ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.25
Committed: Sat May 24 15:19:43 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.24: +35 -1 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util ();
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw/EAGAIN EINTR/;
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 This module is experimental.
18
19 =cut
20
21 our $VERSION = '0.04';
22
23 =head1 SYNOPSIS
24
25 use AnyEvent;
26 use AnyEvent::Handle;
27
28 my $cv = AnyEvent->condvar;
29
30 my $ae_fh = AnyEvent::Handle->new (fh => \*STDIN);
31
32 #TODO
33
34 # or use the constructor to pass the callback:
35
36 my $ae_fh2 =
37 AnyEvent::Handle->new (
38 fh => \*STDIN,
39 on_eof => sub {
40 $cv->broadcast;
41 },
42 #TODO
43 );
44
45 $cv->wait;
46
47 =head1 DESCRIPTION
48
49 This module is a helper module to make it easier to do event-based I/O on
50 filehandles. For utility functions for doing non-blocking connects and accepts
51 on sockets see L<AnyEvent::Util>.
52
53 In the following, when the documentation refers to of "bytes" then this
54 means characters. As sysread and syswrite are used for all I/O, their
55 treatment of characters applies to this module as well.
56
57 All callbacks will be invoked with the handle object as their first
58 argument.
59
60 =head1 METHODS
61
62 =over 4
63
64 =item B<new (%args)>
65
66 The constructor supports these arguments (all as key => value pairs).
67
68 =over 4
69
70 =item fh => $filehandle [MANDATORY]
71
72 The filehandle this L<AnyEvent::Handle> object will operate on.
73
74 NOTE: The filehandle will be set to non-blocking (using
75 AnyEvent::Util::fh_nonblocking).
76
77 =item on_eof => $cb->($self)
78
79 Set the callback to be called on EOF.
80
81 While not mandatory, it is highly recommended to set an eof callback,
82 otherwise you might end up with a closed socket while you are still
83 waiting for data.
84
85 =item on_error => $cb->($self)
86
87 This is the fatal error callback, that is called when, well, a fatal error
88 occurs, such as not being able to resolve the hostname, failure to connect
89 or a read error.
90
91 The object will not be in a usable state when this callback has been
92 called.
93
94 On callback entrance, the value of C<$!> contains the operating system
95 error (or C<ENOSPC> or C<EPIPE>).
96
97 While not mandatory, it is I<highly> recommended to set this callback, as
98 you will not be notified of errors otherwise. The default simply calls
99 die.
100
101 =item on_read => $cb->($self)
102
103 This sets the default read callback, which is called when data arrives
104 and no read request is in the queue.
105
106 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
107 method or access the C<$self->{rbuf}> member directly.
108
109 When an EOF condition is detected then AnyEvent::Handle will first try to
110 feed all the remaining data to the queued callbacks and C<on_read> before
111 calling the C<on_eof> callback. If no progress can be made, then a fatal
112 error will be raised (with C<$!> set to C<EPIPE>).
113
114 =item on_drain => $cb->()
115
116 This sets the callback that is called when the write buffer becomes empty
117 (or when the callback is set and the buffer is empty already).
118
119 To append to the write buffer, use the C<< ->push_write >> method.
120
121 =item rbuf_max => <bytes>
122
123 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
124 when the read buffer ever (strictly) exceeds this size. This is useful to
125 avoid denial-of-service attacks.
126
127 For example, a server accepting connections from untrusted sources should
128 be configured to accept only so-and-so much data that it cannot act on
129 (for example, when expecting a line, an attacker could send an unlimited
130 amount of data without a callback ever being called as long as the line
131 isn't finished).
132
133 =item read_size => <bytes>
134
135 The default read block size (the amount of bytes this module will try to read
136 on each [loop iteration). Default: C<4096>.
137
138 =item low_water_mark => <bytes>
139
140 Sets the amount of bytes (default: C<0>) that make up an "empty" write
141 buffer: If the write reaches this size or gets even samller it is
142 considered empty.
143
144 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
145
146 When this parameter is given, it enables TLS (SSL) mode, that means it
147 will start making tls handshake and will transparently encrypt/decrypt
148 data.
149
150 For the TLS server side, use C<accept>, and for the TLS client side of a
151 connection, use C<connect> mode.
152
153 You can also provide your own TLS connection object, but you have
154 to make sure that you call either C<Net::SSLeay::set_connect_state>
155 or C<Net::SSLeay::set_accept_state> on it before you pass it to
156 AnyEvent::Handle.
157
158 =item tls_ctx => $ssl_ctx
159
160 Use the given Net::SSLeay::CTX object to create the new TLS connection
161 (unless a connection object was specified directly). If this parameter is
162 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
163
164 =back
165
166 =cut
167
168 sub new {
169 my $class = shift;
170
171 my $self = bless { @_ }, $class;
172
173 $self->{fh} or Carp::croak "mandatory argument fh is missing";
174
175 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
176
177 if ($self->{tls}) {
178 require Net::SSLeay;
179 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
180 }
181
182 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
183 $self->on_error (delete $self->{on_error}) if $self->{on_error};
184 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
185 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
186
187 $self->start_read;
188
189 $self
190 }
191
192 sub _shutdown {
193 my ($self) = @_;
194
195 delete $self->{rw};
196 delete $self->{ww};
197 delete $self->{fh};
198 }
199
200 sub error {
201 my ($self) = @_;
202
203 {
204 local $!;
205 $self->_shutdown;
206 }
207
208 if ($self->{on_error}) {
209 $self->{on_error}($self);
210 } else {
211 die "AnyEvent::Handle uncaught fatal error: $!";
212 }
213 }
214
215 =item $fh = $handle->fh
216
217 This method returns the file handle of the L<AnyEvent::Handle> object.
218
219 =cut
220
221 sub fh { $_[0]->{fh} }
222
223 =item $handle->on_error ($cb)
224
225 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
226
227 =cut
228
229 sub on_error {
230 $_[0]{on_error} = $_[1];
231 }
232
233 =item $handle->on_eof ($cb)
234
235 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
236
237 =cut
238
239 sub on_eof {
240 $_[0]{on_eof} = $_[1];
241 }
242
243 #############################################################################
244
245 =back
246
247 =head2 WRITE QUEUE
248
249 AnyEvent::Handle manages two queues per handle, one for writing and one
250 for reading.
251
252 The write queue is very simple: you can add data to its end, and
253 AnyEvent::Handle will automatically try to get rid of it for you.
254
255 When data could be written and the write buffer is shorter then the low
256 water mark, the C<on_drain> callback will be invoked.
257
258 =over 4
259
260 =item $handle->on_drain ($cb)
261
262 Sets the C<on_drain> callback or clears it (see the description of
263 C<on_drain> in the constructor).
264
265 =cut
266
267 sub on_drain {
268 my ($self, $cb) = @_;
269
270 $self->{on_drain} = $cb;
271
272 $cb->($self)
273 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
274 }
275
276 =item $handle->push_write ($data)
277
278 Queues the given scalar to be written. You can push as much data as you
279 want (only limited by the available memory), as C<AnyEvent::Handle>
280 buffers it independently of the kernel.
281
282 =cut
283
284 sub _drain_wbuf {
285 my ($self) = @_;
286
287 unless ($self->{ww}) {
288 Scalar::Util::weaken $self;
289 my $cb = sub {
290 my $len = syswrite $self->{fh}, $self->{wbuf};
291
292 if ($len > 0) {
293 substr $self->{wbuf}, 0, $len, "";
294
295 $self->{on_drain}($self)
296 if $self->{low_water_mark} >= length $self->{wbuf}
297 && $self->{on_drain};
298
299 delete $self->{ww} unless length $self->{wbuf};
300 } elsif ($! != EAGAIN && $! != EINTR) {
301 $self->error;
302 }
303 };
304
305 $self->{ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb);
306
307 $cb->($self);
308 };
309 }
310
311 sub push_write {
312 my $self = shift;
313
314 if ($self->{filter_w}) {
315 $self->{filter_w}->($self, \$_[0]);
316 } else {
317 $self->{wbuf} .= $_[0];
318 $self->_drain_wbuf;
319 }
320 }
321
322 #############################################################################
323
324 =back
325
326 =head2 READ QUEUE
327
328 AnyEvent::Handle manages two queues per handle, one for writing and one
329 for reading.
330
331 The read queue is more complex than the write queue. It can be used in two
332 ways, the "simple" way, using only C<on_read> and the "complex" way, using
333 a queue.
334
335 In the simple case, you just install an C<on_read> callback and whenever
336 new data arrives, it will be called. You can then remove some data (if
337 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
338 or not.
339
340 In the more complex case, you want to queue multiple callbacks. In this
341 case, AnyEvent::Handle will call the first queued callback each time new
342 data arrives and removes it when it has done its job (see C<push_read>,
343 below).
344
345 This way you can, for example, push three line-reads, followed by reading
346 a chunk of data, and AnyEvent::Handle will execute them in order.
347
348 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
349 the specified number of bytes which give an XML datagram.
350
351 # in the default state, expect some header bytes
352 $handle->on_read (sub {
353 # some data is here, now queue the length-header-read (4 octets)
354 shift->unshift_read_chunk (4, sub {
355 # header arrived, decode
356 my $len = unpack "N", $_[1];
357
358 # now read the payload
359 shift->unshift_read_chunk ($len, sub {
360 my $xml = $_[1];
361 # handle xml
362 });
363 });
364 });
365
366 Example 2: Implement a client for a protocol that replies either with
367 "OK" and another line or "ERROR" for one request, and 64 bytes for the
368 second request. Due tot he availability of a full queue, we can just
369 pipeline sending both requests and manipulate the queue as necessary in
370 the callbacks:
371
372 # request one
373 $handle->push_write ("request 1\015\012");
374
375 # we expect "ERROR" or "OK" as response, so push a line read
376 $handle->push_read_line (sub {
377 # if we got an "OK", we have to _prepend_ another line,
378 # so it will be read before the second request reads its 64 bytes
379 # which are already in the queue when this callback is called
380 # we don't do this in case we got an error
381 if ($_[1] eq "OK") {
382 $_[0]->unshift_read_line (sub {
383 my $response = $_[1];
384 ...
385 });
386 }
387 });
388
389 # request two
390 $handle->push_write ("request 2\015\012");
391
392 # simply read 64 bytes, always
393 $handle->push_read_chunk (64, sub {
394 my $response = $_[1];
395 ...
396 });
397
398 =over 4
399
400 =cut
401
402 sub _drain_rbuf {
403 my ($self) = @_;
404
405 if (
406 defined $self->{rbuf_max}
407 && $self->{rbuf_max} < length $self->{rbuf}
408 ) {
409 $! = &Errno::ENOSPC; return $self->error;
410 }
411
412 return if $self->{in_drain};
413 local $self->{in_drain} = 1;
414
415 while (my $len = length $self->{rbuf}) {
416 no strict 'refs';
417 if (my $cb = shift @{ $self->{queue} }) {
418 if (!$cb->($self)) {
419 if ($self->{eof}) {
420 # no progress can be made (not enough data and no data forthcoming)
421 $! = &Errno::EPIPE; return $self->error;
422 }
423
424 unshift @{ $self->{queue} }, $cb;
425 return;
426 }
427 } elsif ($self->{on_read}) {
428 $self->{on_read}($self);
429
430 if (
431 $self->{eof} # if no further data will arrive
432 && $len == length $self->{rbuf} # and no data has been consumed
433 && !@{ $self->{queue} } # and the queue is still empty
434 && $self->{on_read} # and we still want to read data
435 ) {
436 # then no progress can be made
437 $! = &Errno::EPIPE; return $self->error;
438 }
439 } else {
440 # read side becomes idle
441 delete $self->{rw};
442 return;
443 }
444 }
445
446 if ($self->{eof}) {
447 $self->_shutdown;
448 $self->{on_eof}($self)
449 if $self->{on_eof};
450 }
451 }
452
453 =item $handle->on_read ($cb)
454
455 This replaces the currently set C<on_read> callback, or clears it (when
456 the new callback is C<undef>). See the description of C<on_read> in the
457 constructor.
458
459 =cut
460
461 sub on_read {
462 my ($self, $cb) = @_;
463
464 $self->{on_read} = $cb;
465 }
466
467 =item $handle->rbuf
468
469 Returns the read buffer (as a modifiable lvalue).
470
471 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
472 you want.
473
474 NOTE: The read buffer should only be used or modified if the C<on_read>,
475 C<push_read> or C<unshift_read> methods are used. The other read methods
476 automatically manage the read buffer.
477
478 =cut
479
480 sub rbuf : lvalue {
481 $_[0]{rbuf}
482 }
483
484 =item $handle->push_read ($cb)
485
486 =item $handle->unshift_read ($cb)
487
488 Append the given callback to the end of the queue (C<push_read>) or
489 prepend it (C<unshift_read>).
490
491 The callback is called each time some additional read data arrives.
492
493 It must check whether enough data is in the read buffer already.
494
495 If not enough data is available, it must return the empty list or a false
496 value, in which case it will be called repeatedly until enough data is
497 available (or an error condition is detected).
498
499 If enough data was available, then the callback must remove all data it is
500 interested in (which can be none at all) and return a true value. After returning
501 true, it will be removed from the queue.
502
503 =cut
504
505 sub push_read {
506 my ($self, $cb) = @_;
507
508 push @{ $self->{queue} }, $cb;
509 $self->_drain_rbuf;
510 }
511
512 sub unshift_read {
513 my ($self, $cb) = @_;
514
515 push @{ $self->{queue} }, $cb;
516 $self->_drain_rbuf;
517 }
518
519 =item $handle->push_read_chunk ($len, $cb->($self, $data))
520
521 =item $handle->unshift_read_chunk ($len, $cb->($self, $data))
522
523 Append the given callback to the end of the queue (C<push_read_chunk>) or
524 prepend it (C<unshift_read_chunk>).
525
526 The callback will be called only once C<$len> bytes have been read, and
527 these C<$len> bytes will be passed to the callback.
528
529 =cut
530
531 sub _read_chunk($$) {
532 my ($self, $len, $cb) = @_;
533
534 sub {
535 $len <= length $_[0]{rbuf} or return;
536 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
537 1
538 }
539 }
540
541 sub push_read_chunk {
542 $_[0]->push_read (&_read_chunk);
543 }
544
545
546 sub unshift_read_chunk {
547 $_[0]->unshift_read (&_read_chunk);
548 }
549
550 =item $handle->push_read_line ([$eol, ]$cb->($self, $line, $eol))
551
552 =item $handle->unshift_read_line ([$eol, ]$cb->($self, $line, $eol))
553
554 Append the given callback to the end of the queue (C<push_read_line>) or
555 prepend it (C<unshift_read_line>).
556
557 The callback will be called only once a full line (including the end of
558 line marker, C<$eol>) has been read. This line (excluding the end of line
559 marker) will be passed to the callback as second argument (C<$line>), and
560 the end of line marker as the third argument (C<$eol>).
561
562 The end of line marker, C<$eol>, can be either a string, in which case it
563 will be interpreted as a fixed record end marker, or it can be a regex
564 object (e.g. created by C<qr>), in which case it is interpreted as a
565 regular expression.
566
567 The end of line marker argument C<$eol> is optional, if it is missing (NOT
568 undef), then C<qr|\015?\012|> is used (which is good for most internet
569 protocols).
570
571 Partial lines at the end of the stream will never be returned, as they are
572 not marked by the end of line marker.
573
574 =cut
575
576 sub _read_line($$) {
577 my $self = shift;
578 my $cb = pop;
579 my $eol = @_ ? shift : qr|(\015?\012)|;
580 my $pos;
581
582 $eol = quotemeta $eol unless ref $eol;
583 $eol = qr|^(.*?)($eol)|s;
584
585 sub {
586 $_[0]{rbuf} =~ s/$eol// or return;
587
588 $cb->($_[0], $1, $2);
589 1
590 }
591 }
592
593 sub push_read_line {
594 $_[0]->push_read (&_read_line);
595 }
596
597 sub unshift_read_line {
598 $_[0]->unshift_read (&_read_line);
599 }
600
601 =item $handle->stop_read
602
603 =item $handle->start_read
604
605 In rare cases you actually do not want to read anything from the
606 socket. In this case you can call C<stop_read>. Neither C<on_read> no
607 any queued callbacks will be executed then. To start reading again, call
608 C<start_read>.
609
610 =cut
611
612 sub stop_read {
613 my ($self) = @_;
614
615 delete $self->{rw};
616 }
617
618 sub start_read {
619 my ($self) = @_;
620
621 unless ($self->{rw} || $self->{eof}) {
622 Scalar::Util::weaken $self;
623
624 $self->{rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
625 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
626 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
627
628 if ($len > 0) {
629 $self->{filter_r}
630 ? $self->{filter_r}->($self, $rbuf)
631 : $self->_drain_rbuf;
632
633 } elsif (defined $len) {
634 delete $self->{rw};
635 $self->{eof} = 1;
636 $self->_drain_rbuf;
637
638 } elsif ($! != EAGAIN && $! != EINTR) {
639 return $self->error;
640 }
641 });
642 }
643 }
644
645 sub _dotls {
646 my ($self) = @_;
647
648 if (length $self->{tls_wbuf}) {
649 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{tls_wbuf})) > 0) {
650 substr $self->{tls_wbuf}, 0, $len, "";
651 }
652 }
653
654 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{tls_wbio}))) {
655 $self->{wbuf} .= $buf;
656 $self->_drain_wbuf;
657 }
658
659 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
660 $self->{rbuf} .= $buf;
661 $self->_drain_rbuf;
662 }
663
664 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
665
666 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
667 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
668 $self->error;
669 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
670 $! = &Errno::EIO;
671 $self->error;
672 }
673
674 # all others are fine for our purposes
675 }
676 }
677
678 =item $handle->starttls ($tls[, $tls_ctx])
679
680 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
681 object is created, you can also do that at a later time by calling
682 C<starttls>.
683
684 The first argument is the same as the C<tls> constructor argument (either
685 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
686
687 The second argument is the optional C<Net::SSLeay::CTX> object that is
688 used when AnyEvent::Handle has to create its own TLS connection object.
689
690 =cut
691
692 # TODO: maybe document...
693 sub starttls {
694 my ($self, $ssl, $ctx) = @_;
695
696 $self->stoptls;
697
698 if ($ssl eq "accept") {
699 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
700 Net::SSLeay::set_accept_state ($ssl);
701 } elsif ($ssl eq "connect") {
702 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
703 Net::SSLeay::set_connect_state ($ssl);
704 }
705
706 $self->{tls} = $ssl;
707
708 # basically, this is deep magic (because SSL_read should have the same issues)
709 # but the openssl maintainers basically said: "trust us, it just works".
710 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
711 # and mismaintained ssleay-module doesn't even offer them).
712 Net::SSLeay::CTX_set_mode ($self->{tls},
713 (eval { Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
714 | (eval { Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
715
716 $self->{tls_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
717 $self->{tls_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
718
719 Net::SSLeay::set_bio ($ssl, $self->{tls_rbio}, $self->{tls_wbio});
720
721 $self->{filter_w} = sub {
722 $_[0]{tls_wbuf} .= ${$_[1]};
723 &_dotls;
724 };
725 $self->{filter_r} = sub {
726 Net::SSLeay::BIO_write ($_[0]{tls_rbio}, ${$_[1]});
727 &_dotls;
728 };
729 }
730
731 =item $handle->stoptls
732
733 Destroys the SSL connection, if any. Partial read or write data will be
734 lost.
735
736 =cut
737
738 sub stoptls {
739 my ($self) = @_;
740
741 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
742 delete $self->{tls_rbio};
743 delete $self->{tls_wbio};
744 delete $self->{tls_wbuf};
745 delete $self->{filter_r};
746 delete $self->{filter_w};
747 }
748
749 sub DESTROY {
750 my $self = shift;
751
752 $self->stoptls;
753 }
754
755 =item AnyEvent::Handle::TLS_CTX
756
757 This function creates and returns the Net::SSLeay::CTX object used by
758 default for TLS mode.
759
760 The context is created like this:
761
762 Net::SSLeay::load_error_strings;
763 Net::SSLeay::SSLeay_add_ssl_algorithms;
764 Net::SSLeay::randomize;
765
766 my $CTX = Net::SSLeay::CTX_new;
767
768 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
769
770 =cut
771
772 our $TLS_CTX;
773
774 sub TLS_CTX() {
775 $TLS_CTX || do {
776 require Net::SSLeay;
777
778 Net::SSLeay::load_error_strings ();
779 Net::SSLeay::SSLeay_add_ssl_algorithms ();
780 Net::SSLeay::randomize ();
781
782 $TLS_CTX = Net::SSLeay::CTX_new ();
783
784 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
785
786 $TLS_CTX
787 }
788 }
789
790 =back
791
792 =head1 AUTHOR
793
794 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
795
796 =cut
797
798 1; # End of AnyEvent::Handle