ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.64 by root, Fri Jun 6 11:01:17 2008 UTC vs.
Revision 1.179 by root, Wed Aug 12 15:50:44 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.15;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
121 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
126 211
127To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
128 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
129=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
130 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
131If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 237
136Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
140 243
141Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
142 245
143=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
144 247
148 251
149=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
150 253
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
154 257
155For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
159isn't finished). 262isn't finished).
160 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
161=item read_size => <bytes> 290=item read_size => <bytes>
162 291
163The default read block size (the amount of bytes this module will try to read 292The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 293try to read during each loop iteration, which affects memory
294requirements). Default: C<8192>.
165 295
166=item low_water_mark => <bytes> 296=item low_water_mark => <bytes>
167 297
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 298Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 299buffer: If the write reaches this size or gets even samller it is
170considered empty. 300considered empty.
171 301
302Sometimes it can be beneficial (for performance reasons) to add data to
303the write buffer before it is fully drained, but this is a rare case, as
304the operating system kernel usually buffers data as well, so the default
305is good in almost all cases.
306
172=item linger => <seconds> 307=item linger => <seconds>
173 308
174If non-zero (default: C<3600>), then the destructor of the 309If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 310AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 311write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 312socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 313system treats outstanding data at socket close time).
179 314
180This will not work for partial TLS data that could not yet been 315This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 316yet. This data will be lost. Calling the C<stoptls> method in time might
317help.
318
319=item peername => $string
320
321A string used to identify the remote site - usually the DNS hostname
322(I<not> IDN!) used to create the connection, rarely the IP address.
323
324Apart from being useful in error messages, this string is also used in TLS
325peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
326verification will be skipped when C<peername> is not specified or
327C<undef>.
182 328
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 329=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 330
185When this parameter is given, it enables TLS (SSL) mode, that means it 331When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 332AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 333established and will transparently encrypt/decrypt data afterwards.
334
335All TLS protocol errors will be signalled as C<EPROTO>, with an
336appropriate error message.
188 337
189TLS mode requires Net::SSLeay to be installed (it will be loaded 338TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 339automatically when you try to create a TLS handle): this module doesn't
340have a dependency on that module, so if your module requires it, you have
341to add the dependency yourself.
191 342
192For the TLS server side, use C<accept>, and for the TLS client side of a 343Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 344C<accept>, and for the TLS client side of a connection, use C<connect>
345mode.
194 346
195You can also provide your own TLS connection object, but you have 347You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 348to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 349or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 350AnyEvent::Handle. Also, this module will take ownership of this connection
351object.
199 352
353At some future point, AnyEvent::Handle might switch to another TLS
354implementation, then the option to use your own session object will go
355away.
356
357B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
358passing in the wrong integer will lead to certain crash. This most often
359happens when one uses a stylish C<< tls => 1 >> and is surprised about the
360segmentation fault.
361
200See the C<starttls> method if you need to start TLs negotiation later. 362See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 363
202=item tls_ctx => $ssl_ctx 364=item tls_ctx => $anyevent_tls
203 365
204Use the given Net::SSLeay::CTX object to create the new TLS connection 366Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 367(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 368missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 369
370Instead of an object, you can also specify a hash reference with C<< key
371=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
372new TLS context object.
373
374=item on_starttls => $cb->($handle, $success[, $error_message])
375
376This callback will be invoked when the TLS/SSL handshake has finished. If
377C<$success> is true, then the TLS handshake succeeded, otherwise it failed
378(C<on_stoptls> will not be called in this case).
379
380The session in C<< $handle->{tls} >> can still be examined in this
381callback, even when the handshake was not successful.
382
383TLS handshake failures will not cause C<on_error> to be invoked when this
384callback is in effect, instead, the error message will be passed to C<on_starttls>.
385
386Without this callback, handshake failures lead to C<on_error> being
387called, as normal.
388
389Note that you cannot call C<starttls> right again in this callback. If you
390need to do that, start an zero-second timer instead whose callback can
391then call C<< ->starttls >> again.
392
393=item on_stoptls => $cb->($handle)
394
395When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
396set, then it will be invoked after freeing the TLS session. If it is not,
397then a TLS shutdown condition will be treated like a normal EOF condition
398on the handle.
399
400The session in C<< $handle->{tls} >> can still be examined in this
401callback.
402
403This callback will only be called on TLS shutdowns, not when the
404underlying handle signals EOF.
405
208=item json => JSON or JSON::XS object 406=item json => JSON or JSON::XS object
209 407
210This is the json coder object used by the C<json> read and write types. 408This is the json coder object used by the C<json> read and write types.
211 409
212If you don't supply it, then AnyEvent::Handle will create and use a 410If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 411suitable one (on demand), which will write and expect UTF-8 encoded JSON
412texts.
214 413
215Note that you are responsible to depend on the JSON module if you want to 414Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 415use this functionality, as AnyEvent does not have a dependency itself.
217 416
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 417=back
225 418
226=cut 419=cut
227 420
228sub new { 421sub new {
229 my $class = shift; 422 my $class = shift;
230
231 my $self = bless { @_ }, $class; 423 my $self = bless { @_ }, $class;
232 424
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 425 if ($self->{fh}) {
426 $self->_start;
427 return unless $self->{fh}; # could be gone by now
428
429 } elsif ($self->{connect}) {
430 require AnyEvent::Socket;
431
432 $self->{peername} = $self->{connect}[0]
433 unless exists $self->{peername};
434
435 $self->{_skip_drain_rbuf} = 1;
436
437 {
438 Scalar::Util::weaken (my $self = $self);
439
440 $self->{_connect} =
441 AnyEvent::Socket::tcp_connect (
442 $self->{connect}[0],
443 $self->{connect}[1],
444 sub {
445 my ($fh, $host, $port, $retry) = @_;
446
447 if ($fh) {
448 $self->{fh} = $fh;
449
450 delete $self->{_skip_drain_rbuf};
451 $self->_start;
452
453 $self->{on_connect}
454 and $self->{on_connect}($self, $host, $port, sub {
455 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
456 $self->{_skip_drain_rbuf} = 1;
457 &$retry;
458 });
459
460 } else {
461 if ($self->{on_connect_error}) {
462 $self->{on_connect_error}($self, "$!");
463 $self->destroy;
464 } else {
465 $self->_error ($!, 1);
466 }
467 }
468 },
469 sub {
470 local $self->{fh} = $_[0];
471
472 $self->{on_prepare}
473 ? $self->{on_prepare}->($self)
474 : ()
475 }
476 );
477 }
478
479 } else {
480 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
481 }
482
483 $self
484}
485
486sub _start {
487 my ($self) = @_;
234 488
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 489 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 490
237 if ($self->{tls}) { 491 $self->{_activity} =
238 require Net::SSLeay; 492 $self->{_ractivity} =
493 $self->{_wactivity} = AE::now;
494
495 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
496 $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
497 $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
498
499 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
500
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 501 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 502 if $self->{tls};
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244 503
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 504 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 505
247 $self 506 $self->start_read
248} 507 if $self->{on_read} || @{ $self->{_queue} };
249 508
250sub _shutdown { 509 $self->_drain_wbuf;
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259} 510}
260 511
261sub _error { 512sub _error {
262 my ($self, $errno, $fatal) = @_; 513 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 514
267 $! = $errno; 515 $! = $errno;
516 $message ||= "$!";
268 517
269 if ($self->{on_error}) { 518 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 519 $self->{on_error}($self, $fatal, $message);
271 } else { 520 $self->destroy if $fatal;
521 } elsif ($self->{fh}) {
522 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 523 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 524 }
274} 525}
275 526
276=item $fh = $handle->fh 527=item $fh = $handle->fh
277 528
278This method returns the file handle of the L<AnyEvent::Handle> object. 529This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 530
280=cut 531=cut
281 532
282sub fh { $_[0]{fh} } 533sub fh { $_[0]{fh} }
283 534
301 $_[0]{on_eof} = $_[1]; 552 $_[0]{on_eof} = $_[1];
302} 553}
303 554
304=item $handle->on_timeout ($cb) 555=item $handle->on_timeout ($cb)
305 556
306Replace the current C<on_timeout> callback, or disables the callback 557=item $handle->on_rtimeout ($cb)
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309 558
310=cut 559=item $handle->on_wtimeout ($cb)
311 560
312sub on_timeout { 561Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
562callback, or disables the callback (but not the timeout) if C<$cb> =
563C<undef>. See the C<timeout> constructor argument and method.
564
565=cut
566
567# see below
568
569=item $handle->autocork ($boolean)
570
571Enables or disables the current autocork behaviour (see C<autocork>
572constructor argument). Changes will only take effect on the next write.
573
574=cut
575
576sub autocork {
577 $_[0]{autocork} = $_[1];
578}
579
580=item $handle->no_delay ($boolean)
581
582Enables or disables the C<no_delay> setting (see constructor argument of
583the same name for details).
584
585=cut
586
587sub no_delay {
588 $_[0]{no_delay} = $_[1];
589
590 eval {
591 local $SIG{__DIE__};
592 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
593 if $_[0]{fh};
594 };
595}
596
597=item $handle->on_starttls ($cb)
598
599Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_starttls} = $_[1];
605}
606
607=item $handle->on_stoptls ($cb)
608
609Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
610
611=cut
612
613sub on_starttls {
313 $_[0]{on_timeout} = $_[1]; 614 $_[0]{on_stoptls} = $_[1];
615}
616
617=item $handle->rbuf_max ($max_octets)
618
619Configures the C<rbuf_max> setting (C<undef> disables it).
620
621=cut
622
623sub rbuf_max {
624 $_[0]{rbuf_max} = $_[1];
314} 625}
315 626
316############################################################################# 627#############################################################################
317 628
318=item $handle->timeout ($seconds) 629=item $handle->timeout ($seconds)
319 630
631=item $handle->rtimeout ($seconds)
632
633=item $handle->wtimeout ($seconds)
634
320Configures (or disables) the inactivity timeout. 635Configures (or disables) the inactivity timeout.
321 636
322=cut 637=item $handle->timeout_reset
323 638
324sub timeout { 639=item $handle->rtimeout_reset
640
641=item $handle->wtimeout_reset
642
643Reset the activity timeout, as if data was received or sent.
644
645These methods are cheap to call.
646
647=cut
648
649for my $dir ("", "r", "w") {
650 my $timeout = "${dir}timeout";
651 my $tw = "_${dir}tw";
652 my $on_timeout = "on_${dir}timeout";
653 my $activity = "_${dir}activity";
654 my $cb;
655
656 *$on_timeout = sub {
657 $_[0]{$on_timeout} = $_[1];
658 };
659
660 *$timeout = sub {
325 my ($self, $timeout) = @_; 661 my ($self, $new_value) = @_;
326 662
327 $self->{timeout} = $timeout; 663 $self->{$timeout} = $new_value;
328 $self->_timeout; 664 delete $self->{$tw}; &$cb;
329} 665 };
330 666
667 *{"${dir}timeout_reset"} = sub {
668 $_[0]{$activity} = AE::now;
669 };
670
671 # main workhorse:
331# reset the timeout watcher, as neccessary 672 # reset the timeout watcher, as neccessary
332# also check for time-outs 673 # also check for time-outs
333sub _timeout { 674 $cb = sub {
334 my ($self) = @_; 675 my ($self) = @_;
335 676
336 if ($self->{timeout}) { 677 if ($self->{$timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 678 my $NOW = AE::now;
338 679
339 # when would the timeout trigger? 680 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 681 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
341 682
342 # now or in the past already? 683 # now or in the past already?
343 if ($after <= 0) { 684 if ($after <= 0) {
344 $self->{_activity} = $NOW; 685 $self->{$activity} = $NOW;
345 686
346 if ($self->{on_timeout}) { 687 if ($self->{$on_timeout}) {
347 $self->{on_timeout}($self); 688 $self->{$on_timeout}($self);
348 } else { 689 } else {
349 $self->_error (&Errno::ETIMEDOUT); 690 $self->_error (Errno::ETIMEDOUT);
691 }
692
693 # callback could have changed timeout value, optimise
694 return unless $self->{$timeout};
695
696 # calculate new after
697 $after = $self->{$timeout};
350 } 698 }
351 699
352 # callback could have changed timeout value, optimise 700 Scalar::Util::weaken $self;
353 return unless $self->{timeout}; 701 return unless $self; # ->error could have destroyed $self
354 702
355 # calculate new after 703 $self->{$tw} ||= AE::timer $after, 0, sub {
356 $after = $self->{timeout}; 704 delete $self->{$tw};
705 $cb->($self);
706 };
707 } else {
708 delete $self->{$tw};
357 } 709 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 } 710 }
369} 711}
370 712
371############################################################################# 713#############################################################################
372 714
396 my ($self, $cb) = @_; 738 my ($self, $cb) = @_;
397 739
398 $self->{on_drain} = $cb; 740 $self->{on_drain} = $cb;
399 741
400 $cb->($self) 742 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 743 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 744}
403 745
404=item $handle->push_write ($data) 746=item $handle->push_write ($data)
405 747
406Queues the given scalar to be written. You can push as much data as you 748Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 759 Scalar::Util::weaken $self;
418 760
419 my $cb = sub { 761 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 762 my $len = syswrite $self->{fh}, $self->{wbuf};
421 763
422 if ($len >= 0) { 764 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 765 substr $self->{wbuf}, 0, $len, "";
424 766
425 $self->{_activity} = AnyEvent->now; 767 $self->{_activity} = $self->{_wactivity} = AE::now;
426 768
427 $self->{on_drain}($self) 769 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 770 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 771 && $self->{on_drain};
430 772
431 delete $self->{_ww} unless length $self->{wbuf}; 773 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 774 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 775 $self->_error ($!, 1);
434 } 776 }
435 }; 777 };
436 778
437 # try to write data immediately 779 # try to write data immediately
438 $cb->(); 780 $cb->() unless $self->{autocork};
439 781
440 # if still data left in wbuf, we need to poll 782 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 783 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 784 if length $self->{wbuf};
443 }; 785 };
444} 786}
445 787
446our %WH; 788our %WH;
457 799
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 800 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 801 ->($self, @_);
460 } 802 }
461 803
462 if ($self->{filter_w}) { 804 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 805 $self->{_tls_wbuf} .= $_[0];
806 &_dotls ($self) if $self->{fh};
464 } else { 807 } else {
465 $self->{wbuf} .= $_[0]; 808 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 809 $self->_drain_wbuf if $self->{fh};
467 } 810 }
468} 811}
469 812
470=item $handle->push_write (type => @args) 813=item $handle->push_write (type => @args)
471 814
485=cut 828=cut
486 829
487register_write_type netstring => sub { 830register_write_type netstring => sub {
488 my ($self, $string) = @_; 831 my ($self, $string) = @_;
489 832
490 sprintf "%d:%s,", (length $string), $string 833 (length $string) . ":$string,"
491}; 834};
492 835
493=item packstring => $format, $data 836=item packstring => $format, $data
494 837
495An octet string prefixed with an encoded length. The encoding C<$format> 838An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 843=cut
501 844
502register_write_type packstring => sub { 845register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 846 my ($self, $format, $string) = @_;
504 847
505 pack "$format/a", $string 848 pack "$format/a*", $string
506}; 849};
507 850
508=item json => $array_or_hashref 851=item json => $array_or_hashref
509 852
510Encodes the given hash or array reference into a JSON object. Unless you 853Encodes the given hash or array reference into a JSON object. Unless you
535Other languages could read single lines terminated by a newline and pass 878Other languages could read single lines terminated by a newline and pass
536this line into their JSON decoder of choice. 879this line into their JSON decoder of choice.
537 880
538=cut 881=cut
539 882
883sub json_coder() {
884 eval { require JSON::XS; JSON::XS->new->utf8 }
885 || do { require JSON; JSON->new->utf8 }
886}
887
540register_write_type json => sub { 888register_write_type json => sub {
541 my ($self, $ref) = @_; 889 my ($self, $ref) = @_;
542 890
543 require JSON; 891 my $json = $self->{json} ||= json_coder;
544 892
545 $self->{json} ? $self->{json}->encode ($ref) 893 $json->encode ($ref)
546 : JSON::encode_json ($ref)
547}; 894};
548 895
549=item storable => $reference 896=item storable => $reference
550 897
551Freezes the given reference using L<Storable> and writes it to the 898Freezes the given reference using L<Storable> and writes it to the
556register_write_type storable => sub { 903register_write_type storable => sub {
557 my ($self, $ref) = @_; 904 my ($self, $ref) = @_;
558 905
559 require Storable; 906 require Storable;
560 907
561 pack "w/a", Storable::nfreeze ($ref) 908 pack "w/a*", Storable::nfreeze ($ref)
562}; 909};
563 910
564=back 911=back
912
913=item $handle->push_shutdown
914
915Sometimes you know you want to close the socket after writing your data
916before it was actually written. One way to do that is to replace your
917C<on_drain> handler by a callback that shuts down the socket (and set
918C<low_water_mark> to C<0>). This method is a shorthand for just that, and
919replaces the C<on_drain> callback with:
920
921 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
922
923This simply shuts down the write side and signals an EOF condition to the
924the peer.
925
926You can rely on the normal read queue and C<on_eof> handling
927afterwards. This is the cleanest way to close a connection.
928
929=cut
930
931sub push_shutdown {
932 my ($self) = @_;
933
934 delete $self->{low_water_mark};
935 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
936}
565 937
566=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 938=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
567 939
568This function (not method) lets you add your own types to C<push_write>. 940This function (not method) lets you add your own types to C<push_write>.
569Whenever the given C<type> is used, C<push_write> will invoke the code 941Whenever the given C<type> is used, C<push_write> will invoke the code
590ways, the "simple" way, using only C<on_read> and the "complex" way, using 962ways, the "simple" way, using only C<on_read> and the "complex" way, using
591a queue. 963a queue.
592 964
593In the simple case, you just install an C<on_read> callback and whenever 965In the simple case, you just install an C<on_read> callback and whenever
594new data arrives, it will be called. You can then remove some data (if 966new data arrives, it will be called. You can then remove some data (if
595enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 967enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
596or not. 968leave the data there if you want to accumulate more (e.g. when only a
969partial message has been received so far).
597 970
598In the more complex case, you want to queue multiple callbacks. In this 971In the more complex case, you want to queue multiple callbacks. In this
599case, AnyEvent::Handle will call the first queued callback each time new 972case, AnyEvent::Handle will call the first queued callback each time new
600data arrives (also the first time it is queued) and removes it when it has 973data arrives (also the first time it is queued) and removes it when it has
601done its job (see C<push_read>, below). 974done its job (see C<push_read>, below).
619 # handle xml 992 # handle xml
620 }); 993 });
621 }); 994 });
622 }); 995 });
623 996
624Example 2: Implement a client for a protocol that replies either with 997Example 2: Implement a client for a protocol that replies either with "OK"
625"OK" and another line or "ERROR" for one request, and 64 bytes for the 998and another line or "ERROR" for the first request that is sent, and 64
626second request. Due tot he availability of a full queue, we can just 999bytes for the second request. Due to the availability of a queue, we can
627pipeline sending both requests and manipulate the queue as necessary in 1000just pipeline sending both requests and manipulate the queue as necessary
628the callbacks: 1001in the callbacks.
629 1002
630 # request one 1003When the first callback is called and sees an "OK" response, it will
1004C<unshift> another line-read. This line-read will be queued I<before> the
100564-byte chunk callback.
1006
1007 # request one, returns either "OK + extra line" or "ERROR"
631 $handle->push_write ("request 1\015\012"); 1008 $handle->push_write ("request 1\015\012");
632 1009
633 # we expect "ERROR" or "OK" as response, so push a line read 1010 # we expect "ERROR" or "OK" as response, so push a line read
634 $handle->push_read (line => sub { 1011 $handle->push_read (line => sub {
635 # if we got an "OK", we have to _prepend_ another line, 1012 # if we got an "OK", we have to _prepend_ another line,
642 ... 1019 ...
643 }); 1020 });
644 } 1021 }
645 }); 1022 });
646 1023
647 # request two 1024 # request two, simply returns 64 octets
648 $handle->push_write ("request 2\015\012"); 1025 $handle->push_write ("request 2\015\012");
649 1026
650 # simply read 64 bytes, always 1027 # simply read 64 bytes, always
651 $handle->push_read (chunk => 64, sub { 1028 $handle->push_read (chunk => 64, sub {
652 my $response = $_[1]; 1029 my $response = $_[1];
658=cut 1035=cut
659 1036
660sub _drain_rbuf { 1037sub _drain_rbuf {
661 my ($self) = @_; 1038 my ($self) = @_;
662 1039
1040 # avoid recursion
1041 return if $self->{_skip_drain_rbuf};
663 local $self->{_in_drain} = 1; 1042 local $self->{_skip_drain_rbuf} = 1;
664
665 if (
666 defined $self->{rbuf_max}
667 && $self->{rbuf_max} < length $self->{rbuf}
668 ) {
669 return $self->_error (&Errno::ENOSPC, 1);
670 }
671 1043
672 while () { 1044 while () {
673 no strict 'refs'; 1045 # we need to use a separate tls read buffer, as we must not receive data while
1046 # we are draining the buffer, and this can only happen with TLS.
1047 $self->{rbuf} .= delete $self->{_tls_rbuf}
1048 if exists $self->{_tls_rbuf};
674 1049
675 my $len = length $self->{rbuf}; 1050 my $len = length $self->{rbuf};
676 1051
677 if (my $cb = shift @{ $self->{_queue} }) { 1052 if (my $cb = shift @{ $self->{_queue} }) {
678 unless ($cb->($self)) { 1053 unless ($cb->($self)) {
679 if ($self->{_eof}) { 1054 # no progress can be made
680 # no progress can be made (not enough data and no data forthcoming) 1055 # (not enough data and no data forthcoming)
681 $self->_error (&Errno::EPIPE, 1), last; 1056 $self->_error (Errno::EPIPE, 1), return
682 } 1057 if $self->{_eof};
683 1058
684 unshift @{ $self->{_queue} }, $cb; 1059 unshift @{ $self->{_queue} }, $cb;
685 last; 1060 last;
686 } 1061 }
687 } elsif ($self->{on_read}) { 1062 } elsif ($self->{on_read}) {
694 && !@{ $self->{_queue} } # and the queue is still empty 1069 && !@{ $self->{_queue} } # and the queue is still empty
695 && $self->{on_read} # but we still have on_read 1070 && $self->{on_read} # but we still have on_read
696 ) { 1071 ) {
697 # no further data will arrive 1072 # no further data will arrive
698 # so no progress can be made 1073 # so no progress can be made
699 $self->_error (&Errno::EPIPE, 1), last 1074 $self->_error (Errno::EPIPE, 1), return
700 if $self->{_eof}; 1075 if $self->{_eof};
701 1076
702 last; # more data might arrive 1077 last; # more data might arrive
703 } 1078 }
704 } else { 1079 } else {
705 # read side becomes idle 1080 # read side becomes idle
706 delete $self->{_rw}; 1081 delete $self->{_rw} unless $self->{tls};
707 last; 1082 last;
708 } 1083 }
709 } 1084 }
710 1085
1086 if ($self->{_eof}) {
1087 $self->{on_eof}
711 $self->{on_eof}($self) 1088 ? $self->{on_eof}($self)
712 if $self->{_eof} && $self->{on_eof}; 1089 : $self->_error (0, 1, "Unexpected end-of-file");
1090
1091 return;
1092 }
1093
1094 if (
1095 defined $self->{rbuf_max}
1096 && $self->{rbuf_max} < length $self->{rbuf}
1097 ) {
1098 $self->_error (Errno::ENOSPC, 1), return;
1099 }
713 1100
714 # may need to restart read watcher 1101 # may need to restart read watcher
715 unless ($self->{_rw}) { 1102 unless ($self->{_rw}) {
716 $self->start_read 1103 $self->start_read
717 if $self->{on_read} || @{ $self->{_queue} }; 1104 if $self->{on_read} || @{ $self->{_queue} };
728 1115
729sub on_read { 1116sub on_read {
730 my ($self, $cb) = @_; 1117 my ($self, $cb) = @_;
731 1118
732 $self->{on_read} = $cb; 1119 $self->{on_read} = $cb;
733 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1120 $self->_drain_rbuf if $cb;
734} 1121}
735 1122
736=item $handle->rbuf 1123=item $handle->rbuf
737 1124
738Returns the read buffer (as a modifiable lvalue). 1125Returns the read buffer (as a modifiable lvalue).
739 1126
740You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1127You can access the read buffer directly as the C<< ->{rbuf} >>
741you want. 1128member, if you want. However, the only operation allowed on the
1129read buffer (apart from looking at it) is removing data from its
1130beginning. Otherwise modifying or appending to it is not allowed and will
1131lead to hard-to-track-down bugs.
742 1132
743NOTE: The read buffer should only be used or modified if the C<on_read>, 1133NOTE: The read buffer should only be used or modified if the C<on_read>,
744C<push_read> or C<unshift_read> methods are used. The other read methods 1134C<push_read> or C<unshift_read> methods are used. The other read methods
745automatically manage the read buffer. 1135automatically manage the read buffer.
746 1136
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1177 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
788 ->($self, $cb, @_); 1178 ->($self, $cb, @_);
789 } 1179 }
790 1180
791 push @{ $self->{_queue} }, $cb; 1181 push @{ $self->{_queue} }, $cb;
792 $self->_drain_rbuf unless $self->{_in_drain}; 1182 $self->_drain_rbuf;
793} 1183}
794 1184
795sub unshift_read { 1185sub unshift_read {
796 my $self = shift; 1186 my $self = shift;
797 my $cb = pop; 1187 my $cb = pop;
803 ->($self, $cb, @_); 1193 ->($self, $cb, @_);
804 } 1194 }
805 1195
806 1196
807 unshift @{ $self->{_queue} }, $cb; 1197 unshift @{ $self->{_queue} }, $cb;
808 $self->_drain_rbuf unless $self->{_in_drain}; 1198 $self->_drain_rbuf;
809} 1199}
810 1200
811=item $handle->push_read (type => @args, $cb) 1201=item $handle->push_read (type => @args, $cb)
812 1202
813=item $handle->unshift_read (type => @args, $cb) 1203=item $handle->unshift_read (type => @args, $cb)
843 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1233 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 1 1234 1
845 } 1235 }
846}; 1236};
847 1237
848# compatibility with older API
849sub push_read_chunk {
850 $_[0]->push_read (chunk => $_[1], $_[2]);
851}
852
853sub unshift_read_chunk {
854 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855}
856
857=item line => [$eol, ]$cb->($handle, $line, $eol) 1238=item line => [$eol, ]$cb->($handle, $line, $eol)
858 1239
859The callback will be called only once a full line (including the end of 1240The callback will be called only once a full line (including the end of
860line marker, C<$eol>) has been read. This line (excluding the end of line 1241line marker, C<$eol>) has been read. This line (excluding the end of line
861marker) will be passed to the callback as second argument (C<$line>), and 1242marker) will be passed to the callback as second argument (C<$line>), and
876=cut 1257=cut
877 1258
878register_read_type line => sub { 1259register_read_type line => sub {
879 my ($self, $cb, $eol) = @_; 1260 my ($self, $cb, $eol) = @_;
880 1261
881 $eol = qr|(\015?\012)| if @_ < 3; 1262 if (@_ < 3) {
1263 # this is more than twice as fast as the generic code below
1264 sub {
1265 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1266
1267 $cb->($_[0], $1, $2);
1268 1
1269 }
1270 } else {
882 $eol = quotemeta $eol unless ref $eol; 1271 $eol = quotemeta $eol unless ref $eol;
883 $eol = qr|^(.*?)($eol)|s; 1272 $eol = qr|^(.*?)($eol)|s;
884 1273
885 sub { 1274 sub {
886 $_[0]{rbuf} =~ s/$eol// or return; 1275 $_[0]{rbuf} =~ s/$eol// or return;
887 1276
888 $cb->($_[0], $1, $2); 1277 $cb->($_[0], $1, $2);
1278 1
889 1 1279 }
890 } 1280 }
891}; 1281};
892
893# compatibility with older API
894sub push_read_line {
895 my $self = shift;
896 $self->push_read (line => @_);
897}
898
899sub unshift_read_line {
900 my $self = shift;
901 $self->unshift_read (line => @_);
902}
903 1282
904=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1283=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905 1284
906Makes a regex match against the regex object C<$accept> and returns 1285Makes a regex match against the regex object C<$accept> and returns
907everything up to and including the match. 1286everything up to and including the match.
957 return 1; 1336 return 1;
958 } 1337 }
959 1338
960 # reject 1339 # reject
961 if ($reject && $$rbuf =~ $reject) { 1340 if ($reject && $$rbuf =~ $reject) {
962 $self->_error (&Errno::EBADMSG); 1341 $self->_error (Errno::EBADMSG);
963 } 1342 }
964 1343
965 # skip 1344 # skip
966 if ($skip && $$rbuf =~ $skip) { 1345 if ($skip && $$rbuf =~ $skip) {
967 $data .= substr $$rbuf, 0, $+[0], ""; 1346 $data .= substr $$rbuf, 0, $+[0], "";
983 my ($self, $cb) = @_; 1362 my ($self, $cb) = @_;
984 1363
985 sub { 1364 sub {
986 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1365 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987 if ($_[0]{rbuf} =~ /[^0-9]/) { 1366 if ($_[0]{rbuf} =~ /[^0-9]/) {
988 $self->_error (&Errno::EBADMSG); 1367 $self->_error (Errno::EBADMSG);
989 } 1368 }
990 return; 1369 return;
991 } 1370 }
992 1371
993 my $len = $1; 1372 my $len = $1;
996 my $string = $_[1]; 1375 my $string = $_[1];
997 $_[0]->unshift_read (chunk => 1, sub { 1376 $_[0]->unshift_read (chunk => 1, sub {
998 if ($_[1] eq ",") { 1377 if ($_[1] eq ",") {
999 $cb->($_[0], $string); 1378 $cb->($_[0], $string);
1000 } else { 1379 } else {
1001 $self->_error (&Errno::EBADMSG); 1380 $self->_error (Errno::EBADMSG);
1002 } 1381 }
1003 }); 1382 });
1004 }); 1383 });
1005 1384
1006 1 1385 1
1012An octet string prefixed with an encoded length. The encoding C<$format> 1391An octet string prefixed with an encoded length. The encoding C<$format>
1013uses the same format as a Perl C<pack> format, but must specify a single 1392uses the same format as a Perl C<pack> format, but must specify a single
1014integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1393integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015optional C<!>, C<< < >> or C<< > >> modifier). 1394optional C<!>, C<< < >> or C<< > >> modifier).
1016 1395
1017DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1396For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1397EPP uses a prefix of C<N> (4 octtes).
1018 1398
1019Example: read a block of data prefixed by its length in BER-encoded 1399Example: read a block of data prefixed by its length in BER-encoded
1020format (very efficient). 1400format (very efficient).
1021 1401
1022 $handle->push_read (packstring => "w", sub { 1402 $handle->push_read (packstring => "w", sub {
1028register_read_type packstring => sub { 1408register_read_type packstring => sub {
1029 my ($self, $cb, $format) = @_; 1409 my ($self, $cb, $format) = @_;
1030 1410
1031 sub { 1411 sub {
1032 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1412 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1413 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1034 or return; 1414 or return;
1035 1415
1416 $format = length pack $format, $len;
1417
1418 # bypass unshift if we already have the remaining chunk
1419 if ($format + $len <= length $_[0]{rbuf}) {
1420 my $data = substr $_[0]{rbuf}, $format, $len;
1421 substr $_[0]{rbuf}, 0, $format + $len, "";
1422 $cb->($_[0], $data);
1423 } else {
1036 # remove prefix 1424 # remove prefix
1037 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1425 substr $_[0]{rbuf}, 0, $format, "";
1038 1426
1039 # read rest 1427 # read remaining chunk
1040 $_[0]->unshift_read (chunk => $len, $cb); 1428 $_[0]->unshift_read (chunk => $len, $cb);
1429 }
1041 1430
1042 1 1431 1
1043 } 1432 }
1044}; 1433};
1045 1434
1046=item json => $cb->($handle, $hash_or_arrayref) 1435=item json => $cb->($handle, $hash_or_arrayref)
1047 1436
1048Reads a JSON object or array, decodes it and passes it to the callback. 1437Reads a JSON object or array, decodes it and passes it to the
1438callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1049 1439
1050If a C<json> object was passed to the constructor, then that will be used 1440If a C<json> object was passed to the constructor, then that will be used
1051for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1441for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052 1442
1053This read type uses the incremental parser available with JSON version 1443This read type uses the incremental parser available with JSON version
1062=cut 1452=cut
1063 1453
1064register_read_type json => sub { 1454register_read_type json => sub {
1065 my ($self, $cb) = @_; 1455 my ($self, $cb) = @_;
1066 1456
1067 require JSON; 1457 my $json = $self->{json} ||= json_coder;
1068 1458
1069 my $data; 1459 my $data;
1070 my $rbuf = \$self->{rbuf}; 1460 my $rbuf = \$self->{rbuf};
1071 1461
1072 my $json = $self->{json} ||= JSON->new->utf8;
1073
1074 sub { 1462 sub {
1075 my $ref = $json->incr_parse ($self->{rbuf}); 1463 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1076 1464
1077 if ($ref) { 1465 if ($ref) {
1078 $self->{rbuf} = $json->incr_text; 1466 $self->{rbuf} = $json->incr_text;
1079 $json->incr_text = ""; 1467 $json->incr_text = "";
1080 $cb->($self, $ref); 1468 $cb->($self, $ref);
1081 1469
1082 1 1470 1
1471 } elsif ($@) {
1472 # error case
1473 $json->incr_skip;
1474
1475 $self->{rbuf} = $json->incr_text;
1476 $json->incr_text = "";
1477
1478 $self->_error (Errno::EBADMSG);
1479
1480 ()
1083 } else { 1481 } else {
1084 $self->{rbuf} = ""; 1482 $self->{rbuf} = "";
1483
1085 () 1484 ()
1086 } 1485 }
1087 } 1486 }
1088}; 1487};
1089 1488
1102 1501
1103 require Storable; 1502 require Storable;
1104 1503
1105 sub { 1504 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1505 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1506 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1108 or return; 1507 or return;
1109 1508
1509 my $format = length pack "w", $len;
1510
1511 # bypass unshift if we already have the remaining chunk
1512 if ($format + $len <= length $_[0]{rbuf}) {
1513 my $data = substr $_[0]{rbuf}, $format, $len;
1514 substr $_[0]{rbuf}, 0, $format + $len, "";
1515 $cb->($_[0], Storable::thaw ($data));
1516 } else {
1110 # remove prefix 1517 # remove prefix
1111 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1518 substr $_[0]{rbuf}, 0, $format, "";
1112 1519
1113 # read rest 1520 # read remaining chunk
1114 $_[0]->unshift_read (chunk => $len, sub { 1521 $_[0]->unshift_read (chunk => $len, sub {
1115 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1522 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116 $cb->($_[0], $ref); 1523 $cb->($_[0], $ref);
1117 } else { 1524 } else {
1118 $self->_error (&Errno::EBADMSG); 1525 $self->_error (Errno::EBADMSG);
1526 }
1119 } 1527 });
1120 }); 1528 }
1529
1530 1
1121 } 1531 }
1122}; 1532};
1123 1533
1124=back 1534=back
1125 1535
1155Note that AnyEvent::Handle will automatically C<start_read> for you when 1565Note that AnyEvent::Handle will automatically C<start_read> for you when
1156you change the C<on_read> callback or push/unshift a read callback, and it 1566you change the C<on_read> callback or push/unshift a read callback, and it
1157will automatically C<stop_read> for you when neither C<on_read> is set nor 1567will automatically C<stop_read> for you when neither C<on_read> is set nor
1158there are any read requests in the queue. 1568there are any read requests in the queue.
1159 1569
1570These methods will have no effect when in TLS mode (as TLS doesn't support
1571half-duplex connections).
1572
1160=cut 1573=cut
1161 1574
1162sub stop_read { 1575sub stop_read {
1163 my ($self) = @_; 1576 my ($self) = @_;
1164 1577
1165 delete $self->{_rw}; 1578 delete $self->{_rw} unless $self->{tls};
1166} 1579}
1167 1580
1168sub start_read { 1581sub start_read {
1169 my ($self) = @_; 1582 my ($self) = @_;
1170 1583
1171 unless ($self->{_rw} || $self->{_eof}) { 1584 unless ($self->{_rw} || $self->{_eof}) {
1172 Scalar::Util::weaken $self; 1585 Scalar::Util::weaken $self;
1173 1586
1174 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1587 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1175 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1588 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1176 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1589 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1177 1590
1178 if ($len > 0) { 1591 if ($len > 0) {
1179 $self->{_activity} = AnyEvent->now; 1592 $self->{_activity} = $self->{_ractivity} = AE::now;
1180 1593
1181 $self->{filter_r} 1594 if ($self->{tls}) {
1182 ? $self->{filter_r}($self, $rbuf) 1595 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1183 : $self->{_in_drain} || $self->_drain_rbuf; 1596
1597 &_dotls ($self);
1598 } else {
1599 $self->_drain_rbuf;
1600 }
1184 1601
1185 } elsif (defined $len) { 1602 } elsif (defined $len) {
1186 delete $self->{_rw}; 1603 delete $self->{_rw};
1187 $self->{_eof} = 1; 1604 $self->{_eof} = 1;
1188 $self->_drain_rbuf unless $self->{_in_drain}; 1605 $self->_drain_rbuf;
1189 1606
1190 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1607 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1191 return $self->_error ($!, 1); 1608 return $self->_error ($!, 1);
1192 } 1609 }
1193 }); 1610 };
1194 } 1611 }
1195} 1612}
1196 1613
1614our $ERROR_SYSCALL;
1615our $ERROR_WANT_READ;
1616
1617sub _tls_error {
1618 my ($self, $err) = @_;
1619
1620 return $self->_error ($!, 1)
1621 if $err == Net::SSLeay::ERROR_SYSCALL ();
1622
1623 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1624
1625 # reduce error string to look less scary
1626 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1627
1628 if ($self->{_on_starttls}) {
1629 (delete $self->{_on_starttls})->($self, undef, $err);
1630 &_freetls;
1631 } else {
1632 &_freetls;
1633 $self->_error (Errno::EPROTO, 1, $err);
1634 }
1635}
1636
1637# poll the write BIO and send the data if applicable
1638# also decode read data if possible
1639# this is basiclaly our TLS state machine
1640# more efficient implementations are possible with openssl,
1641# but not with the buggy and incomplete Net::SSLeay.
1197sub _dotls { 1642sub _dotls {
1198 my ($self) = @_; 1643 my ($self) = @_;
1199 1644
1200 my $buf; 1645 my $tmp;
1201 1646
1202 if (length $self->{_tls_wbuf}) { 1647 if (length $self->{_tls_wbuf}) {
1203 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1648 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204 substr $self->{_tls_wbuf}, 0, $len, ""; 1649 substr $self->{_tls_wbuf}, 0, $tmp, "";
1205 } 1650 }
1206 }
1207 1651
1652 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1653 return $self->_tls_error ($tmp)
1654 if $tmp != $ERROR_WANT_READ
1655 && ($tmp != $ERROR_SYSCALL || $!);
1656 }
1657
1658 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1659 unless (length $tmp) {
1660 $self->{_on_starttls}
1661 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1662 &_freetls;
1663
1664 if ($self->{on_stoptls}) {
1665 $self->{on_stoptls}($self);
1666 return;
1667 } else {
1668 # let's treat SSL-eof as we treat normal EOF
1669 delete $self->{_rw};
1670 $self->{_eof} = 1;
1671 }
1672 }
1673
1674 $self->{_tls_rbuf} .= $tmp;
1675 $self->_drain_rbuf;
1676 $self->{tls} or return; # tls session might have gone away in callback
1677 }
1678
1679 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1680 return $self->_tls_error ($tmp)
1681 if $tmp != $ERROR_WANT_READ
1682 && ($tmp != $ERROR_SYSCALL || $!);
1683
1208 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1684 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 $self->{wbuf} .= $buf; 1685 $self->{wbuf} .= $tmp;
1210 $self->_drain_wbuf; 1686 $self->_drain_wbuf;
1211 } 1687 }
1212 1688
1213 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1689 $self->{_on_starttls}
1214 if (length $buf) { 1690 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1215 $self->{rbuf} .= $buf; 1691 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1216 $self->_drain_rbuf unless $self->{_in_drain};
1217 } else {
1218 # let's treat SSL-eof as we treat normal EOF
1219 $self->{_eof} = 1;
1220 $self->_shutdown;
1221 return;
1222 }
1223 }
1224
1225 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226
1227 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 return $self->_error ($!, 1);
1230 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 return $self->_error (&Errno::EIO, 1);
1232 }
1233
1234 # all others are fine for our purposes
1235 }
1236} 1692}
1237 1693
1238=item $handle->starttls ($tls[, $tls_ctx]) 1694=item $handle->starttls ($tls[, $tls_ctx])
1239 1695
1240Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1696Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241object is created, you can also do that at a later time by calling 1697object is created, you can also do that at a later time by calling
1242C<starttls>. 1698C<starttls>.
1243 1699
1700Starting TLS is currently an asynchronous operation - when you push some
1701write data and then call C<< ->starttls >> then TLS negotiation will start
1702immediately, after which the queued write data is then sent.
1703
1244The first argument is the same as the C<tls> constructor argument (either 1704The first argument is the same as the C<tls> constructor argument (either
1245C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1705C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246 1706
1247The second argument is the optional C<Net::SSLeay::CTX> object that is 1707The second argument is the optional C<AnyEvent::TLS> object that is used
1248used when AnyEvent::Handle has to create its own TLS connection object. 1708when AnyEvent::Handle has to create its own TLS connection object, or
1709a hash reference with C<< key => value >> pairs that will be used to
1710construct a new context.
1249 1711
1250The TLS connection object will end up in C<< $handle->{tls} >> after this 1712The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1251call and can be used or changed to your liking. Note that the handshake 1713context in C<< $handle->{tls_ctx} >> after this call and can be used or
1252might have already started when this function returns. 1714changed to your liking. Note that the handshake might have already started
1715when this function returns.
1253 1716
1717Due to bugs in OpenSSL, it might or might not be possible to do multiple
1718handshakes on the same stream. Best do not attempt to use the stream after
1719stopping TLS.
1720
1254=cut 1721=cut
1722
1723our %TLS_CACHE; #TODO not yet documented, should we?
1255 1724
1256sub starttls { 1725sub starttls {
1257 my ($self, $ssl, $ctx) = @_; 1726 my ($self, $tls, $ctx) = @_;
1258 1727
1259 $self->stoptls; 1728 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1729 if $self->{tls};
1260 1730
1261 if ($ssl eq "accept") { 1731 $self->{tls} = $tls;
1262 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1732 $self->{tls_ctx} = $ctx if @_ > 2;
1263 Net::SSLeay::set_accept_state ($ssl); 1733
1264 } elsif ($ssl eq "connect") { 1734 return unless $self->{fh};
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1735
1266 Net::SSLeay::set_connect_state ($ssl); 1736 require Net::SSLeay;
1737
1738 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1739 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1740
1741 $tls = $self->{tls};
1742 $ctx = $self->{tls_ctx};
1743
1744 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1745
1746 if ("HASH" eq ref $ctx) {
1747 require AnyEvent::TLS;
1748
1749 if ($ctx->{cache}) {
1750 my $key = $ctx+0;
1751 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1752 } else {
1753 $ctx = new AnyEvent::TLS %$ctx;
1754 }
1755 }
1267 } 1756
1268 1757 $self->{tls_ctx} = $ctx || TLS_CTX ();
1269 $self->{tls} = $ssl; 1758 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1270 1759
1271 # basically, this is deep magic (because SSL_read should have the same issues) 1760 # basically, this is deep magic (because SSL_read should have the same issues)
1272 # but the openssl maintainers basically said: "trust us, it just works". 1761 # but the openssl maintainers basically said: "trust us, it just works".
1273 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1762 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274 # and mismaintained ssleay-module doesn't even offer them). 1763 # and mismaintained ssleay-module doesn't even offer them).
1275 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1764 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1765 #
1766 # in short: this is a mess.
1767 #
1768 # note that we do not try to keep the length constant between writes as we are required to do.
1769 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1770 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1771 # have identity issues in that area.
1276 Net::SSLeay::CTX_set_mode ($self->{tls}, 1772# Net::SSLeay::CTX_set_mode ($ssl,
1277 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1773# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1774# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1775 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1279 1776
1280 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1777 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1778 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282 1779
1780 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1781
1283 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1782 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1284 1783
1285 $self->{filter_w} = sub { 1784 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1286 $_[0]{_tls_wbuf} .= ${$_[1]}; 1785 if $self->{on_starttls};
1287 &_dotls; 1786
1288 }; 1787 &_dotls; # need to trigger the initial handshake
1289 $self->{filter_r} = sub { 1788 $self->start_read; # make sure we actually do read
1290 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 &_dotls;
1292 };
1293} 1789}
1294 1790
1295=item $handle->stoptls 1791=item $handle->stoptls
1296 1792
1297Destroys the SSL connection, if any. Partial read or write data will be 1793Shuts down the SSL connection - this makes a proper EOF handshake by
1298lost. 1794sending a close notify to the other side, but since OpenSSL doesn't
1795support non-blocking shut downs, it is not guarenteed that you can re-use
1796the stream afterwards.
1299 1797
1300=cut 1798=cut
1301 1799
1302sub stoptls { 1800sub stoptls {
1303 my ($self) = @_; 1801 my ($self) = @_;
1304 1802
1305 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1803 if ($self->{tls}) {
1804 Net::SSLeay::shutdown ($self->{tls});
1306 1805
1307 delete $self->{_rbio}; 1806 &_dotls;
1308 delete $self->{_wbio}; 1807
1309 delete $self->{_tls_wbuf}; 1808# # we don't give a shit. no, we do, but we can't. no...#d#
1310 delete $self->{filter_r}; 1809# # we, we... have to use openssl :/#d#
1311 delete $self->{filter_w}; 1810# &_freetls;#d#
1811 }
1812}
1813
1814sub _freetls {
1815 my ($self) = @_;
1816
1817 return unless $self->{tls};
1818
1819 $self->{tls_ctx}->_put_session (delete $self->{tls})
1820 if $self->{tls} > 0;
1821
1822 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1312} 1823}
1313 1824
1314sub DESTROY { 1825sub DESTROY {
1315 my $self = shift; 1826 my ($self) = @_;
1316 1827
1317 $self->stoptls; 1828 &_freetls;
1318 1829
1319 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1830 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320 1831
1321 if ($linger && length $self->{wbuf}) { 1832 if ($linger && length $self->{wbuf} && $self->{fh}) {
1322 my $fh = delete $self->{fh}; 1833 my $fh = delete $self->{fh};
1323 my $wbuf = delete $self->{wbuf}; 1834 my $wbuf = delete $self->{wbuf};
1324 1835
1325 my @linger; 1836 my @linger;
1326 1837
1327 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1838 push @linger, AE::io $fh, 1, sub {
1328 my $len = syswrite $fh, $wbuf, length $wbuf; 1839 my $len = syswrite $fh, $wbuf, length $wbuf;
1329 1840
1330 if ($len > 0) { 1841 if ($len > 0) {
1331 substr $wbuf, 0, $len, ""; 1842 substr $wbuf, 0, $len, "";
1332 } else { 1843 } else {
1333 @linger = (); # end 1844 @linger = (); # end
1334 } 1845 }
1335 }); 1846 };
1336 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1847 push @linger, AE::timer $linger, 0, sub {
1337 @linger = (); 1848 @linger = ();
1338 }); 1849 };
1339 } 1850 }
1851}
1852
1853=item $handle->destroy
1854
1855Shuts down the handle object as much as possible - this call ensures that
1856no further callbacks will be invoked and as many resources as possible
1857will be freed. Any method you will call on the handle object after
1858destroying it in this way will be silently ignored (and it will return the
1859empty list).
1860
1861Normally, you can just "forget" any references to an AnyEvent::Handle
1862object and it will simply shut down. This works in fatal error and EOF
1863callbacks, as well as code outside. It does I<NOT> work in a read or write
1864callback, so when you want to destroy the AnyEvent::Handle object from
1865within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1866that case.
1867
1868Destroying the handle object in this way has the advantage that callbacks
1869will be removed as well, so if those are the only reference holders (as
1870is common), then one doesn't need to do anything special to break any
1871reference cycles.
1872
1873The handle might still linger in the background and write out remaining
1874data, as specified by the C<linger> option, however.
1875
1876=cut
1877
1878sub destroy {
1879 my ($self) = @_;
1880
1881 $self->DESTROY;
1882 %$self = ();
1883 bless $self, "AnyEvent::Handle::destroyed";
1884}
1885
1886sub AnyEvent::Handle::destroyed::AUTOLOAD {
1887 #nop
1340} 1888}
1341 1889
1342=item AnyEvent::Handle::TLS_CTX 1890=item AnyEvent::Handle::TLS_CTX
1343 1891
1344This function creates and returns the Net::SSLeay::CTX object used by 1892This function creates and returns the AnyEvent::TLS object used by default
1345default for TLS mode. 1893for TLS mode.
1346 1894
1347The context is created like this: 1895The context is created by calling L<AnyEvent::TLS> without any arguments.
1348
1349 Net::SSLeay::load_error_strings;
1350 Net::SSLeay::SSLeay_add_ssl_algorithms;
1351 Net::SSLeay::randomize;
1352
1353 my $CTX = Net::SSLeay::CTX_new;
1354
1355 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356 1896
1357=cut 1897=cut
1358 1898
1359our $TLS_CTX; 1899our $TLS_CTX;
1360 1900
1361sub TLS_CTX() { 1901sub TLS_CTX() {
1362 $TLS_CTX || do { 1902 $TLS_CTX ||= do {
1363 require Net::SSLeay; 1903 require AnyEvent::TLS;
1364 1904
1365 Net::SSLeay::load_error_strings (); 1905 new AnyEvent::TLS
1366 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367 Net::SSLeay::randomize ();
1368
1369 $TLS_CTX = Net::SSLeay::CTX_new ();
1370
1371 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372
1373 $TLS_CTX
1374 } 1906 }
1375} 1907}
1376 1908
1377=back 1909=back
1910
1911
1912=head1 NONFREQUENTLY ASKED QUESTIONS
1913
1914=over 4
1915
1916=item I C<undef> the AnyEvent::Handle reference inside my callback and
1917still get further invocations!
1918
1919That's because AnyEvent::Handle keeps a reference to itself when handling
1920read or write callbacks.
1921
1922It is only safe to "forget" the reference inside EOF or error callbacks,
1923from within all other callbacks, you need to explicitly call the C<<
1924->destroy >> method.
1925
1926=item I get different callback invocations in TLS mode/Why can't I pause
1927reading?
1928
1929Unlike, say, TCP, TLS connections do not consist of two independent
1930communication channels, one for each direction. Or put differently. The
1931read and write directions are not independent of each other: you cannot
1932write data unless you are also prepared to read, and vice versa.
1933
1934This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1935callback invocations when you are not expecting any read data - the reason
1936is that AnyEvent::Handle always reads in TLS mode.
1937
1938During the connection, you have to make sure that you always have a
1939non-empty read-queue, or an C<on_read> watcher. At the end of the
1940connection (or when you no longer want to use it) you can call the
1941C<destroy> method.
1942
1943=item How do I read data until the other side closes the connection?
1944
1945If you just want to read your data into a perl scalar, the easiest way
1946to achieve this is by setting an C<on_read> callback that does nothing,
1947clearing the C<on_eof> callback and in the C<on_error> callback, the data
1948will be in C<$_[0]{rbuf}>:
1949
1950 $handle->on_read (sub { });
1951 $handle->on_eof (undef);
1952 $handle->on_error (sub {
1953 my $data = delete $_[0]{rbuf};
1954 });
1955
1956The reason to use C<on_error> is that TCP connections, due to latencies
1957and packets loss, might get closed quite violently with an error, when in
1958fact, all data has been received.
1959
1960It is usually better to use acknowledgements when transferring data,
1961to make sure the other side hasn't just died and you got the data
1962intact. This is also one reason why so many internet protocols have an
1963explicit QUIT command.
1964
1965=item I don't want to destroy the handle too early - how do I wait until
1966all data has been written?
1967
1968After writing your last bits of data, set the C<on_drain> callback
1969and destroy the handle in there - with the default setting of
1970C<low_water_mark> this will be called precisely when all data has been
1971written to the socket:
1972
1973 $handle->push_write (...);
1974 $handle->on_drain (sub {
1975 warn "all data submitted to the kernel\n";
1976 undef $handle;
1977 });
1978
1979If you just want to queue some data and then signal EOF to the other side,
1980consider using C<< ->push_shutdown >> instead.
1981
1982=item I want to contact a TLS/SSL server, I don't care about security.
1983
1984If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1985simply connect to it and then create the AnyEvent::Handle with the C<tls>
1986parameter:
1987
1988 tcp_connect $host, $port, sub {
1989 my ($fh) = @_;
1990
1991 my $handle = new AnyEvent::Handle
1992 fh => $fh,
1993 tls => "connect",
1994 on_error => sub { ... };
1995
1996 $handle->push_write (...);
1997 };
1998
1999=item I want to contact a TLS/SSL server, I do care about security.
2000
2001Then you should additionally enable certificate verification, including
2002peername verification, if the protocol you use supports it (see
2003L<AnyEvent::TLS>, C<verify_peername>).
2004
2005E.g. for HTTPS:
2006
2007 tcp_connect $host, $port, sub {
2008 my ($fh) = @_;
2009
2010 my $handle = new AnyEvent::Handle
2011 fh => $fh,
2012 peername => $host,
2013 tls => "connect",
2014 tls_ctx => { verify => 1, verify_peername => "https" },
2015 ...
2016
2017Note that you must specify the hostname you connected to (or whatever
2018"peername" the protocol needs) as the C<peername> argument, otherwise no
2019peername verification will be done.
2020
2021The above will use the system-dependent default set of trusted CA
2022certificates. If you want to check against a specific CA, add the
2023C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2024
2025 tls_ctx => {
2026 verify => 1,
2027 verify_peername => "https",
2028 ca_file => "my-ca-cert.pem",
2029 },
2030
2031=item I want to create a TLS/SSL server, how do I do that?
2032
2033Well, you first need to get a server certificate and key. You have
2034three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2035self-signed certificate (cheap. check the search engine of your choice,
2036there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2037nice program for that purpose).
2038
2039Then create a file with your private key (in PEM format, see
2040L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2041file should then look like this:
2042
2043 -----BEGIN RSA PRIVATE KEY-----
2044 ...header data
2045 ... lots of base64'y-stuff
2046 -----END RSA PRIVATE KEY-----
2047
2048 -----BEGIN CERTIFICATE-----
2049 ... lots of base64'y-stuff
2050 -----END CERTIFICATE-----
2051
2052The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2053specify this file as C<cert_file>:
2054
2055 tcp_server undef, $port, sub {
2056 my ($fh) = @_;
2057
2058 my $handle = new AnyEvent::Handle
2059 fh => $fh,
2060 tls => "accept",
2061 tls_ctx => { cert_file => "my-server-keycert.pem" },
2062 ...
2063
2064When you have intermediate CA certificates that your clients might not
2065know about, just append them to the C<cert_file>.
2066
2067=back
2068
1378 2069
1379=head1 SUBCLASSING AnyEvent::Handle 2070=head1 SUBCLASSING AnyEvent::Handle
1380 2071
1381In many cases, you might want to subclass AnyEvent::Handle. 2072In many cases, you might want to subclass AnyEvent::Handle.
1382 2073
1386=over 4 2077=over 4
1387 2078
1388=item * all constructor arguments become object members. 2079=item * all constructor arguments become object members.
1389 2080
1390At least initially, when you pass a C<tls>-argument to the constructor it 2081At least initially, when you pass a C<tls>-argument to the constructor it
1391will end up in C<< $handle->{tls} >>. Those members might be changes or 2082will end up in C<< $handle->{tls} >>. Those members might be changed or
1392mutated later on (for example C<tls> will hold the TLS connection object). 2083mutated later on (for example C<tls> will hold the TLS connection object).
1393 2084
1394=item * other object member names are prefixed with an C<_>. 2085=item * other object member names are prefixed with an C<_>.
1395 2086
1396All object members not explicitly documented (internal use) are prefixed 2087All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines