 }
824
825 =item $handle->push_read (type => @args, $cb)
826
827 =item $handle->unshift_read (type => @args, $cb)
828
829 Instead of providing a callback that parses the data itself you can chose
830 between a number of predefined parsing formats, for chunks of data, lines
831 etc.
832
833 Predefined types are (if you have ideas for additional types, feel free to
834 drop by and tell us):
835
836 =over 4
837
838 =item chunk => $octets, $cb->($handle, $data)
839
840 Invoke the callback only once C<$octets> bytes have been read. Pass the
841 data read to the callback. The callback will never be called with less
842 data.
843
844 Example: read 2 bytes.
845
846 $handle->push_read (chunk => 2, sub {
847 warn "yay ", unpack "H*", $_[1];
848 });
849
850 =cut
851
852 register_read_type chunk => sub {
853 my ($self, $cb, $len) = @_;
854
855 sub {
856 $len <= length $_[0]{rbuf} or return;
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1
859 }
860 };
861
862 # compatibility with older API
863 sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865 }
866
867 sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869 }
870
871 =item line => [$eol, ]$cb->($handle, $line, $eol)
872
873 The callback will be called only once a full line (including the end of
874 line marker, C<$eol>) has been read. This line (excluding the end of line
875 marker) will be passed to the callback as second argument (C<$line>), and
876 the end of line marker as the third argument (C<$eol>).
877
878 The end of line marker, C<$eol>, can be either a string, in which case it
879 will be interpreted as a fixed record end marker, or it can be a regex
880 object (e.g. created by C<qr>), in which case it is interpreted as a
881 regular expression.
882
883 The end of line marker argument C<$eol> is optional, if it is missing (NOT
884 undef), then C<qr|\015?\012|> is used (which is good for most internet
885 protocols).
886
887 Partial lines at the end of the stream will never be returned, as they are
888 not marked by the end of line marker.
889
890 =cut
891
892 register_read_type line => sub {
893 my ($self, $cb, $eol) = @_;
894
895 $eol = qr|(\015?\012)| if @_ < 3;
896 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s;
898
899 sub {
900 $_[0]{rbuf} =~ s/$eol// or return;
901
902 $cb->($_[0], $1, $2);
903 1
904 }
905 };
906
907 # compatibility with older API
908 sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911 }
912
913 sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916 }
917
918 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919
920 Makes a regex match against the regex object C<$accept> and returns
921 everything up to and including the match.
922
923 Example: read a single line terminated by '\n'.
924
925 $handle->push_read (regex => qr<\n>, sub { ... });
926
927 If C<$reject> is given and not undef, then it determines when the data is
928 to be rejected: it is matched against the data when the C<$accept> regex
929 does not match and generates an C<EBADMSG> error when it matches. This is
930 useful to quickly reject wrong data (to avoid waiting for a timeout or a
931 receive buffer overflow).
932
933 Example: expect a single decimal number followed by whitespace, reject
934 anything else (not the use of an anchor).
935
936 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
937
938 If C<$skip> is given and not C<undef>, then it will be matched against
939 the receive buffer when neither C<$accept> nor C<$reject> match,
940 and everything preceding and including the match will be accepted
941 unconditionally. This is useful to skip large amounts of data that you
942 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
943 have to start matching from the beginning. This is purely an optimisation
944 and is usually worth only when you expect more than a few kilobytes.
945
946 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
947 expect the header to be very large (it isn't in practise, but...), we use
948 a skip regex to skip initial portions. The skip regex is tricky in that
949 it only accepts something not ending in either \015 or \012, as these are
950 required for the accept regex.
951
952 $handle->push_read (regex =>
953 qr<\015\012\015\012>,
954 undef, # no reject
955 qr<^.*[^\015\012]>,
956 sub { ... });
957
958 =cut
959
960 register_read_type regex => sub {
961 my ($self, $cb, $accept, $reject, $skip) = @_;
962
963 my $data;
964 my $rbuf = \$self->{rbuf};
965
966 sub {
967 # accept
968 if ($$rbuf =~ $accept) {
969 $data .= substr $$rbuf, 0, $+[0], "";
970 $cb->($self, $data);
971 return 1;
972 }
973
974 # reject
975 if ($reject && $$rbuf =~ $reject) {
976 $self->_error (&Errno::EBADMSG);
977 }
978
979 # skip
980 if ($skip && $$rbuf =~ $skip) {
981 $data .= substr $$rbuf, 0, $+[0], "";
982 }
983
984 ()
985 }
986 };
987
988 =item netstring => $cb->($handle, $string)
989
990 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
991
992 Throws an error with C<$!> set to EBADMSG on format violations.
993
994 =cut
995
996 register_read_type netstring => sub {
997 my ($self, $cb) = @_;
998
999 sub {
1000 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1001 if ($_[0]{rbuf} =~ /[^0-9]/) {
1002 $self->_error (&Errno::EBADMSG);
1003 }
1004 return;
1005 }
1006
1007 my $len = $1;
1008
1009 $self->unshift_read (chunk => $len, sub {
1010 my $string = $_[1];
1011 $_[0]->unshift_read (chunk => 1, sub {
1012 if ($_[1] eq ",") {
1013 $cb->($_[0], $string);
1014 } else {
1015 $self->_error (&Errno::EBADMSG);
1016 }
1017 });
1018 });
1019
1020 1
1021 }
1022 };
1023
1024 =item packstring => $format, $cb->($handle, $string)
1025
1026 An octet string prefixed with an encoded length. The encoding C<$format>
1027 uses the same format as a Perl C<pack> format, but must specify a single
1028 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029 optional C<!>, C<< < >> or C<< > >> modifier).
1030
1031 DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1032
1033 Example: read a block of data prefixed by its length in BER-encoded
1034 format (very efficient).
1035
1036 $handle->push_read (packstring => "w", sub {
1037 my ($handle, $data) = @_;
1038 });
1039
1040 =cut
1041
1042 register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_;
1044
1045 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1048 or return;
1049
1050 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1052
1053 # read rest
1054 $_[0]->unshift_read (chunk => $len, $cb);
1055
1056 1
1057 }
1058 };
1059
1060 =item json => $cb->($handle, $hash_or_arrayref)
1061
1062 Reads a JSON object or array, decodes it and passes it to the callback.
1063
1064 If a C<json> object was passed to the constructor, then that will be used
1065 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066
1067 This read type uses the incremental parser available with JSON version
1068 2.09 (and JSON::XS version 2.2) and above. You have to provide a
1069 dependency on your own: this module will load the JSON module, but
1070 AnyEvent does not depend on it itself.
1071
1072 Since JSON texts are fully self-delimiting, the C<json> read and write
1073 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1074 the C<json> write type description, above, for an actual example.
1075
1076 =cut
1077
1078 register_read_type json => sub {
1079 my ($self, $cb) = @_;
1080
1081 require JSON;
1082
1083 my $data;
1084 my $rbuf = \$self->{rbuf};
1085
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf});
1090
1091 if ($ref) {
1092 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = "";
1094 $cb->($self, $ref);
1095
1096 1
1097 } else {
1098 $self->{rbuf} = "";
1099 ()
1100 }
1101 }
1102 };
1103
1104 =item storable => $cb->($handle, $ref)
1105
1106 Deserialises a L<Storable> frozen representation as written by the
1107 C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1108 data).
1109
1110 Raises C<EBADMSG> error if the data could not be decoded.
1111
1112 =cut
1113
1114 register_read_type storable => sub {
1115 my ($self, $cb) = @_;
1116
1117 require Storable;
1118
1119 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} })
1122 or return;
1123
1124 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), "";
1126
1127 # read rest
1128 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref);
1131 } else {
1132 $self->_error (&Errno::EBADMSG);
1133 }
1134 });
1135 }
1136 };
1137
1138 =back
1139
1140 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1141
1142 This function (not method) lets you add your own types to C<push_read>.
1143
1144 Whenever the given C<type> is used, C<push_read> will invoke the code
1145 reference with the handle object, the callback and the remaining
1146 arguments.
1147
1148 The code reference is supposed to return a callback (usually a closure)
1149 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1150
1151 It should invoke the passed callback when it is done reading (remember to
1152 pass C<$handle> as first argument as all other callbacks do that).
1153
1154 Note that this is a function, and all types registered this way will be
1155 global, so try to use unique names.
1156
1157 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1158 search for C<register_read_type>)).
1159
1160 =item $handle->stop_read
1161
1162 =item $handle->start_read
1163
1164 In rare cases you actually do not want to read anything from the
1165 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1166 any queued callbacks will be executed then. To start reading again, call
1167 C<start_read>.
1168
1169 Note that AnyEvent::Handle will automatically C<start_read> for you when
1170 you change the C<on_read> callback or push/unshift a read callback, and it
1171 will automatically C<stop_read> for you when neither C<on_read> is set nor
1172 there are any read requests in the queue.
1173
1174 =cut
1175
1176 sub stop_read {
1177 my ($self) = @_;
1178
1179 delete $self->{_rw};
1180 }
1181
1182 sub start_read {
1183 my ($self) = @_;
1184
1185 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self;
1187
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191
1192 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now;
1194
1195 $self->{filter_r}
1196 ? $self->{filter_r}($self, $rbuf)
1197 : $self->{_in_drain} || $self->_drain_rbuf;
1198
1199 } elsif (defined $len) {
1200 delete $self->{_rw};
1201 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain};
1203
1204 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1205 return $self->_error ($!, 1);
1206 }
1207 });
1208 }
1209 }
1210
1211 sub _dotls {
1212 my ($self) = @_;
1213
1214 my $buf;
1215
1216 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, "";
1219 }
1220 }
1221
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf;
1224 $self->_drain_wbuf;
1225 }
1226
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1228 if (length $buf) {
1229 $self->{rbuf} .= $buf;
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250 }
1251
1252 =item $handle->starttls ($tls[, $tls_ctx])
1253
1254 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1255 object is created, you can also do that at a later time by calling
1256 C<starttls>.
1257
1258 The first argument is the same as the C<tls> constructor argument (either
1259 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260
1261 The second argument is the optional C<Net::SSLeay::CTX> object that is
1262 used when AnyEvent::Handle has to create its own TLS connection object.
1263
1264 The TLS connection object will end up in C<< $handle->{tls} >> after this
1265 call and can be used or changed to your liking. Note that the handshake
1266 might have already started when this function returns.
1267
1268 =cut
1269
1270 sub starttls {
1271 my ($self, $ssl, $ctx) = @_;
1272
1273 $self->stoptls;
1274
1275 if ($ssl eq "accept") {
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1277 Net::SSLeay::set_accept_state ($ssl);
1278 } elsif ($ssl eq "connect") {
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1280 Net::SSLeay::set_connect_state ($ssl);
1281 }
1282
1283 $self->{tls} = $ssl;
1284
1285 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1290 Net::SSLeay::CTX_set_mode ($self->{tls},
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1293
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298
1299 $self->{filter_w} = sub {
1300 $_[0]{_tls_wbuf} .= ${$_[1]};
1301 &_dotls;
1302 };
1303 $self->{filter_r} = sub {
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307 }
1308
1309 =item $handle->stoptls
1310
1311 Destroys the SSL connection, if any. Partial read or write data will be
1312 lost.
1313
1314 =cut
1315
1316 sub stoptls {
1317 my ($self) = @_;
1318
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1320
1321 delete $self->{_rbio};
1322 delete $self->{_wbio};
1323 delete $self->{_tls_wbuf};
1324 delete $self->{filter_r};
1325 delete $self->{filter_w};
1326 }
1327
1328 sub DESTROY {
1329 my $self = shift;
1330
1331 $self->stoptls;
1332
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334
1335 if ($linger && length $self->{wbuf}) {
1336 my $fh = delete $self->{fh};
1337 my $wbuf = delete $self->{wbuf};
1338
1339 my @linger;
1340
1341 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1342 my $len = syswrite $fh, $wbuf, length $wbuf;
1343
1344 if ($len > 0) {
1345 substr $wbuf, 0, $len, "";
1346 } else {
1347 @linger = (); # end
1348 }
1349 });
1350 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1351 @linger = ();
1352 });
1353 }
1354 }
1355
1356 =item AnyEvent::Handle::TLS_CTX
1357
1358 This function creates and returns the Net::SSLeay::CTX object used by
1359 default for TLS mode.
1360
1361 The context is created like this:
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370
1371 =cut
1372
1373 our $TLS_CTX;
1374
1375 sub TLS_CTX() {
1376 $TLS_CTX || do {
1377 require Net::SSLeay;
1378
1379 Net::SSLeay::load_error_strings ();
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 }
1389 }
1390
1391 =back
1392
1393 =head1 SUBCLASSING AnyEvent::Handle
1394
1395 In many cases, you might want to subclass AnyEvent::Handle.
1396
1397 To make this easier, a given version of AnyEvent::Handle uses these
1398 conventions:
1399
1400 =over 4
1401
1402 =item * all constructor arguments become object members.
1403
1404 At least initially, when you pass a C<tls>-argument to the constructor it
1405 will end up in C<< $handle->{tls} >>. Those members might be changes or
1406 mutated later on (for example C<tls> will hold the TLS connection object).
1407
1408 =item * other object member names are prefixed with an C<_>.
1409
1410 All object members not explicitly documented (internal use) are prefixed
1411 with an underscore character, so the remaining non-C<_>-namespace is free
1412 for use for subclasses.
1413
1414 =item * all members not documented here and not prefixed with an underscore
1415 are free to use in subclasses.
1416
1417 Of course, new versions of AnyEvent::Handle may introduce more "public"
1418 member variables, but thats just life, at least it is documented.
1419
1420 =back
1421
1422 =head1 AUTHOR
1423
1424 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1425
1426 =cut
1427
1428 1; # End of AnyEvent::Handle